1.
|
Rajiv Aggarwal,
Stability analysis of a delayed HIV-TB co-infection model in resource limitation settings,
2020,
140,
09600779,
110138,
10.1016/j.chaos.2020.110138
|
|
2.
|
Vinay Kumar Reddy Chimmula, Lei Zhang,
Time series forecasting of COVID-19 transmission in Canada using LSTM networks,
2020,
135,
09600779,
109864,
10.1016/j.chaos.2020.109864
|
|
3.
|
Indrajit Ghosh, Pankaj Kumar Tiwari, Sudip Samanta, Ibrahim M. Elmojtaba, Nasser Al-Salti, Joydev Chattopadhyay,
A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear,
2018,
306,
00255564,
160,
10.1016/j.mbs.2018.09.014
|
|
4.
|
O. Sharomi, A.B. Gumel,
Mathematical study of a risk-structured two-group model for Chlamydia transmission dynamics,
2011,
35,
0307904X,
3653,
10.1016/j.apm.2010.12.006
|
|
5.
|
EMMA G. THOMAS, HANNAH E. BARRINGTON, KAMALINI M. LOKUGE, GEOFFRY N. MERCER,
MODELLING THE SPREAD OF TUBERCULOSIS, INCLUDING DRUG RESISTANCE AND HIV: A CASE STUDY IN PAPUA NEW GUINEA’S WESTERN PROVINCE,
2010,
52,
1446-1811,
26,
10.1017/S1446181111000587
|
|
6.
|
Gitu Pandey, Sarita Kumari Yadav, Brahmeshwar Mishra,
Preparation and characterization of isoniazid and lamivudine co-loaded polymeric microspheres,
2016,
44,
2169-1401,
1867,
10.3109/21691401.2015.1111229
|
|
7.
|
Daozhou Gao, Thomas M. Lietman, Travis C. Porco,
Antibiotic resistance as collateral damage: The tragedy of the commons in a two-disease setting,
2015,
263,
00255564,
121,
10.1016/j.mbs.2015.02.007
|
|
8.
|
Hengki Tasman,
An Optimal Treatment Control of TB-HIV Coinfection,
2016,
2016,
0161-1712,
1,
10.1155/2016/8261208
|
|
9.
|
Hui Cao, Xiaoyan Gao, Dongxue Yan, Suxia Zhang,
The dynamics of an age‐structured TB transmission model with relapse,
2020,
43,
0170-4214,
3807,
10.1002/mma.6156
|
|
10.
|
Malik Zaka Ullah, Dumitru Baleanu,
A new fractional SICA model and numerical method for the transmission of HIV/AIDS,
2021,
0170-4214,
10.1002/mma.7292
|
|
11.
|
Baba Seidu, Oluwole D. Makinde, Ibrahim Y. Seini,
Mathematical Analysis of the Effects of HIV-Malaria Co-infection on Workplace Productivity,
2015,
63,
0001-5342,
151,
10.1007/s10441-015-9255-y
|
|
12.
|
Cristiana J. Silva, Delfim F. M. Torres,
A TB-HIV/AIDS coinfection model and optimal control treatment,
2015,
35,
1553-5231,
4639,
10.3934/dcds.2015.35.4639
|
|
13.
|
Oluwaseun Y. Sharomi, Mohammad A. Safi, Abba B. Gumel, David J. Gerberry,
Exogenous re-infection does not always cause backward bifurcation in TB transmission dynamics,
2017,
298,
00963003,
322,
10.1016/j.amc.2016.11.009
|
|
14.
|
F.B. Agusto, A.I. Adekunle,
Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model,
2014,
119,
03032647,
20,
10.1016/j.biosystems.2014.03.006
|
|
15.
|
S. Mushayabasa, J.M. Tchuenche, C.P. Bhunu, E. Ngarakana-Gwasira,
Modeling gonorrhea and HIV co-interaction,
2011,
103,
03032647,
27,
10.1016/j.biosystems.2010.09.008
|
|
16.
|
Navjot Kaur, Mini Ghosh, S. S. Bhatia,
The role of screening and treatment in the transmission dynamics of HIV/AIDS and tuberculosis co-infection: a mathematical study,
2014,
40,
0092-0606,
139,
10.1007/s10867-014-9342-3
|
|
17.
|
Aliya A. Alsaleh, Abba B. Gumel,
Analysis of Risk-Structured Vaccination Model for the Dynamics of Oncogenic and Warts-Causing HPV Types,
2014,
76,
0092-8240,
1670,
10.1007/s11538-014-9972-4
|
|
18.
|
Cristiana J. Silva, Delfim F.M. Torres,
A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde,
2017,
30,
1476945X,
70,
10.1016/j.ecocom.2016.12.001
|
|
19.
|
Siyu Liu, Yingjie Bi, Yawen Liu,
Modeling and dynamic analysis of tuberculosis in mainland China from 1998 to 2017: the effect of DOTS strategy and further control,
2020,
17,
1742-4682,
10.1186/s12976-020-00124-9
|
|
20.
|
O. Sharomi, C. N. Podder, A. B. Gumel, S. M. Mahmud, E. Rubinstein,
Modelling the Transmission Dynamics and Control of the Novel 2009 Swine Influenza (H1N1) Pandemic,
2011,
73,
0092-8240,
515,
10.1007/s11538-010-9538-z
|
|
21.
|
ALIYA A. ALSALEH, ABBA B. GUMEL,
DYNAMICS ANALYSIS OF A VACCINATION MODEL FOR HPV TRANSMISSION,
2014,
22,
0218-3390,
555,
10.1142/S0218339014500211
|
|
22.
|
Deen L. Garba, Salisu M. Garba, Abba B. Gumel, Oluwaseun Sharomi,
Mathematics of FIV and BTB dynamics in buffalo and lion populations at Kruger National Park,
2018,
41,
01704214,
8697,
10.1002/mma.5065
|
|
23.
|
Carlos Andrés Trujillo-Salazar, Hernán Darío Toro-Zapata,
2015,
Chapter 18,
978-3-319-12582-4,
257,
10.1007/978-3-319-12583-1_18
|
|
24.
|
C. P. Bhunu, S. Mushayabasa, J. M. Tchuenche,
A Theoretical Assessment of the Effects of Smoking on the Transmission Dynamics of Tuberculosis,
2011,
73,
0092-8240,
1333,
10.1007/s11538-010-9568-6
|
|
25.
|
Farah Shahid, Aneela Zameer, Muhammad Muneeb,
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM,
2020,
140,
09600779,
110212,
10.1016/j.chaos.2020.110212
|
|
26.
|
Mixed vaccination strategy for the control of tuberculosis: A case study in China,
2017,
14,
1551-0018,
695,
10.3934/mbe.2017039
|
|
27.
|
Dmitry Gromov, Ingo Bulla, Ethan O. Romero-Severson,
Systematic evaluation of the population-level effects of alternative treatment strategies on the basic reproduction number,
2019,
462,
00225193,
381,
10.1016/j.jtbi.2018.11.029
|
|
28.
|
Bojan Ramadanovic, Krisztina Vasarhelyi, Ali Nadaf, Ralf W. Wittenberg, Julio S. G. Montaner, Evan Wood, Alexander R. Rutherford, Edward White,
Changing Risk Behaviours and the HIV Epidemic: A Mathematical Analysis in the Context of Treatment as Prevention,
2013,
8,
1932-6203,
e62321,
10.1371/journal.pone.0062321
|
|
29.
|
A mathematical model for within-host Toxoplasma gondii invasion dynamics,
2012,
9,
1551-0018,
647,
10.3934/mbe.2012.9.647
|
|
30.
|
Abhishek Mallela, Suzanne Lenhart, Naveen K. Vaidya,
HIV–TB co-infection treatment: Modeling and optimal control theory perspectives,
2016,
307,
03770427,
143,
10.1016/j.cam.2016.02.051
|
|
31.
|
Xi-Chao Duan, Xue-Zhi Li, Maia Martcheva,
Coinfection dynamics of heroin transmission and HIV infection in a single population,
2020,
14,
1751-3758,
116,
10.1080/17513758.2020.1726516
|
|
32.
|
D. Okuonghae, S.E. Omosigho,
Analysis of a mathematical model for tuberculosis: What could be done to increase case detection,
2011,
269,
00225193,
31,
10.1016/j.jtbi.2010.09.044
|
|
33.
|
A. Nwankwo, D. Okuonghae,
Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis,
2018,
80,
0092-8240,
437,
10.1007/s11538-017-0384-0
|
|
34.
|
Juan Wang, Sha-Sha Gao, Xue-Zhi Li,
A TB Model with Infectivity in Latent Period and Imperfect Treatment,
2012,
2012,
1026-0226,
1,
10.1155/2012/184918
|
|
35.
|
Nicolas Bacaër, Rachid Ouifki, Carel Pretorius, Robin Wood, Brian Williams,
Modeling the joint epidemics of TB and HIV in a South African township,
2008,
57,
0303-6812,
557,
10.1007/s00285-008-0177-z
|
|
36.
|
Daniel Okuonghae, Bernard O. Ikhimwin,
Dynamics of a Mathematical Model for Tuberculosis with Variability in Susceptibility and Disease Progressions Due to Difference in Awareness Level,
2016,
6,
1664-302X,
10.3389/fmicb.2015.01530
|
|
37.
|
Biao Tang, Yanni Xiao, Jianhong Wu,
Implication of vaccination against dengue for Zika outbreak,
2016,
6,
2045-2322,
10.1038/srep35623
|
|
38.
|
N. Tarfulea,
2018,
2025,
0094-243X,
060004,
10.1063/1.5064912
|
|
39.
|
Chandra Dash Purna, P. Rajendran,
2017,
9781315366487,
181,
10.1201/b19944-7
|
|
40.
|
O. Sharomi, A.B. Gumel,
Re-infection-induced backward bifurcation in the transmission dynamics of Chlamydia trachomatis,
2009,
356,
0022247X,
96,
10.1016/j.jmaa.2009.02.032
|
|
41.
|
K. O. Okosun, M. A. Khan, E. Bonyah, S. T. Ogunlade,
On the dynamics of HIV-AIDS and cryptosporidiosis,
2017,
132,
2190-5444,
10.1140/epjp/i2017-11625-3
|
|
42.
|
Salisu M. Garba, Chibale K. Mumba,
Mathematical analysis of a model for the transmission dynamics of Trichomonas vaginalis (TV) and HIV coinfection,
2018,
41,
01704214,
8741,
10.1002/mma.5108
|
|
43.
|
F.B. Agusto, M.C.A. Leite,
Optimal control and cost-effective analysis of the 2017 meningitis outbreak in Nigeria,
2019,
4,
24680427,
161,
10.1016/j.idm.2019.05.003
|
|
44.
|
S. Bowong, J. Kurths,
Modelling Tuberculosis and Hepatitis B Co-infections,
2010,
5,
0973-5348,
196,
10.1051/mmnp/20105610
|
|
45.
|
Threshold dynamics for a Tuberculosis model with seasonality,
2012,
9,
1551-0018,
111,
10.3934/mbe.2012.9.111
|
|
46.
|
N. E. Tarfulea,
2017,
1895,
0094-243X,
070005,
10.1063/1.5007394
|
|
47.
|
Temesgen Awoke, Semu Kassa,
Optimal Control Strategy for TB-HIV/AIDS Co-Infection Model in the Presence of Behaviour Modification,
2018,
6,
2227-9717,
48,
10.3390/pr6050048
|
|
48.
|
Ted Cohen, Christopher Dye, Caroline Colijn, Brian Williams, Megan Murray,
Mathematical models of the epidemiology and control of drug-resistant TB,
2009,
3,
1747-6348,
67,
10.1586/17476348.3.1.67
|
|
49.
|
Georgi Kapitanov,
A double age-structured model of the co-infection of tuberculosis and HIV,
2015,
12,
1551-0018,
23,
10.3934/mbe.2015.12.23
|
|
50.
|
Farai Nyabadza, Simon Mukwembi, Bernardo Gabriel Rodrigues,
A tuberculosis model: The case of ‘reasonable’ and ‘unreasonable’ infectives,
2009,
388,
03784371,
1995,
10.1016/j.physa.2009.01.039
|
|
51.
|
O. Sharomi, A.B. Gumel,
Dynamical analysis of a sex-structured Chlamydia trachomatis transmission model with time delay,
2011,
12,
14681218,
837,
10.1016/j.nonrwa.2010.08.010
|
|
52.
|
Bingtao Han, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad,
Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation,
2020,
140,
09600779,
110238,
10.1016/j.chaos.2020.110238
|
|
53.
|
Auwal Abdullahi, Shamarina Shohaimi, Adem Kilicman, Mohd Hafiz Ibrahim, Nader Salari,
Stochastic SIS Modelling: Coinfection of Two Pathogens in Two-Host Communities,
2019,
22,
1099-4300,
54,
10.3390/e22010054
|
|
54.
|
F.B. Agusto, M.A. Khan,
Optimal control strategies for dengue transmission in pakistan,
2018,
305,
00255564,
102,
10.1016/j.mbs.2018.09.007
|
|
55.
|
GESHAM MAGOMBEDZE, WINSTON GARIRA, EDDIE MWENJE,
Modeling the TB/HIV-1 Co-Infection and the Effects of Its Treatment,
2010,
17,
0889-8480,
12,
10.1080/08898480903467241
|
|
56.
|
Y. Ma, C. R. Horsburgh, L. F. White, H. E. Jenkins,
Quantifying TB transmission: a systematic review of reproduction number and serial interval estimates for tuberculosis,
2018,
146,
0950-2688,
1478,
10.1017/S0950268818001760
|
|
57.
|
Joe Pharaon, Chris T. Bauch,
The Impact of Pre-exposure Prophylaxis for Human Immunodeficiency Virus on Gonorrhea Prevalence,
2020,
82,
0092-8240,
10.1007/s11538-020-00762-7
|
|
58.
|
Cristiana J. Silva, Delfim F. M. Torres,
2020,
Chapter 6,
978-3-030-49895-5,
155,
10.1007/978-3-030-49896-2_6
|
|
59.
|
The impact of migrant workers on the tuberculosis transmission: General models and a case study for
China,
2012,
9,
1551-0018,
785,
10.3934/mbe.2012.9.785
|
|
60.
|
Flavia Remo, Livingstone S. Luboobi, Isambi Sailon Mabalawata, Betty K. Nannyonga,
A mathematical model for the dynamics and MCMC analysis of tomato bacterial wilt disease,
2018,
11,
1793-5245,
1850001,
10.1142/S1793524518500018
|
|
61.
|
Purity M. Ngina, Rachel Waema Mbogo, Livingstone S. Luboobi,
Mathematical Modelling of In-Vivo Dynamics of HIV Subject to the Influence of the CD8+ T-Cells,
2017,
08,
2152-7385,
1153,
10.4236/am.2017.88087
|
|
62.
|
Peter Mpasho Mwamtobe, Simphiwe Mpumelelo Simelane, Shirley Abelman, Jean Michel Tchuenche,
Optimal control of intervention strategies in malaria–tuberculosis co-infection with relapse,
2018,
11,
1793-5245,
1850017,
10.1142/S1793524518500171
|
|
63.
|
Carla M.A. Pinto, Ana R.M. Carvalho,
The HIV/TB coinfection severity in the presence of TB multi-drug resistant strains,
2017,
32,
1476945X,
1,
10.1016/j.ecocom.2017.08.001
|
|
64.
|
A. Omame, D. Okuonghae, R.A. Umana, S.C. Inyama,
Analysis of a co-infection model for HPV-TB,
2020,
77,
0307904X,
881,
10.1016/j.apm.2019.08.012
|
|
65.
|
Yayehirad A. Melsew, Adeshina I. Adekunle, Allen C. Cheng, Emma S. McBryde, Romain Ragonnet, James M. Trauer,
Heterogeneous infectiousness in mathematical models of tuberculosis: A systematic review,
2020,
30,
17554365,
100374,
10.1016/j.epidem.2019.100374
|
|
66.
|
Roslyn I. Hickson, Geoffry N. Mercer, Kamalini M. Lokuge, Madhukar Pai,
A Metapopulation Model of Tuberculosis Transmission with a Case Study from High to Low Burden Areas,
2012,
7,
1932-6203,
e34411,
10.1371/journal.pone.0034411
|
|
67.
|
F.B. Agusto, A.B. Gumel,
Qualitative dynamics of lowly- and highly-pathogenic avian influenza strains,
2013,
243,
00255564,
147,
10.1016/j.mbs.2013.02.001
|
|
68.
|
Sunita Gakkhar, Nareshkumar Chavda,
A dynamical model for HIV–TB co-infection,
2012,
218,
00963003,
9261,
10.1016/j.amc.2012.03.004
|
|
69.
|
A.B. Gumel,
Causes of backward bifurcations in some epidemiological models,
2012,
395,
0022247X,
355,
10.1016/j.jmaa.2012.04.077
|
|
70.
|
Irany FA, Akwafuo SE, Abah T, Mikler AR,
Estimating the Transmission Risk of COVID-19 in Nigeria: A Mathematical Modelling Approach,
2020,
1,
135,
10.36502/2020/hcr.6171
|
|
71.
|
Rajiv Aggarwal, Tamas Kovacs,
2020,
Chapter 21,
978-3-030-46305-2,
343,
10.1007/978-3-030-46306-9_21
|
|
72.
|
Wei Wang, Wanbiao Ma, Hai Yan,
Global Dynamics of Modeling Flocculation of Microorganism,
2016,
6,
2076-3417,
221,
10.3390/app6080221
|
|
73.
|
K. Shyam Sunder Reddy, Y.C.A. Padmanabha Reddy, Ch. Mallikarjuna Rao,
Recurrent neural network based prediction of number of COVID-19 cases in India,
2020,
22147853,
10.1016/j.matpr.2020.11.117
|
|
74.
|
N. Hussaini, J. M-S Lubuma, K. Barley, A.B. Gumel,
Mathematical analysis of a model for AVL–HIV co-endemicity,
2016,
271,
00255564,
80,
10.1016/j.mbs.2015.10.008
|
|
75.
|
Chikodili Helen Ugwuishiwu, D. S. Sarki, G. C. E. Mbah,
Nonlinear Analysis of the Dynamics of Criminality and Victimisation: A Mathematical Model with Case Generation and Forwarding,
2019,
2019,
1110-757X,
1,
10.1155/2019/9891503
|
|
76.
|
R. Sergeev, C. Colijn, M. Murray, T. Cohen,
Modeling the Dynamic Relationship Between HIV and the Risk of Drug-Resistant Tuberculosis,
2012,
4,
1946-6234,
135ra67,
10.1126/scitranslmed.3003815
|
|
77.
|
Rajiv Aggarwal, Tamas Kovacs,
Assessing the Effects of Holling Type-II Treatment Rate on HIV-TB Co-infection,
2021,
69,
0001-5342,
1,
10.1007/s10441-020-09385-w
|
|
78.
|
Mohsen Jafari, Hossein Kheiri, Azizeh Jabbari,
Backward bifurcation in a fractional-order and two-patch model of tuberculosis epidemic with incomplete treatment,
2021,
14,
1793-5245,
2150007,
10.1142/S1793524521500078
|
|
79.
|
Jasmina Djordević, Cristiana J. Silva,
A stochastic analysis of the impact of fluctuations in the environment on pre-exposure prophylaxis for HIV infection,
2019,
1432-7643,
10.1007/s00500-019-04611-1
|
|
80.
|
David Omale, Remigius Okeke Aja,
Stability Analysis of the Mathematical Model on the Control of HIV/AIDS Pandemic in a Heterogeneous Population,
2019,
2581-8147,
433,
10.34198/ejms.2219.433460
|
|
81.
|
P. J. Dodd, C. Pretorius, B. G. Williams,
2019,
Chapter 3,
978-3-030-29107-5,
25,
10.1007/978-3-030-29108-2_3
|
|
82.
|
Mehdi Lotfi, Azizeh Jabbari, Hossein Kheiri,
A mathematical analysis of a tuberculosis epidemic model with two treatments and exogenous re-infection,
2020,
13,
1793-5245,
2050082,
10.1142/S1793524520500825
|
|
83.
|
Daozhou Gao, Travis C. Porco, Shigui Ruan,
Coinfection dynamics of two diseases in a single host population,
2016,
442,
0022247X,
171,
10.1016/j.jmaa.2016.04.039
|
|
84.
|
F. B. Agusto, J. Cook, P. D. Shelton, M. G. Wickers,
Mathematical Model of MDR-TB and XDR-TB with Isolation and Lost to Follow-Up,
2015,
2015,
1085-3375,
1,
10.1155/2015/828461
|
|
85.
|
Yves Emvudu, Danhrée Bongor, Rodoumta Koïna,
Mathematical analysis of HIV/AIDS stochastic dynamic models,
2016,
40,
0307904X,
9131,
10.1016/j.apm.2016.05.007
|
|
86.
|
A. S. Hassan, S. M. Garba, A. B. Gumel, J. M.-S. Lubuma,
Dynamics ofMycobacteriumandbovine tuberculosisin a Human-Buffalo Population,
2014,
2014,
1748-670X,
1,
10.1155/2014/912306
|
|
87.
|
Cristiana J. Silva, Delfim F. M. Torres,
Modeling TB-HIV Syndemic and Treatment,
2014,
2014,
1110-757X,
1,
10.1155/2014/248407
|
|
88.
|
Folashade B. Agusto, Shamise Easley, Kenneth Freeman, Madison Thomas,
Mathematical Model of Three Age-Structured Transmission Dynamics of Chikungunya Virus,
2016,
2016,
1748-670X,
1,
10.1155/2016/4320514
|
|
89.
|
Luju Liu, Xiao-Qiang Zhao, Yicang Zhou,
A Tuberculosis Model with Seasonality,
2010,
72,
0092-8240,
931,
10.1007/s11538-009-9477-8
|
|
90.
|
Chuanqing Xu, Xiaoxiao Wei, Jingan Cui, Xiaojing Wang, Dashun Xu,
Mixing in regional-structure model about the influence of floating population and optimal control about TB in Guangdong province of China,
2017,
10,
1793-5245,
1750106,
10.1142/S1793524517501066
|
|
91.
|
N M Zetola, C Modongo, P K Moonan, E Click, J E Oeltmann, J Shepherd, A Finlay,
Protocol for a population-based molecular epidemiology study of tuberculosis transmission in a high HIV-burden setting: the Botswana Kopanyo study,
2016,
6,
2044-6055,
e010046,
10.1136/bmjopen-2015-010046
|
|
92.
|
Mohd Saqib,
Forecasting COVID-19 outbreak progression using hybrid polynomial-Bayesian ridge regression model,
2020,
0924-669X,
10.1007/s10489-020-01942-7
|
|
93.
|
2010,
A new model for MDR-TB infection with undetected TB cases,
978-1-4244-5181-4,
792,
10.1109/CCDC.2010.5498120
|
|
94.
|
Shi Chen, Yakubu Owolabi, Ang Li, Eugenia Lo, Patrick Robinson, Daniel Janies, Chihoon Lee, Michael Dulin, Nikos Kavallaris,
Patch dynamics modeling framework from pathogens’ perspective: Unified and standardized approach for complicated epidemic systems,
2020,
15,
1932-6203,
e0238186,
10.1371/journal.pone.0238186
|
|
95.
|
焕焕 程,
Dynamics of Heroin and HIV Co-Infection and Co-Transmission,
2021,
10,
2324-7991,
1016,
10.12677/AAM.2021.104110
|
|
96.
|
Ally Yeketi Ayinla, Wan Ainun Mior Othman, Musa Rabiu,
A Mathematical Model of the Tuberculosis Epidemic,
2021,
0001-5342,
10.1007/s10441-020-09406-8
|
|
97.
|
S.O. Akindeinde, Eric Okyere, A.O. Adewumi, R.S. Lebelo, Olanrewaju. O. Fabelurin, Stephen. E. Moore,
Caputo Fractional-order SEIRP model for COVID-19 epidemic,
2021,
11100168,
10.1016/j.aej.2021.04.097
|
|
98.
|
Minhui Dong, Cheng Tang, Junkai Ji, Qiuzhen Lin, Ka-Chun Wong,
Transmission trend of the COVID-19 pandemic predicted by dendritic neural regression,
2021,
111,
15684946,
107683,
10.1016/j.asoc.2021.107683
|
|
99.
|
Josep Sardanyés, Cristina Alcaide, Pedro Gómez, Santiago F. Elena,
Modelling temperature-dependent dynamics of single and mixed infections in a plant virus,
2022,
102,
0307904X,
694,
10.1016/j.apm.2021.10.008
|
|
100.
|
Shewafera Wondimagegnhu Teklu, Temesgen Tibebu Mekonnen, Dan Huang,
HIV/AIDS-Pneumonia Coinfection Model with Treatment at Each Infection Stage: Mathematical Analysis and Numerical Simulation,
2021,
2021,
1687-0042,
1,
10.1155/2021/5444605
|
|
101.
|
Xinhong Zhang, Qing Yang, Yan Wang,
Dynamical behavior and density function analysis of a stochastic HIV/AIDS model with general incidence rate,
2023,
46,
0170-4214,
4025,
10.1002/mma.8737
|
|
102.
|
Jasmina Ðorđević, Kristina Rognlien Dahl,
Stochastic optimal control of pre-exposure prophylaxis for HIV infection,
2022,
39,
1477-8599,
197,
10.1093/imammb/dqac003
|
|
103.
|
Xiaodong Wang, Chunxia Wang, Kai Wang,
Extinction and persistence of a stochastic SICA epidemic model with standard incidence rate for HIV transmission,
2021,
2021,
1687-1847,
10.1186/s13662-021-03392-y
|
|
104.
|
HUSSAM ALRABAIAH, MATI UR RAHMAN, IBRAHIM MAHARIQ, SAMIA BUSHNAQ, MUHAMMAD ARFAN,
FRACTIONAL ORDER ANALYSIS OF HBV AND HCV CO-INFECTION UNDER ABC DERIVATIVE,
2022,
30,
0218-348X,
10.1142/S0218348X22400369
|
|
105.
|
Dumitru Baleanu, Manijeh Hasanabadi, Asadollah Mahmoudzadeh Vaziri, Amin Jajarmi,
A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach,
2023,
167,
09600779,
113078,
10.1016/j.chaos.2022.113078
|
|
106.
|
Baojun Song,
Basic reinfection number and backward bifurcation,
2021,
18,
1551-0018,
8064,
10.3934/mbe.2021400
|
|
107.
|
A.K. Alzahrani, Muhammad Khan,
The co-dynamics of malaria and tuberculosis with optimal control strategies,
2022,
36,
0354-5180,
1789,
10.2298/FIL2206789A
|
|
108.
|
Abdurrahman Abdulhamid, Nafiu Hussaini, Salihu S. Musa, Daihai He,
Mathematical analysis of Lassa fever epidemic with effects of environmental transmission,
2022,
35,
22113797,
105335,
10.1016/j.rinp.2022.105335
|
|
109.
|
Muhammad Naeem Jan, Gul Zaman, Nigar Ali, Imtiaz Ahmad, Zahir Shah,
Optimal control application to the epidemiology of HBV and HCV co-infection,
2022,
15,
1793-5245,
10.1142/S1793524521501011
|
|
110.
|
Wei-Yun Shen, Yu-Ming Chu, Mati ur Rahman, Ibrahim Mahariq, Anwar Zeb,
Mathematical analysis of HBV and HCV co-infection model under nonsingular fractional order derivative,
2021,
28,
22113797,
104582,
10.1016/j.rinp.2021.104582
|
|
111.
|
Amit Kumar Saha, Chandra Nath Podder, Ashrafi Meher Niger,
Dynamics of novel COVID-19 in the presence of Co-morbidity,
2022,
7,
24680427,
138,
10.1016/j.idm.2022.04.005
|
|
112.
|
Wei Wang, Sifen Lu, Haoxiang Tang, Biao Wang, Caiping Sun, Pai Zheng, Yi Bai, Zuhong Lu, Yulin Kang,
A Scoping Review of Drug Epidemic Models,
2022,
19,
1660-4601,
2017,
10.3390/ijerph19042017
|
|
113.
|
Sandra Vaz, Delfim F. M. Torres,
A dynamically-consistent nonstandard finite difference scheme for the SICA model,
2021,
18,
1551-0018,
4552,
10.3934/mbe.2021231
|
|
114.
|
Madhuri Majumder, Pankaj Kumar Tiwari, Samares Pal,
Impact of saturated treatments on HIV-TB dual epidemic as a consequence of COVID-19: optimal control with awareness and treatment,
2022,
109,
0924-090X,
143,
10.1007/s11071-022-07395-6
|
|
115.
|
Pietro Cinaglia, Mario Cannataro,
Forecasting COVID-19 Epidemic Trends by Combining a Neural Network with Rt Estimation,
2022,
24,
1099-4300,
929,
10.3390/e24070929
|
|
116.
|
El-Sayed M. El-kenawy, Abdelaziz A. Abdelhamid, Abdelhameed Ibrahim, Mostafa Abotaleb, Tatiana Makarovskikh, Amal H. Alharbi, Doaa Sami Khafaga,
Al-Biruni Earth Radius Optimization for COVID-19 Forecasting,
2023,
46,
0267-6192,
883,
10.32604/csse.2023.034697
|
|
117.
|
Baba Seidu, Oluwole Daniel Makinde, Ibrahim Yakubu Seini, Andrew Pickering,
On the Optimal Control of HIV-TB Co-Infection and Improvement of Workplace Productivity,
2023,
2023,
1607-887X,
1,
10.1155/2023/3716235
|
|
118.
|
Baba Seidu, Oluwole D. Makinde, Joshua Kiddy K. Asamoah,
Threshold quantities and Lyapunov functions for ordinary differential equations epidemic models with mass action and standard incidence functions,
2023,
170,
09600779,
113403,
10.1016/j.chaos.2023.113403
|
|
119.
|
Niranjana Murthy Harohalli Shivalingappa, Pushpa Mysore Krishna,
2023,
2759,
0094-243X,
020065,
10.1063/5.0115345
|
|
120.
|
Monica Torres, Jerrold Tubay, Aurelio de losReyes,
Quantitative Assessment of a Dual Epidemic Caused by Tuberculosis and HIV in the Philippines,
2023,
85,
0092-8240,
10.1007/s11538-023-01156-1
|
|
121.
|
Zenebe Shiferaw Kifle, Legesse Lemecha Obsu,
Co-dynamics of COVID-19 and TB with COVID-19 vaccination and exogenous reinfection for TB: An optimal control application,
2023,
24680427,
10.1016/j.idm.2023.05.005
|
|
122.
|
I. Ratti, P. Kalra,
Study of Disease Dynamics of Co-infection of Rotavirus and Malaria with Control Strategies,
2023,
17,
1823-8343,
151,
10.47836/mjms.17.2.05
|
|
123.
|
Shuo Li, Imam Bukhsh, Ihsan Ullah Khan, Muhammad Imran Asjad, Sayed M. Eldin, Magda Abd El-Rahman, Dumitru Baleanu,
The impact of standard and nonstandard finite difference schemes on HIV nonlinear dynamical model,
2023,
173,
09600779,
113755,
10.1016/j.chaos.2023.113755
|
|
124.
|
A. Jabbari, M. Lotfi, H. Kheiri, S. Khajanchi,
Mathematical analysis of the dynamics of a fractional‐order tuberculosis epidemic in a patchy environment under the influence of re‐infection,
2023,
0170-4214,
10.1002/mma.9532
|
|
125.
|
Mohamed Amouch, Noureddine Karim,
Fractional-order mathematical modeling of COVID-19 dynamics with different types of transmission,
2023,
0,
2155-3289,
0,
10.3934/naco.2023019
|
|
126.
|
Folashade B. Agusto, Ramsès Djidjou-Demasse, Ousmane Seydi,
Mathematical model of
Ehrlichia chaffeensis
transmission dynamics in dogs
,
2023,
17,
1751-3758,
10.1080/17513758.2023.2287082
|
|
127.
|
Benjamin Idoko Omede, Bolarinwa Bolaji, Olumuyiwa James Peter, Abdullahi A. Ibrahim, Festus Abiodun Oguntolu,
Mathematical analysis on the vertical and horizontal transmission dynamics of HIV and Zika virus co-infection,
2023,
27731863,
100064,
10.1016/j.fraope.2023.100064
|
|
128.
|
O. Odiba Peace, O. Acheneje Godwin, Bolarinwa Bolaji,
A compartmental deterministic epidemiological model with non-linear differential equations for analyzing the co-infection dynamics between COVID-19, HIV, and Monkeypox diseases,
2024,
27724425,
100311,
10.1016/j.health.2024.100311
|
|
129.
|
C. K. Mahadhika, Dipo Aldila,
A deterministic transmission model for analytics-driven optimization of COVID-19 post-pandemic vaccination and quarantine strategies,
2024,
21,
1551-0018,
4956,
10.3934/mbe.2024219
|
|
130.
|
Ignatius Ako, Owin Olowu,
Causes of Backward Bifurcation in a Tuberculosis-Schistosomiasis Co-infection Dynamics,
2024,
2581-8147,
655,
10.34198/ejms.14424.655695
|
|
131.
|
J. O. Akanni, S. Ajao, S. F. Abimbade, ,
Dynamical analysis of COVID-19 and tuberculosis co-infection using mathematical modelling approach,
2024,
4,
2767-8946,
208,
10.3934/mmc.2024018
|
|
132.
|
Nwaokolo M. A., Oguche A. J., Twan S. M.,
Existence, Uniqueness and Positivity of Solution of the Impact of Vaccination and Treatment in Controlling the Spread of Hepatitis B Virus with Infective Migrants,
2024,
4,
58,
10.52589/IJPHP-ILXYTCAC
|
|
133.
|
Sujata Dash, Sourav Kumar Giri, Subhendu Kumar Pani, Saurav Mallik, Mingqiang Wang, Hong Qin,
Optimized Hybrid Deep Learning for Real-Time Pandemic Data Forecasting: Long and Short-Term Perspectives,
2024,
19,
15748936,
714,
10.2174/0115748936257412231120113648
|
|
134.
|
Jasmina Ɖorđević, Kristina Rognlien Dahl,
Stochastic optimal control of pre-exposure prophylaxis for HIV infection for a jump model,
2024,
89,
0303-6812,
10.1007/s00285-024-02151-3
|
|
135.
|
Catherine Choquet, Abdoulrazack Mohamed Abdi,
A network epidemic model: From the mathematical analysis to machine learning experiments,
2024,
10075704,
108493,
10.1016/j.cnsns.2024.108493
|
|
136.
|
Tigabu Kasie Ayele, Emile Franc Doungmo Goufo, Stella Mugisha, Joshua Kiddy K. Asamoah,
Co-infection mathematical model for HIV/AIDS and tuberculosis with optimal control in Ethiopia,
2024,
19,
1932-6203,
e0312539,
10.1371/journal.pone.0312539
|
|
137.
|
PANKAJ SINGH RANA, NITIN SHARMA, SUNIL SINGH NEGI, HACI MEHMET BASKONUS,
On the Dynamics of HIV–Tuberculosis Coinfection Model with Temporal Recovery from Tuberculosis: An Analysis,
2025,
1557-8666,
10.1089/cmb.2024.0763
|
|
138.
|
Muhammad Said, Yunil Roh, Il Hyo Jung,
Identifiability analysis of an HIV-Ebola co-infection using the mathematical model and the MLE method,
2025,
125,
11100168,
245,
10.1016/j.aej.2025.03.135
|
|