Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment

  • Received: 01 May 2007 Accepted: 29 June 2018 Published: 01 January 2008
  • MSC : Primary: 92D30; Secondary: 92B05; 34D23.

  • This paper addresses the synergistic interaction between HIV and mycobacterium tuberculosis using a deterministic model, which incorporates many of the essential biological and epidemiological features of the two dis- eases. In the absence of TB infection, the model (HIV-only model) is shown to have a globally asymptotically stable, disease-free equilibrium whenever the associated reproduction number is less than unity and has a unique endemic equilibrium whenever this number exceeds unity. On the other hand, the model with TB alone (TB-only model) undergoes the phenomenon of back- ward bifurcation, where the stable disease-free equilibrium co-exists with a stable endemic equilibrium when the associated reproduction threshold is less than unity. The analysis of the respective reproduction thresholds shows that the use of a targeted HIV treatment (using anti-retroviral drugs) strategy can lead to effective control of HIV provided it reduces the relative infectiousness of individuals treated (in comparison to untreated HIV-infected individuals) below a certain threshold. The full model, with both HIV and TB, is simu- lated to evaluate the impact of the various treatment strategies. It is shown that the HIV-only treatment strategy saves more cases of the mixed infection than the TB-only strategy. Further, for low treatment rates, the mixed-only strategy saves the least number of cases (of HIV, TB, and the mixed infection) in comparison to the other strategies. Thus, this study shows that if resources are limited, then targeting such resources to treating one of the diseases is more beneficial in reducing new cases of the mixed infection than targeting the mixed infection only diseases. Finally, the universal strategy saves more cases of the mixed infection than any of the other strategies.

    Citation: Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment[J]. Mathematical Biosciences and Engineering, 2008, 5(1): 145-174. doi: 10.3934/mbe.2008.5.145

    Related Papers:

    [1] Lih-Ing W. Roeger, Z. Feng, Carlos Castillo-Chávez . Modeling TB and HIV co-infections. Mathematical Biosciences and Engineering, 2009, 6(4): 815-837. doi: 10.3934/mbe.2009.6.815
    [2] Carlos Castillo-Chavez, Baojun Song . Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences and Engineering, 2004, 1(2): 361-404. doi: 10.3934/mbe.2004.1.361
    [3] Silvia Martorano Raimundo, Hyun Mo Yang, Ezio Venturino . Theoretical assessment of the relative incidences of sensitive andresistant tuberculosis epidemic in presence of drug treatment. Mathematical Biosciences and Engineering, 2014, 11(4): 971-993. doi: 10.3934/mbe.2014.11.971
    [4] Na Pang . Nonlinear neural networks adaptive control for a class of fractional-order tuberculosis model. Mathematical Biosciences and Engineering, 2023, 20(6): 10464-10478. doi: 10.3934/mbe.2023461
    [5] Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437
    [6] Helen Moore, Weiqing Gu . A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences and Engineering, 2005, 2(2): 363-380. doi: 10.3934/mbe.2005.2.363
    [7] Andrew Omame, Sarafa A. Iyaniwura, Qing Han, Adeniyi Ebenezer, Nicola L. Bragazzi, Xiaoying Wang, Woldegebriel A. Woldegerima, Jude D. Kong . Dynamics of Mpox in an HIV endemic community: A mathematical modelling approach. Mathematical Biosciences and Engineering, 2025, 22(2): 225-259. doi: 10.3934/mbe.2025010
    [8] Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres . Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences and Engineering, 2017, 14(1): 321-337. doi: 10.3934/mbe.2017021
    [9] Surabhi Pandey, Ezio Venturino . A TB model: Is disease eradication possible in India?. Mathematical Biosciences and Engineering, 2018, 15(1): 233-254. doi: 10.3934/mbe.2018010
    [10] Divine Wanduku . A nonlinear multi-population behavioral model to assess the roles of education campaigns, random supply of aids, and delayed ART treatment in HIV/AIDS epidemics. Mathematical Biosciences and Engineering, 2020, 17(6): 6791-6837. doi: 10.3934/mbe.2020354
  • This paper addresses the synergistic interaction between HIV and mycobacterium tuberculosis using a deterministic model, which incorporates many of the essential biological and epidemiological features of the two dis- eases. In the absence of TB infection, the model (HIV-only model) is shown to have a globally asymptotically stable, disease-free equilibrium whenever the associated reproduction number is less than unity and has a unique endemic equilibrium whenever this number exceeds unity. On the other hand, the model with TB alone (TB-only model) undergoes the phenomenon of back- ward bifurcation, where the stable disease-free equilibrium co-exists with a stable endemic equilibrium when the associated reproduction threshold is less than unity. The analysis of the respective reproduction thresholds shows that the use of a targeted HIV treatment (using anti-retroviral drugs) strategy can lead to effective control of HIV provided it reduces the relative infectiousness of individuals treated (in comparison to untreated HIV-infected individuals) below a certain threshold. The full model, with both HIV and TB, is simu- lated to evaluate the impact of the various treatment strategies. It is shown that the HIV-only treatment strategy saves more cases of the mixed infection than the TB-only strategy. Further, for low treatment rates, the mixed-only strategy saves the least number of cases (of HIV, TB, and the mixed infection) in comparison to the other strategies. Thus, this study shows that if resources are limited, then targeting such resources to treating one of the diseases is more beneficial in reducing new cases of the mixed infection than targeting the mixed infection only diseases. Finally, the universal strategy saves more cases of the mixed infection than any of the other strategies.


  • This article has been cited by:

    1. Rajiv Aggarwal, Stability analysis of a delayed HIV-TB co-infection model in resource limitation settings, 2020, 140, 09600779, 110138, 10.1016/j.chaos.2020.110138
    2. Vinay Kumar Reddy Chimmula, Lei Zhang, Time series forecasting of COVID-19 transmission in Canada using LSTM networks, 2020, 135, 09600779, 109864, 10.1016/j.chaos.2020.109864
    3. Indrajit Ghosh, Pankaj Kumar Tiwari, Sudip Samanta, Ibrahim M. Elmojtaba, Nasser Al-Salti, Joydev Chattopadhyay, A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear, 2018, 306, 00255564, 160, 10.1016/j.mbs.2018.09.014
    4. O. Sharomi, A.B. Gumel, Mathematical study of a risk-structured two-group model for Chlamydia transmission dynamics, 2011, 35, 0307904X, 3653, 10.1016/j.apm.2010.12.006
    5. EMMA G. THOMAS, HANNAH E. BARRINGTON, KAMALINI M. LOKUGE, GEOFFRY N. MERCER, MODELLING THE SPREAD OF TUBERCULOSIS, INCLUDING DRUG RESISTANCE AND HIV: A CASE STUDY IN PAPUA NEW GUINEA’S WESTERN PROVINCE, 2010, 52, 1446-1811, 26, 10.1017/S1446181111000587
    6. Gitu Pandey, Sarita Kumari Yadav, Brahmeshwar Mishra, Preparation and characterization of isoniazid and lamivudine co-loaded polymeric microspheres, 2016, 44, 2169-1401, 1867, 10.3109/21691401.2015.1111229
    7. Daozhou Gao, Thomas M. Lietman, Travis C. Porco, Antibiotic resistance as collateral damage: The tragedy of the commons in a two-disease setting, 2015, 263, 00255564, 121, 10.1016/j.mbs.2015.02.007
    8. Hengki Tasman, An Optimal Treatment Control of TB-HIV Coinfection, 2016, 2016, 0161-1712, 1, 10.1155/2016/8261208
    9. Hui Cao, Xiaoyan Gao, Dongxue Yan, Suxia Zhang, The dynamics of an age‐structured TB transmission model with relapse, 2020, 43, 0170-4214, 3807, 10.1002/mma.6156
    10. Malik Zaka Ullah, Dumitru Baleanu, A new fractional SICA model and numerical method for the transmission of HIV/AIDS, 2021, 0170-4214, 10.1002/mma.7292
    11. Baba Seidu, Oluwole D. Makinde, Ibrahim Y. Seini, Mathematical Analysis of the Effects of HIV-Malaria Co-infection on Workplace Productivity, 2015, 63, 0001-5342, 151, 10.1007/s10441-015-9255-y
    12. Cristiana J. Silva, Delfim F. M. Torres, A TB-HIV/AIDS coinfection model and optimal control treatment, 2015, 35, 1553-5231, 4639, 10.3934/dcds.2015.35.4639
    13. Oluwaseun Y. Sharomi, Mohammad A. Safi, Abba B. Gumel, David J. Gerberry, Exogenous re-infection does not always cause backward bifurcation in TB transmission dynamics, 2017, 298, 00963003, 322, 10.1016/j.amc.2016.11.009
    14. F.B. Agusto, A.I. Adekunle, Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model, 2014, 119, 03032647, 20, 10.1016/j.biosystems.2014.03.006
    15. S. Mushayabasa, J.M. Tchuenche, C.P. Bhunu, E. Ngarakana-Gwasira, Modeling gonorrhea and HIV co-interaction, 2011, 103, 03032647, 27, 10.1016/j.biosystems.2010.09.008
    16. Navjot Kaur, Mini Ghosh, S. S. Bhatia, The role of screening and treatment in the transmission dynamics of HIV/AIDS and tuberculosis co-infection: a mathematical study, 2014, 40, 0092-0606, 139, 10.1007/s10867-014-9342-3
    17. Aliya A. Alsaleh, Abba B. Gumel, Analysis of Risk-Structured Vaccination Model for the Dynamics of Oncogenic and Warts-Causing HPV Types, 2014, 76, 0092-8240, 1670, 10.1007/s11538-014-9972-4
    18. Cristiana J. Silva, Delfim F.M. Torres, A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde, 2017, 30, 1476945X, 70, 10.1016/j.ecocom.2016.12.001
    19. Siyu Liu, Yingjie Bi, Yawen Liu, Modeling and dynamic analysis of tuberculosis in mainland China from 1998 to 2017: the effect of DOTS strategy and further control, 2020, 17, 1742-4682, 10.1186/s12976-020-00124-9
    20. O. Sharomi, C. N. Podder, A. B. Gumel, S. M. Mahmud, E. Rubinstein, Modelling the Transmission Dynamics and Control of the Novel 2009 Swine Influenza (H1N1) Pandemic, 2011, 73, 0092-8240, 515, 10.1007/s11538-010-9538-z
    21. ALIYA A. ALSALEH, ABBA B. GUMEL, DYNAMICS ANALYSIS OF A VACCINATION MODEL FOR HPV TRANSMISSION, 2014, 22, 0218-3390, 555, 10.1142/S0218339014500211
    22. Deen L. Garba, Salisu M. Garba, Abba B. Gumel, Oluwaseun Sharomi, Mathematics of FIV and BTB dynamics in buffalo and lion populations at Kruger National Park, 2018, 41, 01704214, 8697, 10.1002/mma.5065
    23. Carlos Andrés Trujillo-Salazar, Hernán Darío Toro-Zapata, 2015, Chapter 18, 978-3-319-12582-4, 257, 10.1007/978-3-319-12583-1_18
    24. C. P. Bhunu, S. Mushayabasa, J. M. Tchuenche, A Theoretical Assessment of the Effects of Smoking on the Transmission Dynamics of Tuberculosis, 2011, 73, 0092-8240, 1333, 10.1007/s11538-010-9568-6
    25. Farah Shahid, Aneela Zameer, Muhammad Muneeb, Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM, 2020, 140, 09600779, 110212, 10.1016/j.chaos.2020.110212
    26. Mixed vaccination strategy for the control of tuberculosis: A case study in China, 2017, 14, 1551-0018, 695, 10.3934/mbe.2017039
    27. Dmitry Gromov, Ingo Bulla, Ethan O. Romero-Severson, Systematic evaluation of the population-level effects of alternative treatment strategies on the basic reproduction number, 2019, 462, 00225193, 381, 10.1016/j.jtbi.2018.11.029
    28. Bojan Ramadanovic, Krisztina Vasarhelyi, Ali Nadaf, Ralf W. Wittenberg, Julio S. G. Montaner, Evan Wood, Alexander R. Rutherford, Edward White, Changing Risk Behaviours and the HIV Epidemic: A Mathematical Analysis in the Context of Treatment as Prevention, 2013, 8, 1932-6203, e62321, 10.1371/journal.pone.0062321
    29. A mathematical model for within-host Toxoplasma gondii invasion dynamics, 2012, 9, 1551-0018, 647, 10.3934/mbe.2012.9.647
    30. Abhishek Mallela, Suzanne Lenhart, Naveen K. Vaidya, HIV–TB co-infection treatment: Modeling and optimal control theory perspectives, 2016, 307, 03770427, 143, 10.1016/j.cam.2016.02.051
    31. Xi-Chao Duan, Xue-Zhi Li, Maia Martcheva, Coinfection dynamics of heroin transmission and HIV infection in a single population, 2020, 14, 1751-3758, 116, 10.1080/17513758.2020.1726516
    32. D. Okuonghae, S.E. Omosigho, Analysis of a mathematical model for tuberculosis: What could be done to increase case detection, 2011, 269, 00225193, 31, 10.1016/j.jtbi.2010.09.044
    33. A. Nwankwo, D. Okuonghae, Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis, 2018, 80, 0092-8240, 437, 10.1007/s11538-017-0384-0
    34. Juan Wang, Sha-Sha Gao, Xue-Zhi Li, A TB Model with Infectivity in Latent Period and Imperfect Treatment, 2012, 2012, 1026-0226, 1, 10.1155/2012/184918
    35. Nicolas Bacaër, Rachid Ouifki, Carel Pretorius, Robin Wood, Brian Williams, Modeling the joint epidemics of TB and HIV in a South African township, 2008, 57, 0303-6812, 557, 10.1007/s00285-008-0177-z
    36. Daniel Okuonghae, Bernard O. Ikhimwin, Dynamics of a Mathematical Model for Tuberculosis with Variability in Susceptibility and Disease Progressions Due to Difference in Awareness Level, 2016, 6, 1664-302X, 10.3389/fmicb.2015.01530
    37. Biao Tang, Yanni Xiao, Jianhong Wu, Implication of vaccination against dengue for Zika outbreak, 2016, 6, 2045-2322, 10.1038/srep35623
    38. N. Tarfulea, 2018, 2025, 0094-243X, 060004, 10.1063/1.5064912
    39. Chandra Dash Purna, P. Rajendran, 2017, 9781315366487, 181, 10.1201/b19944-7
    40. O. Sharomi, A.B. Gumel, Re-infection-induced backward bifurcation in the transmission dynamics of Chlamydia trachomatis, 2009, 356, 0022247X, 96, 10.1016/j.jmaa.2009.02.032
    41. K. O. Okosun, M. A. Khan, E. Bonyah, S. T. Ogunlade, On the dynamics of HIV-AIDS and cryptosporidiosis, 2017, 132, 2190-5444, 10.1140/epjp/i2017-11625-3
    42. Salisu M. Garba, Chibale K. Mumba, Mathematical analysis of a model for the transmission dynamics of Trichomonas vaginalis (TV) and HIV coinfection, 2018, 41, 01704214, 8741, 10.1002/mma.5108
    43. F.B. Agusto, M.C.A. Leite, Optimal control and cost-effective analysis of the 2017 meningitis outbreak in Nigeria, 2019, 4, 24680427, 161, 10.1016/j.idm.2019.05.003
    44. S. Bowong, J. Kurths, Modelling Tuberculosis and Hepatitis B Co-infections, 2010, 5, 0973-5348, 196, 10.1051/mmnp/20105610
    45. Threshold dynamics for a Tuberculosis model with seasonality, 2012, 9, 1551-0018, 111, 10.3934/mbe.2012.9.111
    46. N. E. Tarfulea, 2017, 1895, 0094-243X, 070005, 10.1063/1.5007394
    47. Temesgen Awoke, Semu Kassa, Optimal Control Strategy for TB-HIV/AIDS Co-Infection Model in the Presence of Behaviour Modification, 2018, 6, 2227-9717, 48, 10.3390/pr6050048
    48. Ted Cohen, Christopher Dye, Caroline Colijn, Brian Williams, Megan Murray, Mathematical models of the epidemiology and control of drug-resistant TB, 2009, 3, 1747-6348, 67, 10.1586/17476348.3.1.67
    49. Georgi Kapitanov, A double age-structured model of the co-infection of tuberculosis and HIV, 2015, 12, 1551-0018, 23, 10.3934/mbe.2015.12.23
    50. Farai Nyabadza, Simon Mukwembi, Bernardo Gabriel Rodrigues, A tuberculosis model: The case of ‘reasonable’ and ‘unreasonable’ infectives, 2009, 388, 03784371, 1995, 10.1016/j.physa.2009.01.039
    51. O. Sharomi, A.B. Gumel, Dynamical analysis of a sex-structured Chlamydia trachomatis transmission model with time delay, 2011, 12, 14681218, 837, 10.1016/j.nonrwa.2010.08.010
    52. Bingtao Han, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad, Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation, 2020, 140, 09600779, 110238, 10.1016/j.chaos.2020.110238
    53. Auwal Abdullahi, Shamarina Shohaimi, Adem Kilicman, Mohd Hafiz Ibrahim, Nader Salari, Stochastic SIS Modelling: Coinfection of Two Pathogens in Two-Host Communities, 2019, 22, 1099-4300, 54, 10.3390/e22010054
    54. F.B. Agusto, M.A. Khan, Optimal control strategies for dengue transmission in pakistan, 2018, 305, 00255564, 102, 10.1016/j.mbs.2018.09.007
    55. GESHAM MAGOMBEDZE, WINSTON GARIRA, EDDIE MWENJE, Modeling the TB/HIV-1 Co-Infection and the Effects of Its Treatment, 2010, 17, 0889-8480, 12, 10.1080/08898480903467241
    56. Y. Ma, C. R. Horsburgh, L. F. White, H. E. Jenkins, Quantifying TB transmission: a systematic review of reproduction number and serial interval estimates for tuberculosis, 2018, 146, 0950-2688, 1478, 10.1017/S0950268818001760
    57. Joe Pharaon, Chris T. Bauch, The Impact of Pre-exposure Prophylaxis for Human Immunodeficiency Virus on Gonorrhea Prevalence, 2020, 82, 0092-8240, 10.1007/s11538-020-00762-7
    58. Cristiana J. Silva, Delfim F. M. Torres, 2020, Chapter 6, 978-3-030-49895-5, 155, 10.1007/978-3-030-49896-2_6
    59. The impact of migrant workers on the tuberculosis transmission: General models and a case study for China, 2012, 9, 1551-0018, 785, 10.3934/mbe.2012.9.785
    60. Flavia Remo, Livingstone S. Luboobi, Isambi Sailon Mabalawata, Betty K. Nannyonga, A mathematical model for the dynamics and MCMC analysis of tomato bacterial wilt disease, 2018, 11, 1793-5245, 1850001, 10.1142/S1793524518500018
    61. Purity M. Ngina, Rachel Waema Mbogo, Livingstone S. Luboobi, Mathematical Modelling of In-Vivo Dynamics of HIV Subject to the Influence of the CD8+ T-Cells, 2017, 08, 2152-7385, 1153, 10.4236/am.2017.88087
    62. Peter Mpasho Mwamtobe, Simphiwe Mpumelelo Simelane, Shirley Abelman, Jean Michel Tchuenche, Optimal control of intervention strategies in malaria–tuberculosis co-infection with relapse, 2018, 11, 1793-5245, 1850017, 10.1142/S1793524518500171
    63. Carla M.A. Pinto, Ana R.M. Carvalho, The HIV/TB coinfection severity in the presence of TB multi-drug resistant strains, 2017, 32, 1476945X, 1, 10.1016/j.ecocom.2017.08.001
    64. A. Omame, D. Okuonghae, R.A. Umana, S.C. Inyama, Analysis of a co-infection model for HPV-TB, 2020, 77, 0307904X, 881, 10.1016/j.apm.2019.08.012
    65. Yayehirad A. Melsew, Adeshina I. Adekunle, Allen C. Cheng, Emma S. McBryde, Romain Ragonnet, James M. Trauer, Heterogeneous infectiousness in mathematical models of tuberculosis: A systematic review, 2020, 30, 17554365, 100374, 10.1016/j.epidem.2019.100374
    66. Roslyn I. Hickson, Geoffry N. Mercer, Kamalini M. Lokuge, Madhukar Pai, A Metapopulation Model of Tuberculosis Transmission with a Case Study from High to Low Burden Areas, 2012, 7, 1932-6203, e34411, 10.1371/journal.pone.0034411
    67. F.B. Agusto, A.B. Gumel, Qualitative dynamics of lowly- and highly-pathogenic avian influenza strains, 2013, 243, 00255564, 147, 10.1016/j.mbs.2013.02.001
    68. Sunita Gakkhar, Nareshkumar Chavda, A dynamical model for HIV–TB co-infection, 2012, 218, 00963003, 9261, 10.1016/j.amc.2012.03.004
    69. A.B. Gumel, Causes of backward bifurcations in some epidemiological models, 2012, 395, 0022247X, 355, 10.1016/j.jmaa.2012.04.077
    70. Irany FA, Akwafuo SE, Abah T, Mikler AR, Estimating the Transmission Risk of COVID-19 in Nigeria: A Mathematical Modelling Approach, 2020, 1, 135, 10.36502/2020/hcr.6171
    71. Rajiv Aggarwal, Tamas Kovacs, 2020, Chapter 21, 978-3-030-46305-2, 343, 10.1007/978-3-030-46306-9_21
    72. Wei Wang, Wanbiao Ma, Hai Yan, Global Dynamics of Modeling Flocculation of Microorganism, 2016, 6, 2076-3417, 221, 10.3390/app6080221
    73. K. Shyam Sunder Reddy, Y.C.A. Padmanabha Reddy, Ch. Mallikarjuna Rao, Recurrent neural network based prediction of number of COVID-19 cases in India, 2020, 22147853, 10.1016/j.matpr.2020.11.117
    74. N. Hussaini, J. M-S Lubuma, K. Barley, A.B. Gumel, Mathematical analysis of a model for AVL–HIV co-endemicity, 2016, 271, 00255564, 80, 10.1016/j.mbs.2015.10.008
    75. Chikodili Helen Ugwuishiwu, D. S. Sarki, G. C. E. Mbah, Nonlinear Analysis of the Dynamics of Criminality and Victimisation: A Mathematical Model with Case Generation and Forwarding, 2019, 2019, 1110-757X, 1, 10.1155/2019/9891503
    76. R. Sergeev, C. Colijn, M. Murray, T. Cohen, Modeling the Dynamic Relationship Between HIV and the Risk of Drug-Resistant Tuberculosis, 2012, 4, 1946-6234, 135ra67, 10.1126/scitranslmed.3003815
    77. Rajiv Aggarwal, Tamas Kovacs, Assessing the Effects of Holling Type-II Treatment Rate on HIV-TB Co-infection, 2021, 69, 0001-5342, 1, 10.1007/s10441-020-09385-w
    78. Mohsen Jafari, Hossein Kheiri, Azizeh Jabbari, Backward bifurcation in a fractional-order and two-patch model of tuberculosis epidemic with incomplete treatment, 2021, 14, 1793-5245, 2150007, 10.1142/S1793524521500078
    79. Jasmina Djordević, Cristiana J. Silva, A stochastic analysis of the impact of fluctuations in the environment on pre-exposure prophylaxis for HIV infection, 2019, 1432-7643, 10.1007/s00500-019-04611-1
    80. David Omale, Remigius Okeke Aja, Stability Analysis of the Mathematical Model on the Control of HIV/AIDS Pandemic in a Heterogeneous Population, 2019, 2581-8147, 433, 10.34198/ejms.2219.433460
    81. P. J. Dodd, C. Pretorius, B. G. Williams, 2019, Chapter 3, 978-3-030-29107-5, 25, 10.1007/978-3-030-29108-2_3
    82. Mehdi Lotfi, Azizeh Jabbari, Hossein Kheiri, A mathematical analysis of a tuberculosis epidemic model with two treatments and exogenous re-infection, 2020, 13, 1793-5245, 2050082, 10.1142/S1793524520500825
    83. Daozhou Gao, Travis C. Porco, Shigui Ruan, Coinfection dynamics of two diseases in a single host population, 2016, 442, 0022247X, 171, 10.1016/j.jmaa.2016.04.039
    84. F. B. Agusto, J. Cook, P. D. Shelton, M. G. Wickers, Mathematical Model of MDR-TB and XDR-TB with Isolation and Lost to Follow-Up, 2015, 2015, 1085-3375, 1, 10.1155/2015/828461
    85. Yves Emvudu, Danhrée Bongor, Rodoumta Koïna, Mathematical analysis of HIV/AIDS stochastic dynamic models, 2016, 40, 0307904X, 9131, 10.1016/j.apm.2016.05.007
    86. A. S. Hassan, S. M. Garba, A. B. Gumel, J. M.-S. Lubuma, Dynamics ofMycobacteriumandbovine tuberculosisin a Human-Buffalo Population, 2014, 2014, 1748-670X, 1, 10.1155/2014/912306
    87. Cristiana J. Silva, Delfim F. M. Torres, Modeling TB-HIV Syndemic and Treatment, 2014, 2014, 1110-757X, 1, 10.1155/2014/248407
    88. Folashade B. Agusto, Shamise Easley, Kenneth Freeman, Madison Thomas, Mathematical Model of Three Age-Structured Transmission Dynamics of Chikungunya Virus, 2016, 2016, 1748-670X, 1, 10.1155/2016/4320514
    89. Luju Liu, Xiao-Qiang Zhao, Yicang Zhou, A Tuberculosis Model with Seasonality, 2010, 72, 0092-8240, 931, 10.1007/s11538-009-9477-8
    90. Chuanqing Xu, Xiaoxiao Wei, Jingan Cui, Xiaojing Wang, Dashun Xu, Mixing in regional-structure model about the influence of floating population and optimal control about TB in Guangdong province of China, 2017, 10, 1793-5245, 1750106, 10.1142/S1793524517501066
    91. N M Zetola, C Modongo, P K Moonan, E Click, J E Oeltmann, J Shepherd, A Finlay, Protocol for a population-based molecular epidemiology study of tuberculosis transmission in a high HIV-burden setting: the Botswana Kopanyo study, 2016, 6, 2044-6055, e010046, 10.1136/bmjopen-2015-010046
    92. Mohd Saqib, Forecasting COVID-19 outbreak progression using hybrid polynomial-Bayesian ridge regression model, 2020, 0924-669X, 10.1007/s10489-020-01942-7
    93. 2010, A new model for MDR-TB infection with undetected TB cases, 978-1-4244-5181-4, 792, 10.1109/CCDC.2010.5498120
    94. Shi Chen, Yakubu Owolabi, Ang Li, Eugenia Lo, Patrick Robinson, Daniel Janies, Chihoon Lee, Michael Dulin, Nikos Kavallaris, Patch dynamics modeling framework from pathogens’ perspective: Unified and standardized approach for complicated epidemic systems, 2020, 15, 1932-6203, e0238186, 10.1371/journal.pone.0238186
    95. 焕焕 程, Dynamics of Heroin and HIV Co-Infection and Co-Transmission, 2021, 10, 2324-7991, 1016, 10.12677/AAM.2021.104110
    96. Ally Yeketi Ayinla, Wan Ainun Mior Othman, Musa Rabiu, A Mathematical Model of the Tuberculosis Epidemic, 2021, 0001-5342, 10.1007/s10441-020-09406-8
    97. S.O. Akindeinde, Eric Okyere, A.O. Adewumi, R.S. Lebelo, Olanrewaju. O. Fabelurin, Stephen. E. Moore, Caputo Fractional-order SEIRP model for COVID-19 epidemic, 2021, 11100168, 10.1016/j.aej.2021.04.097
    98. Minhui Dong, Cheng Tang, Junkai Ji, Qiuzhen Lin, Ka-Chun Wong, Transmission trend of the COVID-19 pandemic predicted by dendritic neural regression, 2021, 111, 15684946, 107683, 10.1016/j.asoc.2021.107683
    99. Josep Sardanyés, Cristina Alcaide, Pedro Gómez, Santiago F. Elena, Modelling temperature-dependent dynamics of single and mixed infections in a plant virus, 2022, 102, 0307904X, 694, 10.1016/j.apm.2021.10.008
    100. Shewafera Wondimagegnhu Teklu, Temesgen Tibebu Mekonnen, Dan Huang, HIV/AIDS-Pneumonia Coinfection Model with Treatment at Each Infection Stage: Mathematical Analysis and Numerical Simulation, 2021, 2021, 1687-0042, 1, 10.1155/2021/5444605
    101. Xinhong Zhang, Qing Yang, Yan Wang, Dynamical behavior and density function analysis of a stochastic HIV/AIDS model with general incidence rate, 2023, 46, 0170-4214, 4025, 10.1002/mma.8737
    102. Jasmina Ðorđević, Kristina Rognlien Dahl, Stochastic optimal control of pre-exposure prophylaxis for HIV infection, 2022, 39, 1477-8599, 197, 10.1093/imammb/dqac003
    103. Xiaodong Wang, Chunxia Wang, Kai Wang, Extinction and persistence of a stochastic SICA epidemic model with standard incidence rate for HIV transmission, 2021, 2021, 1687-1847, 10.1186/s13662-021-03392-y
    104. HUSSAM ALRABAIAH, MATI UR RAHMAN, IBRAHIM MAHARIQ, SAMIA BUSHNAQ, MUHAMMAD ARFAN, FRACTIONAL ORDER ANALYSIS OF HBV AND HCV CO-INFECTION UNDER ABC DERIVATIVE, 2022, 30, 0218-348X, 10.1142/S0218348X22400369
    105. Dumitru Baleanu, Manijeh Hasanabadi, Asadollah Mahmoudzadeh Vaziri, Amin Jajarmi, A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach, 2023, 167, 09600779, 113078, 10.1016/j.chaos.2022.113078
    106. Baojun Song, Basic reinfection number and backward bifurcation, 2021, 18, 1551-0018, 8064, 10.3934/mbe.2021400
    107. A.K. Alzahrani, Muhammad Khan, The co-dynamics of malaria and tuberculosis with optimal control strategies, 2022, 36, 0354-5180, 1789, 10.2298/FIL2206789A
    108. Abdurrahman Abdulhamid, Nafiu Hussaini, Salihu S. Musa, Daihai He, Mathematical analysis of Lassa fever epidemic with effects of environmental transmission, 2022, 35, 22113797, 105335, 10.1016/j.rinp.2022.105335
    109. Muhammad Naeem Jan, Gul Zaman, Nigar Ali, Imtiaz Ahmad, Zahir Shah, Optimal control application to the epidemiology of HBV and HCV co-infection, 2022, 15, 1793-5245, 10.1142/S1793524521501011
    110. Wei-Yun Shen, Yu-Ming Chu, Mati ur Rahman, Ibrahim Mahariq, Anwar Zeb, Mathematical analysis of HBV and HCV co-infection model under nonsingular fractional order derivative, 2021, 28, 22113797, 104582, 10.1016/j.rinp.2021.104582
    111. Amit Kumar Saha, Chandra Nath Podder, Ashrafi Meher Niger, Dynamics of novel COVID-19 in the presence of Co-morbidity, 2022, 7, 24680427, 138, 10.1016/j.idm.2022.04.005
    112. Wei Wang, Sifen Lu, Haoxiang Tang, Biao Wang, Caiping Sun, Pai Zheng, Yi Bai, Zuhong Lu, Yulin Kang, A Scoping Review of Drug Epidemic Models, 2022, 19, 1660-4601, 2017, 10.3390/ijerph19042017
    113. Sandra Vaz, Delfim F. M. Torres, A dynamically-consistent nonstandard finite difference scheme for the SICA model, 2021, 18, 1551-0018, 4552, 10.3934/mbe.2021231
    114. Madhuri Majumder, Pankaj Kumar Tiwari, Samares Pal, Impact of saturated treatments on HIV-TB dual epidemic as a consequence of COVID-19: optimal control with awareness and treatment, 2022, 109, 0924-090X, 143, 10.1007/s11071-022-07395-6
    115. Pietro Cinaglia, Mario Cannataro, Forecasting COVID-19 Epidemic Trends by Combining a Neural Network with Rt Estimation, 2022, 24, 1099-4300, 929, 10.3390/e24070929
    116. El-Sayed M. El-kenawy, Abdelaziz A. Abdelhamid, Abdelhameed Ibrahim, Mostafa Abotaleb, Tatiana Makarovskikh, Amal H. Alharbi, Doaa Sami Khafaga, Al-Biruni Earth Radius Optimization for COVID-19 Forecasting, 2023, 46, 0267-6192, 883, 10.32604/csse.2023.034697
    117. Baba Seidu, Oluwole Daniel Makinde, Ibrahim Yakubu Seini, Andrew Pickering, On the Optimal Control of HIV-TB Co-Infection and Improvement of Workplace Productivity, 2023, 2023, 1607-887X, 1, 10.1155/2023/3716235
    118. Baba Seidu, Oluwole D. Makinde, Joshua Kiddy K. Asamoah, Threshold quantities and Lyapunov functions for ordinary differential equations epidemic models with mass action and standard incidence functions, 2023, 170, 09600779, 113403, 10.1016/j.chaos.2023.113403
    119. Niranjana Murthy Harohalli Shivalingappa, Pushpa Mysore Krishna, 2023, 2759, 0094-243X, 020065, 10.1063/5.0115345
    120. Monica Torres, Jerrold Tubay, Aurelio de losReyes, Quantitative Assessment of a Dual Epidemic Caused by Tuberculosis and HIV in the Philippines, 2023, 85, 0092-8240, 10.1007/s11538-023-01156-1
    121. Zenebe Shiferaw Kifle, Legesse Lemecha Obsu, Co-dynamics of COVID-19 and TB with COVID-19 vaccination and exogenous reinfection for TB: An optimal control application, 2023, 24680427, 10.1016/j.idm.2023.05.005
    122. I. Ratti, P. Kalra, Study of Disease Dynamics of Co-infection of Rotavirus and Malaria with Control Strategies, 2023, 17, 1823-8343, 151, 10.47836/mjms.17.2.05
    123. Shuo Li, Imam Bukhsh, Ihsan Ullah Khan, Muhammad Imran Asjad, Sayed M. Eldin, Magda Abd El-Rahman, Dumitru Baleanu, The impact of standard and nonstandard finite difference schemes on HIV nonlinear dynamical model, 2023, 173, 09600779, 113755, 10.1016/j.chaos.2023.113755
    124. A. Jabbari, M. Lotfi, H. Kheiri, S. Khajanchi, Mathematical analysis of the dynamics of a fractional‐order tuberculosis epidemic in a patchy environment under the influence of re‐infection, 2023, 0170-4214, 10.1002/mma.9532
    125. Mohamed Amouch, Noureddine Karim, Fractional-order mathematical modeling of COVID-19 dynamics with different types of transmission, 2023, 0, 2155-3289, 0, 10.3934/naco.2023019
    126. Folashade B. Agusto, Ramsès Djidjou-Demasse, Ousmane Seydi, Mathematical model of Ehrlichia chaffeensis transmission dynamics in dogs , 2023, 17, 1751-3758, 10.1080/17513758.2023.2287082
    127. Benjamin Idoko Omede, Bolarinwa Bolaji, Olumuyiwa James Peter, Abdullahi A. Ibrahim, Festus Abiodun Oguntolu, Mathematical analysis on the vertical and horizontal transmission dynamics of HIV and Zika virus co-infection, 2023, 27731863, 100064, 10.1016/j.fraope.2023.100064
    128. O. Odiba Peace, O. Acheneje Godwin, Bolarinwa Bolaji, A compartmental deterministic epidemiological model with non-linear differential equations for analyzing the co-infection dynamics between COVID-19, HIV, and Monkeypox diseases, 2024, 27724425, 100311, 10.1016/j.health.2024.100311
    129. C. K. Mahadhika, Dipo Aldila, A deterministic transmission model for analytics-driven optimization of COVID-19 post-pandemic vaccination and quarantine strategies, 2024, 21, 1551-0018, 4956, 10.3934/mbe.2024219
    130. Ignatius Ako, Owin Olowu, Causes of Backward Bifurcation in a Tuberculosis-Schistosomiasis Co-infection Dynamics, 2024, 2581-8147, 655, 10.34198/ejms.14424.655695
    131. J. O. Akanni, S. Ajao, S. F. Abimbade, , Dynamical analysis of COVID-19 and tuberculosis co-infection using mathematical modelling approach, 2024, 4, 2767-8946, 208, 10.3934/mmc.2024018
    132. Nwaokolo M. A., Oguche A. J., Twan S. M., Existence, Uniqueness and Positivity of Solution of the Impact of Vaccination and Treatment in Controlling the Spread of Hepatitis B Virus with Infective Migrants, 2024, 4, 58, 10.52589/IJPHP-ILXYTCAC
    133. Sujata Dash, Sourav Kumar Giri, Subhendu Kumar Pani, Saurav Mallik, Mingqiang Wang, Hong Qin, Optimized Hybrid Deep Learning for Real-Time Pandemic Data Forecasting: Long and Short-Term Perspectives, 2024, 19, 15748936, 714, 10.2174/0115748936257412231120113648
    134. Jasmina Ɖorđević, Kristina Rognlien Dahl, Stochastic optimal control of pre-exposure prophylaxis for HIV infection for a jump model, 2024, 89, 0303-6812, 10.1007/s00285-024-02151-3
    135. Catherine Choquet, Abdoulrazack Mohamed Abdi, A network epidemic model: From the mathematical analysis to machine learning experiments, 2024, 10075704, 108493, 10.1016/j.cnsns.2024.108493
    136. Tigabu Kasie Ayele, Emile Franc Doungmo Goufo, Stella Mugisha, Joshua Kiddy K. Asamoah, Co-infection mathematical model for HIV/AIDS and tuberculosis with optimal control in Ethiopia, 2024, 19, 1932-6203, e0312539, 10.1371/journal.pone.0312539
    137. PANKAJ SINGH RANA, NITIN SHARMA, SUNIL SINGH NEGI, HACI MEHMET BASKONUS, On the Dynamics of HIV–Tuberculosis Coinfection Model with Temporal Recovery from Tuberculosis: An Analysis, 2025, 1557-8666, 10.1089/cmb.2024.0763
    138. Muhammad Said, Yunil Roh, Il Hyo Jung, Identifiability analysis of an HIV-Ebola co-infection using the mathematical model and the MLE method, 2025, 125, 11100168, 245, 10.1016/j.aej.2025.03.135
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7229) PDF downloads(909) Cited by(137)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog