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Abstract. This paper addresses the synergistic interaction between HIV and
mycobacterium tuberculosis using a deterministic model, which incorporates
many of the essential biological and epidemiological features of the two dis-
eases. In the absence of TB infection, the model (HIV-only model) is shown
to have a globally asymptotically stable, disease-free equilibrium whenever the
associated reproduction number is less than unity and has a unique endemic
equilibrium whenever this number exceeds unity. On the other hand, the
model with TB alone (TB-only model) undergoes the phenomenon of back-
ward bifurcation, where the stable disease-free equilibrium co-exists with a
stable endemic equilibrium when the associated reproduction threshold is less
than unity. The analysis of the respective reproduction thresholds shows that
the use of a targeted HIV treatment (using anti-retroviral drugs) strategy can
lead to effective control of HIV provided it reduces the relative infectiousness
of individuals treated (in comparison to untreated HIV-infected individuals)
below a certain threshold. The full model, with both HIV and TB, is simu-
lated to evaluate the impact of the various treatment strategies. It is shown
that the HIV-only treatment strategy saves more cases of the mixed infection
than the TB-only strategy. Further, for low treatment rates, the mixed-only
strategy saves the least number of cases (of HIV, TB, and the mixed infection)
in comparison to the other strategies. Thus, this study shows that if resources
are limited, then targeting such resources to treating one of the diseases is

more beneficial in reducing new cases of the mixed infection than targeting
the mixed infection only diseases. Finally, the universal strategy saves more
cases of the mixed infection than any of the other strategies.

1. Introduction. The inextricably linked pathogenesis and epidemiology of my-
cobacterium tuberculosis (TB) and the human immuno-deficiency syndrome (HIV)
are well known [18, 23, 24, 36]. The two diseases exhibit some sort of synergistic
relationship, where each accelerates the progression of the other. For instance, since
its emergence in the 1980s, the HIV/AIDS pandemic continues to play a major role
in the resurgence of TB, resulting in increased morbidity and mortality worldwide.
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Additionally, HIV fuels progression to active disease in people infected with TB
[23, 40]. Rates of recurrence of TB, both due to endogenous reactivation and ex-
ogenous re-infection, are increased among people infected with HIV [19, 23, 40].
For instance, in many countries of eastern and southern Africa, the rates of TB no-
tification have increased by five or more times as a result of HIV infection [37, 38].
Similarly, HIV infection increases the likelihood that a person will develop active
TB [40].

The current statistics associated with the two diseases are staggering. While
HIV accounts for 30-46 million infections (and resulted in over 20 million deaths)
globally since its inception in the 1980s [39], TB affects at least 2 billion peo-
ple (one-third of the world’s population) and is the second greatest contributor
of adult mortality amongst infectious diseases, causing approximately two million
deaths a year worldwide [39]. Currently, approximately 8% of global TB cases are
attributable to HIV infection, but this proportion is expected to increase in the
future. For instance, the number of HIV positives in India is estimated to be 3.97
million cases, and nearly 60% of the reported cases of AIDS had TB [19].

The largest number of TB cases occurs in Southeast Asia, which in 2004 ac-
counted for an estimated 3 million new cases (one-third of the global total) for that
year [39]. However, the estimated incidence per capita in sub-Saharan Africa is
nearly twice that of Southeast Asia, at 356 cases per 100,000 population in 2004.
Also, the countries of Eastern Europe faced a serious epidemic in 2004, there were
an estimated 166,000 new cases in Russia alone.

Thankfully, effective treatment does exist for each of these deadly diseases.
For HIV, the use of anti-retroviral drugs (ARVs), notably the highly active anti-
retroviral therapy (HAART), has proven to be effective in curtailing its spread and
AIDS-related mortality [14, 21, 28, 29]. However, these life-saving drugs are still
not widely available in some resource-poor nations with high HIV incidence and
prevalence. Tuberculosis, on the other hand, can be cured using drug therapy, such
as DOTS (directly observed treatment short course). DOTS cures TB in 95% of
cases, and a six-month supply of DOTS costs as little as $10 per person in some
parts of the world [3].

The enormous public health burden inflicted by these two diseases necessitates
the use of mathematical modelling to gain insights into their transmission dynam-
ics and to determine effective control strategies. Unfortunately, not much has been
done in terms of modelling the dynamics of HIV-TB coinfection at a population
level. A few modelling studies, such as those in [27, 30, 35], have provided basic
framework (using simplified models) for modelling the complex HIV-TB interac-
tion in a community. The purpose of the current study is to complement the
aforementioned studies, by designing and qualitatively analysing a new and more
comprehensive deterministic model for gaining insights into the transmission dy-
namics and control of the two diseases in a population. The model allows for the
assessment of treatment strategies for each disease (including the mixed infection).
The robust model will be used to assess the public health (epidemiological) im-
pact of four main treatment strategies, namely: (i) treating people infected with
HIV only (HIV-only strategy), (ii) treating people infected with TB only (TB-only
strategy), (iii) treating people infected with the mixed infection only (mixed-only
strategy) and treating individuals infecetd with HIV, TB or the HIV-TB coinfection
(universal strategy).



TRANSMISSION DYNAMICS OF HIV/TB COINFECTION 147

It is worth emphasizing that the two diseases differ in their modes of trans-
mission. Whilst TB is an airborne disease (a susceptible individual may become
infected with TB if he or she inhales bacilli, the causative agent of TB, in the air),
HIV is transmitted predominantly via sexual contact or needle sharing (particularly
among IV drug users). Thus, whilst HIV transmission almost exclusively involves
sexually-active people (except for cases of vertical transmission), everyone (chil-
dren and adults) is susceptible to TB infection. Children can acquire TB infection
by having close contact with infected adults (usually family members). However,
data from Health Canada [5] suggests that pediatric TB is on the decline. For
instance, the number of reported TB cases in Canada in children under 15 years
of age declined from 430 in 1970 to 109 in 2001 (the incidence of TB in children
also decreased from 6.6 per 100,000 in 1970 to 1.9 per 100,000 in 2001). Although
pediatric TB may be a factor in some nations, this study does not include chil-
dren in the compartment of people susceptible to TB or HIV; rather, we consider
sexually-active individuals only.

The paper is organized as follows. The model is formulated in Section 2. Two
sub-models of the full model (HIV-only and TB-only) are analyzed in Section 3. The
full model is analyzed (for the stability of the associated disease-free equilibrium)
in Section 4, and numerical simulations are carried out in Section 5.

2. Model formulation and basic properties. The total sexually-active popu-
lation at time t, denoted by N(t), is subdivided into mutually-exclusive compart-
ments, namely susceptible (S(t)), newly- and asymptomatically-infected individ-
uals with HIV (H1(t)), HIV-infected individuals with clinical symptoms of AIDS
(H2(t)), individuals infected with TB in latent (asymptomatic) stage (L(t)), indi-
viduals infected with TB in the active stage (T (t)), untreated dually-infected indi-
viduals (with both diseases) having latent TB and in the asymptomatic stage of HIV
infection (I1

HL(t)), untreated dually-infected individuals with active TB and in the
asymptomatic stage of HIV infection (I1

HT (t)), untreated dually-infected individuals
with latent TB and showing symptoms of AIDS (I2

HL(t)), untreated dually-infected
individuals with active TB and showing symptoms of AIDS (I2

HT (t)), treated in-
dividuals infected with HIV only (WH(t)), treated individuals infected with TB
only (WT (t)), dually-infected individuals with latent TB treated of HIV (WH

HL(t)),
dually-infected individuals with active TB treated of HIV only (WH

HT (t)), individ-
uals infected with both diseases treated of TB (WT

HT (t)) and those treated of both
HIV and TB only (WM

HT (t)), so that

N(t) = S(t) +H1(t) +H2(t) + L(t) + T (t) + I1
HL(t) + I1

HT (t) + I2
HL(t)

+ I2
HT (t) +WH(t) +WT (t) +WH

HL(t) +WH
HT (t) +WT

HT (t) +WM
HT (t).

The susceptible population is increased by the recruitment of individuals (assumed
susceptible) into the population, at a rate Π. Both singly- and dually-infected
individuals transmit either HIV or TB infection as follows (note that we split the
disease transmission process into those generated by singly-infected and dually-
infected individuals to make the formulation easier to follow).

2.1. Transmission by singly-infected individuals. Susceptible individuals ac-
quire HIV infection, following effective contact with people infected with HIV only
(i.e., those in the H1, H2 and WH classes) at a rate λH , given by

λH =
βH(H1 + η2H2 + ηHWH)

N
, (1)
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where, βH is the effective contact rate for HIV transmission. Further, the modi-
fication parameters η2 ≥ 1 and ηH < 1 account for the relative infectiousness of
individuals in the H2 (AIDS) and WH (treated HIV-infected individuals) classes in
comparison to those in the H1 (asymptomatic HIV) class. That is, individuals in
the H2 class are more infectious than those in the H1 class (because of their higher
viral load); and, likewise, treated HIV-infected individuals are less infectious than
those in the H1 class (because the use of treatment significantly reduces the viral
load in those treated).

Similarly, susceptible individuals acquire TB infection from individuals with ac-
tive TB only at a rate λT , given by

λT =
βT (T + ηTWT )

N
, (2)

where, βT is the effective contact rate for TB infection, and the parameter ηT <
1 accounts for the reduction in infectiousness among individuals with active TB
who are treated (in comparison to those who are not treated). A fraction, l, of
susceptible individuals who acquire TB infection moves to the latent TB class (L)
at the rate λT , and the remaining fraction, 1 − l, moves to the active TB class T .
It is assumed that individuals in the latent TB class do not transmit infection.

2.2. Transmission by dually-infected individuals.

2.2.1. Untreated individuals. Dually-infected individuals are assumed capable of
transmiting either HIV or TB, but not the mixed infection. Untreated dually-
infected individuals (i.e., those in the I1

HL, I
1
HT , I

2
HL, and I2

HT classes) transmit
HIV at a rate λ1

HT , where

λ1
HT =

βH [I1
HL + ηDI

1
HT + c2η2(I

2
HL + ηDI

2
HT )]

N
. (3)

In (3), c2η2 (with c2 ≥ 1) accounts for the assumed increase in infectiousness for
dually-infected individuals in the AIDS stage compared to dually-infected individ-
uals in the asymptomatic HIV stage; while the modification parameter ηD > 1
accounts for the assumption that dually-infected individuals with active TB trans-
mit HIV at a higher rate than the corresponding dually-infected individuals with
latent TB (in other words, it is assumed that dually-infected people with active TB
transmit HIV at a rate higher than that of dually-infected individuals (WT

HT ) with
latent TB, since it is known that active TB accelerates HIV progression in people
infected with both diseases).

Similarly, untreated dually-infected individuals with active TB (i.e., those in the
I1
HT and I2

HT classes) transmit TB at a rate λ2
HT , with

λ2
HT =

βT (I1
HT + I2

HT )

N
. (4)

2.2.2. Treated individuals. Here, too, treated individuals with the dual infection
transmit both diseases (but not the mixed infection) to susceptible individuals,
where the transmission of the disease being treated is assumed to occur at a lower
rate in comparison to the transmission by the corresponding class of dually-infected
individuals who are not treated; while the transmission of the other disease occurs
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at the same rate as that of the corresponding singly-infected untreated individu-
als. For instance, treated individuals with the mixed infection (i.e., those in the
WH

HL,W
H
HT ,W

T
HT and WM

HT classes) transmit HIV at a rate λH
M , where

λH
M =

βH [WT
HT + ηH(WH

HL +WH
HT +WM

HT )]

N
. (5)

In other words, equation (5) shows that dually-infected individuals treated of
TB (WT

HT ) transmit HIV at the same rate (βH) as the corresponding (untreated)
HIV-infected individuals with HIV infection only (in the H1 class), while dually-
infected individuals treated of HIV with latent and active TB (WH

HL and WH
HT ),

and dually-infected individuals treated of both diseases (WM
HT ) transmit HIV at

the reduced rate, ηHβH (in comparison to the untreated HIV-infected individuals
in the H1 class). Thus, treating dually-infected individuals of one disease (only)
does not limit (or reduce) their ability to transmit the other disease.

Similarly, treated individuals with mixed infection (involving active TB) transmit
TB at a rate λT

M , where

λT
M =

βT [WH
HT + ηT (WT

HT +WM
HT )]

N
. (6)

2.3. Derivation of model equations. The populations of individuals in the H1

andH2 classes are reduced due to TB infection (following effective contact with indi-
viduals in the T, I1

HT , I
2
HT ,WT ,W

H
HT ,W

T
HT , andWM

HT classes). Further, individuals
in the H1 class progress to the AIDS class (H2), at a rate σ. The parameters ψ1 and
ψ2 (with ψ2 > ψ1 > 1) account for the assumed increase in probability of acquir-
ing TB infection for HIV-infected individuals; the parameter ψ2 is associated with
those with clinical symptoms of AIDS (H2) while ψ1 is associated with those with-
out symptoms (H1). That is, it is assumed that individuals with HIV infection are
more prone to TB infection than wholly-susceptible individuals. Further, those with
AIDS acquire TB infection at a higher rate than those in the asymptomatic stage of
HIV infection owing to the weaker immune status of the former. The population of
individuals infected with TB only (in the L or T class) is reduced following acquisi-
tion of HIV-infection, which can result following effective contact with individuals
infected with HIV (in the H1, H2,WH , I

1
HL, I

1
HT , I

2
HL, I

2
HT ,W

H
HL,W

H
HT ,W

T
HT and

WM
HT classes). Further, individuals in the latent TB class (L) progress to the ac-

tive TB class (T ) at a rate α, and become re-infected (exogenously) after effective
contact with individuals in the active TB class (at a rate λR) or with individuals
having mixed infection involving active TB (at a rate λR1). The rates λR and λR1

are, respectively, given by

λR =
βT ηrT

N
and λR1 =

βT ηr(I
1
HT + I2

HT +WH
HT )

N
,

where βT ηr (with ηr > 0 being the modification parameter for exogenous re-
infection) is the contact rate associated with the exogenous re-infection. Individuals
in the I1

HL class undergo exogenous re-infection at a rate λR2, where

λR2 =
βT ηr(T + I1

HT + I2
HT +WH

HT )

N
.

A fraction, l, of susceptible individuals who acquire TB infection from untreated
dually-infected individuals (at the rate λ2

HT ) move to the latent TB class, while the
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remaining fraction, 1− l, move to the active TB class. Susceptible individuals who
had effective contact with dually-infected individuals treated of TB can acquire
either TB or HIV infection. Those who acquire HIV move to the H1 class (at the
rate βH), and, on the other hand a fraction, l, of those who acquire TB infection
move to the latent TB class (L), while the remaining fraction, 1 − l, move to the
active TB class (T ). Similarly, susceptible individuals who acquire infection from
dually-infected individuals treated of HIV alone can become infected with TB at the
rate βT (where a fraction, l, move to the latent class; and the remaining fraction,
1 − l, move to the active TB class), and those infected with HIV move to H1 class
at the reduced rate ηHβH . Dually-infected individuals treated of both diseases
transmit HIV infection at the reduced rate ηHβH , and TB infection at the reduced
rate ηTβT (where a fraction, l, of the TB cases move to the latent class and the
remaining fraction, 1− l, move to the active TB class). Note that, since we have no
data to show that the aforementioned fractions (that move to the latent TB class)
are distinct, we assume that they are all equal (to l).

Further, individuals in the I1
HL class progress to the I1

HT class at an increased
rate θ1α, where θ1 ≥ 1 (this is to account for the fact that HIV infection accelerates
TB progression in dually-infected individuals); and are treated for HIV at a rate
τ1. Finally, a fraction, ξ, of individuals in the I1

HL class progress to active TB and
AIDS stage (I2

HT ) at a rate γHT , and the remaining fraction, 1 − ξ, moves to the
I2
HL at the same rate γHT .

As noted earlier, individuals with latent TB (only) are re-infected (exogenously)
at a rate λR or λR1. A fraction, φ, of those individuals re-infected at the rate λR1

progress to active TB, and the remaining fraction, 1−φ, acquire HIV infection and
move to the I1

HT class. Individuals in this I1
HT class are treated for HIV at the

rate τ1 and for active TB at a rate τ3. Finally, I1
HT individuals progress to I2

HT

at an increased rate η1σ, with η1 ≥ 1. In other words, this study assumes that
the presence of mixed infection accelerates progression of both diseases (to either
active TB or AIDS stage).

Similarly, individuals with AIDS and latent TB (I2
HL) are re-infected (exoge-

nously) at the rate λR2. Individuals in this class are treated for HIV at the rate τ2,
progress to I2

HT class at the rate θ2α (θ2 ≥ 1) and die due to the two diseases at a
rate δHT . Finally, individuals in the I2

HT class are treated for HIV at the rate τ2
and active TB at the rate τ3; and they die at an increased rate ωδHT , with ω > 1.
Treatment for HIV, using ARVs, is administered to individuals in both H1 and H2

classes, at the rate τ1 and τ2, respectively; while individuals with active TB are
treated at the rate τ3.

Individuals successfully treated for HIV are assumed to eventually (after long
period of time, lasting decades) succumb to the disease (due to the failure of treat-
ment or resistance development) and progress to AIDS at a reduced rate θtσ1, where
0 < θt < 1. Individuals successfully treated of TB return to the latent TB stage at
a rate ρ. Finally, dually-infected individuals treated of HIV can further be treated
for TB; while dually-infected individuals treated of TB can similarly be treated
for HIV. Dually-infected individuals who have received treatment for both diseases
(WM

HT class) and dually-infected individuals treated of TB (WT
HT class) eventually

progress to the final stage of HIV disease and latent TB (I2
HL) at rates σHT and σT ,

respectively. On the other hand, dually-infected individuals treated of HIV with
latent TB (WH

HL class) progress to the class of dually-infected individuals treated of
HIV with active TB (I1

HT ) at the rate θ1α and/or to the untreated dually-infected
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individuals with AIDS and latent TB at a rate θtσ. Dually-infected individuals
treated of HIV with active TB (WH

HT ) progress to the class of individuals with
AIDS and active TB (I2

HT ) at a rate σH . Further, natural mortality occurs in all
classes at a rate µ, while individuals in the AIDS (H2) and active TB (T ) classes
suffer an additional disease-induced death at rates δH and δT , respectively.

Combining all the aforementioned assumptions and definitions, the model for
the transmission dynamics of HIV and TB in a sexually-active population is given
by the following system of differential equations:

dS

dt
= Π − λHS − λTS − λ1

HT
S − λ2

HT
S − λH

M
S − λT

M
S − µS,

dH1

dt
= λHS + λ1

HT
S + λH

M
S − λTψ1H1 − λ2

HT
ψ1H1 − λT

M
ψ1H1 −K1H1,

dH2

dt
= σH1 + θtσWH − λTψ2H2 − λ2

HT
ψ2H2 − λT

M
ψ2H2 −K2H2,

dL

dt
= lλTS + lλ2

HT
S + lλT

M
S + ρWT − λHL− λ1

HT
L− λH

M
L− λRL− λR1L−K3L,

dT

dt
= (1 − l)λTS + (1 − l)λ2

HT
S + (1 − l)λT

M
S + λRL+ αL− λHT + φλR1L− λH

M
T−

λ1
HT

T −K4T,

dI1
HL

dt
= λTψ1H1 + λ2

HT
ψ1H1 + λT

M
ψ1H1 + λHL+ λ1

HT
L+ l(λ2

HT
WH + λTWH+

λT

M
WH) + λH

M
L+ λ1

HT
WT + λHWT + λH

M
WT − λR2I

1
HL

−K5I
1
HL

,

dI1
HT

dt
= λHT + λ1

HT
T + λH

M
T + (1 − l)(λ2

HT
WH + λTWH + λT

M
WH) + λR2I

1
HL

+

θ1αI
1
HL

+ (1 − φ)λR1L−K6I
1
HT

,

dI2
HL

dt
= λTψ2H2 + λ2

HT
ψ2H2 + λT

M
ψ2H2 − λR2I

2
HL

+ (1 − ξ)γHT I
1
HL

+ θtσW
H

HL
+

σHTW
M

HT
+ σTW

T

HT
−K7I

2
HL

,

dI2
HT

dt
= λR2I

2
HL

+ θ2αI
2
HL

+ ξγHT I
1
HL

+ η1σI
1
HT

+ σHW
H

HT
−K8I

2
HT

,

dWH

dt
= τ1H1 + τ2H2 − λ2

HT
WH − λTWH − λT

M
WH −K9WH ,

dWT

dt
= τ3T − λ1

HT
WT − λHWT − λH

M
WT −K10WT ,

dWH

HL

dt
= τ1I

1
HL

+ τ2I
2
HL

− λR2W
H

HL
−K11W

H

HL
,

dWH

HT

dt
= τ1I

1
HT

+ τ2I
2
HT

+ θ1αW
H

HL
+ λR2W

H

HL
−K12W

H

HT
,

dWT

HT

dt
= τ3(I1

HT
+ I2

HT
) −K13W

T

HT
,

dWM

HT

dt
= τ3W

H

HT
+ τ2W

T

HT
−K14W

M

HT
,

(7)

where,

K1 = µ+ σ + τ1, K2 = µ+ δH + τ2, K3 = µ+ α, K4 = µ+ δT + τ3,

K5 = µ+ θ1α+ τ1 + γHT , K6 = µ+ τ1 + τ3 + η1σ, K7 = µ+ θ2α+ τ2 + δHT ,

K8 = µ+ τ2 + τ3 + ωδHT , K9 = µ+ θtσ, K10 = µ+ ρ, K11 = µ+ θ1α+ θtσ,

K12 = µ+ σH + τ3, K13 = µ+ σT + τ2, K14 = µ+ σHT .
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Table 1: Description of variables and parameters for the treatment model with
staged-progression (7)

Variable Description

S(t) Susceptible individuals
H1(t) New- and asymptomatically-infected individuals
H2(t) HIV-infected individuals with clinical symptoms of AIDS
L(t) TB-infected individuals in latent stage
T (t) TB-infected individuals in active stage
I1
HL

(t) Dually-infected individuals with latent TB and in the asymptomatic stage of
HIV infection

I1
HT

(t) Dually-infected individuals with active TB and in the asymptomatic stage of
HIV infection

I2
HL

(t) Dually-infected individuals with latent TB and showing symptoms of AIDS
I2
HT

(t) Dually-infected individuals with active TB and showing symptoms of AIDS
WH(t) Treated individuals with HIV
WT (t) Treated individuals with TB
WH

HL
(t) Dually-infected individuals treated of HIV with latent TB

WH

HT
(t) Dually-infected individuals treated of HIV with active TB

WT

HT
(t) Dually-infected individuals treated of TB

WM

HT
(t) Dually-infected individuals treated of both diseases

Parameter Description

Π Recruitment rate into the population
µ Natural death rate
δH , δT , δHT Disease-induced mortality for HIV, TB and mixed infections
θt Modification factor for progression to AIDS

for treated HIV-infected people
σ Progression rates to AIDS and active TB classes for untreated singly-infected

individuals
of individuals with HIV and latent TB, respectively

γHT Progression rates to symptomatic stages of dual infection
of individuals latent TB in the asymptomatic stage of HIV disease

α Progression rate to active TB of individuals with latent TB
ρ Progression rate to latent TB of individuals treated for TB
η1, η2, c2, ηH , ηT , ηD

ω, θ1, θ2 Modification parameters

σH , σT , σHT Progression rates to AIDS or active TB or
both by dually-infected treated individuals

ηr Re-infection parameter
φ Fraction of individuals with latent TB only who are reinfected with TB
ξ Fraction of dually-infected individuals showing symptoms of

AIDS and latent TB who are reinfected with TB

l Fraction of newly-infected individuals with latent TB
1 − l Fraction of newly-infected individuals with active TB
τ1, τ2, τ3 Treatment rates for H1,H2 and T classes
ψ1, ψ2 Modification parameter for increased TB susceptibility for people in H1 and

H2 classes
βH , βT Effective contact rates for HIV and TB
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Since the model (7) monitors human populations, all the variables and parame-
ters of the model are non-negative. Consider the biologically-feasible region

D = {(S,H1, H2, L, T, I
1
HL, I

1
HT , I

2
HL, I

2
HT ,WH ,WT ,W

H
HL,W

H
HT ,W

T
HT ,W

M
HT )

∈ R
15
+ : N ≤ Π/µ}.

The following steps are followed to establish the positive invariance of D (i.e., all
solutions in D remain in D for all time). The rate of change of the total population,
obtained by adding all the equations in model (7), is given by

dN

dt
= Π − µN − δHH2 − δTT − δHT I

2
HL − ωδHT I

2
HT . (8)

It is easy to see that whenever N > Π/µ, then dN/dt < 0. Since dN/dt is
bounded by Π−µN , a standard comparison theorem [25] can be used to show that

N(t) ≤ N(0)e−µt+
Π

µ
(1−e−µt). In particular, N(t) ≤

Π

µ
if N(0) ≤

Π

µ
. Thus, every

solution of the model (7) with initial conditions in D remains there for t > 0 (the
ω-limit sets of the system (7) are contained in D). Thus, D is positive-invariant and
attracting. Hence, it is sufficient to consider the dynamics of the flow generated by
(7) in D. In this region, the model can be considered as been epidemiologically and
mathematically well-posed [17].

3. Analysis of the sub-models. Before analyzing the full model (7), it is in-
structive to gain insights into the dynamics of the models for HIV only (HIV-only
model) and TB only (TB-only model).

3.1. HIV-only model. The model with HIV only (obtained by setting L = T =
I1
HL = I1

HT = I2
HL = I2

HT = WT = WH
HL = WH

HT = WT
HT = WM

HT = 0 in (7)) is
given by

dS

dt
= Π − λHS − µS,

dH1

dt
= λHS −K1H1,

dH2

dt
= σH1 + θtσWH −K2H2,

dWH

dt
= τ1H1 + τ2H2 −K9WH ,

(9)

where,

λH =
βH(H1 + η2H2 + ηHWH)

N
and, now, N = S +H1 +H2 +WH .

For this model, it can be shown that the region,

D1 = {(S,H1, H2,WH) ∈ R
4
+ : N ≤ Π/µ},

is positively-invariant and attracting. Thus, the dynamics of the HIV-only model
will be considered in D1.
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3.1.1. Local stability of disease-free equilibrium (DFE). The model (9) has a DFE,
obtained by setting the right-hand sides of the equations in the model to zero, given
by

E0 = (S∗, H∗

1 , H
∗

2 ,W
∗

H) =

(

Π

µ
, 0, 0, 0

)

. (10)

The linear stability of E0 can be established using the next- generation operator
method on the system (9). Using the notation in [33], the matrices F and V , for the
new infection terms and the remaining transfer terms respectively, are, respectively,
given by (noting that S∗ = N∗ at the DFE E0)

F =





βH βHη2 βHηH

0 0 0
0 0 0



 ,

and,

V =





K1 0 0
−σ K2 −θtσ
−τ1 −τ2 K9



 .

Thus,

RH = βH

[

(µ+ δH)K9 + µτ2 + η2σ(K9 + θtτ1) + ηH(στ2 +K2τ1)

]

K1 [(µ+ δH)K9 + µτ2]
. (11)

The following result follows from Theorem 2 of [33].

Lemma 3.1. The DFE of the HIV-only model (9), given by (10), is locally asymp-
totically stable (LAS) if RH < 1, and unstable if RH > 1.

The threshold quantity RH is the reproduction number for HIV [1]. It measures the
average number of new HIV infections generated by a single HIV-infected individual
in a population where a certain fraction of infected individuals are treated.

3.1.2. Analysis of RH . The objective here is to determine, using the threshold
quantity RH , whether or not treating individuals with HIV, either those in the
asymptomatic stage (modelled by the rate τ1) or AIDS stage (modelled by the rate
τ2), can lead to HIV elimination in the community. It is evident from (11) that

lim
τ1→∞

RH =
βH(η2σθt + ηHK2)

(µ+ δH)K9 + µτ2
> 0, (12)

and,

lim
τ2−→∞

RH =
βH

K1

[

1 +
ηH(σ + τ1)

µ

]

> 0. (13)

Thus, a sufficiently effective HIV treatment program that focusses on treating in-
fected individuals in the asymptomatic stage (at a high rate, τ1 → ∞) or those
with AIDS symptoms (at a rate τ2 → ∞) can lead to effective disease control if
it results in making the respective right-hand side of (12) or (13) less than unity.
The profiles of RH , as a function of treatment rates τ1 and τ2, are depicted in
Figure 1A. For the set of parameters used in these simulations, it is evident from
this figure that while a strategy that focuses on treating asymptomatic individuals
alone can dramatically reduce RH from around RH = 17 to a value of RH less than
unity (RH = 0.523), the strategy that focuses on treating AIDS individuals only
reduces RH from RH = 17 to RH = 10 (thus, HIV cannot be eliminated in the
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latter case, but will be in the former). It was further shown, in Figure 1A, that the
combined treatment of HIV-infected individuals with or without AIDS symptoms
reduces RH to values less than unity faster than a strategy that targets individuals
without AIDS symptoms.
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Figure 1. Reproduction numbers as a function of treatment rates.
(A) RH , (B) RT

Further sensitivity analysis on the treatment parameters is carried out by com-
puting the partial derivatives of RH with respect to the treatment parameters (τ1
and τ2), giving,

∂RH

∂τ1
=
βH{[(µ+ σ)(µ + δH) + µτ2] ηH − η2σµ(1 − θt) − (µ+ δH)(µ+ θtσ) − µτ2}

(µ+ σ + τ1)2 [(µ+ δH)K9 + µτ2]
,

(14)
and,

∂RH

∂τ2
=
βHσ [ηHδH + µ(ηH − η2)] [µ+ θt(σ + τ1)]

(µ+ σ + τ1) [(µ+ δH)K9 + µτ2]
2 . (15)
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Consider the case τ2 = 0 (that is, only HIV-infected individuals with no AIDS
symptoms being treated). It follows from (14) that ∂RH

∂τ1

< 0 if

ηH < ∆I =
η2σµ(1 − θt) + (µ+ δH)(µ+ θtσ)

(µ+ σ)(µ + δH)
. (16)

Thus, the targeted treatment of HIV-infected individuals in the asymptomatic stage
will have positive impact in reducing HIV burden only if ηH < ∆I . Such a treatment
will fail to reduce the HIV burden if ηH = ∆I , and will have a detrimental impact
in the community (increase RH) if ηH > ∆I . This result is summarized below.

Lemma 3.2. The targeted treatment of HIV-infected individuals in the asymp-
tomatic stage will have positive impact if ηH < ∆I , no impact if ηH = ∆I and will
have detrimental impact if ηH > ∆I .

Similarly, it follows from (15) that ∂RH

∂τ2

< 0 if

ηH < ∆A =
µη2

µ+ δH
, (17)

giving the following result.

Lemma 3.3. The targeted treatment of HIV-infected individuals with AIDS symp-
toms will have positive impact if ηH < ∆A, no impact if ηH = ∆A and negative
impact if ηH > ∆A.

It is worth emphasizing that if Condition (16) or (17) does not hold, then the
use of the corresponding targeted treatment strategy would increase HIV burden in
the community (since it increases RH), although such treatment may be beneficial
to those HIV-infected (individuals) treated. That is, the use of ARVs will increase
disease burden if it fails to reduce the infectiousness of those treated below a certain
threshold (ηH < ∆I if asymptomatic HIV-infected individuals are targeted; or
ηH < ∆A if individuals with AIDS symptoms are targeted).

Returning back to Lemma 1. Biologically speaking, this lemma implies that HIV
can be eliminated from the community (when RH < 1) if the initial sizes of the
sub-populations of the model are in the basin of attraction of E0. To ensure that
elimination of the virus is independent of the initial sizes of the sub-populations,
it is necessary to show that the DFE is globally asymptotically stable. This is
established below.

3.1.3. Global stability of DFE.

Theorem 3.4. The DFE of the HIV-only model (9), given by (10), is globally
asymptotically stable (GAS) in D1 whenever RH ≤ 1.

Proof. Consider the following Lyapunov function:

F = b1H1 + b2H2 + b3WH ,

where,

b1 = (µ+ δH)K9 + µτ2 + η2σ(K9 + θtK3) + ηH(στ2 +K2K3),

b2 = K1(η2K9 + ηHτ2),

b3 = K1(η2σθt + ηHK2),



TRANSMISSION DYNAMICS OF HIV/TB COINFECTION 157

with Lyapunov derivative (where a dot represents differentiation with respect to t),

Ḟ = b1Ḣ1 + b2Ḣ2 + b3ẆH ,

= b1(λHS −K1H1) + b2(σH1 + θtσWH −K2H2) + b3(τ1H1 + τ2H2 −K9WH),

= b1λHS −K1[(µ+ δH)K9 + µτ2](H1 + η2H2 + ηHWH),

= b1λHS −
λHNK1[(µ+ δH)K9 + µτ2]

βH

,

=
λHNK1[(µ+ δH)K9 + µτ2]

βH

{

b1SβH

NK1[(µ+ δH)K9 + µτ2]
− 1

}

,

≤
λHNK1[(µ+ δH)K9 + µτ2]

βH

{

b1βH

K1[(µ+ δH)K9 + µτ2]
− 1

}

, (since S ≤ N)

=
λHNK1[(µ+ δH)K9 + µτ2]

βH

(RH − 1) ≤ 0 for RH ≤ 1.

Since all the model parameters are nonnegative, it follows that Ḟ ≤ 0 for RH ≤ 1
with Ḟ = 0 if and only if H1 = H2 = WH = 0. Hence, F is a Lyapunov function on
D1; and the largest compact invariant set in {(S,H1, H2,WH) ∈ D1 : Ḟ = 0} is the
singleton {E0}. Therefore, by the LaSalle’s Invariance Principle [26], every solution
to the equations of the model (9), with initial conditions in D1, approaches E0 as
t → ∞, whenever RH ≤ 1 (note that substituting H1 = H2 = WH = 0 in the first
equation of (9) shows that S → S∗ as t→ ∞). �

The above result shows that HIV will be eliminated from the community if the
epidemiological threshold, RH , can be brought to a value less than unity.

3.1.4. Existence of endemic equilibria. To find conditions for the existence of an
equilibrium for which HIV is endemic in the population (i.e., at least one of H∗∗

1 ,
H∗∗

2 and W ∗∗

H is non-zero), denoted by E1 = (S∗∗, H∗∗
1 , H∗∗

2 ,W ∗∗

H ), the equations in
(9) are solved in terms of the force of infection at steady-state (λ∗∗H ), given by

λ∗∗H =
βH(H∗∗

1 + η2H
∗∗
2 + ηHW

∗∗

H )

N∗∗
. (18)

Setting the right hand sides of the model to zero (and noting that λH = λ∗∗H at
equilibrium) gives

S∗∗ =
Π

µ+ λ∗∗H

, H∗∗

1 =
λ∗∗H Π

K1(µ+ λ∗∗H )
, H∗∗

2 =
σλ∗∗H Π(K9 + θtτ1)

K1(µ+ λ∗∗H )[(µ+ δH)K9 + µτ2]
,

W ∗∗

H =
λ∗∗H Π(K2τ1 + στ2)

K1(µ+ λ∗∗H )[(µ+ δH)K9 + µτ2]
.

(19)

Using (19) in the expression for λ∗∗H in (18) shows that the nonzero (endemic)
equilibria of the model satisfy

a11λ
∗∗

H − a12 = 0, (20)
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where,

a11 =
1

K1

[

1 +
σ(K9 + θtτ1)

(µ+ δH)K9 + µτ2
+

στ2 +K2τ1
(µ+ δH)K9 + µτ2

]

and a12 = RH − 1.

It is clear that a11 > 0, and a12 > 0 for RH > 1. Thus, the linear system (20)
has a unique positive solution, given by λ∗∗H = a12/a11, whenever RH > 1. The
components of the endemic equilibrium, E1, are then determined by substituting
λ∗∗H = a12/a11 into (19). Noting that RH < 1 implies that a12 < 0. Thus, for
RH < 1, the force of infection at steady-state (λ∗∗H ) is negative (which is biologically
meaningless). Hence, the model has no positive equilibria in this case. These results
are summarized below.

Lemma 3.5. The HIV-only model (9) has a unique endemic equilibrium whenever
RH > 1, and no endemic equilibrium otherwise.

3.1.5. Local stability of endemic equilibrium. Using standard linearization of the
HIV-only model around the endemic equilibrium is laborious and not really tractable
mathematically. Here, the center manifold theory [6], as described in [9] (Theorem
4.1), will be used to establish the local asymptotic stability of the endemic equi-
librium (see also [10, 33]). To apply this method, the following simplification and
change of variables are made first. Let S = x1, H1 = x2, H2 = x3, and ,WH = x4, so
that N = x1+x2 +x3+x4. Further, by using vector notation X = (x1, x2, x3, x4)

T ,
the HIV-only model (9) can be written in the form dX

dt
= (f1, f2, f3, f4)

T , as follows:

dx1

dt
= f1 = Π −

βH(x2 + η2x3 + ηHx4)

(x1 + x2 + x3 + x4)
x1 − µx1,

dx2

dt
= f2 =

βH(x2 + η2x3 + ηHx4)

(x1 + x2 + x3 + x4)
x1 −K1x2,

dx3

dt
= f3 = σx2 + θtσx4 −K2x3,

dx4

dt
= f4 = τ1x2 + τ2x3 −K9x4.

(21)

The Jacobian of the system (21), at E0, is given by

J(E0) =









−µ −βH −βHη2 −βHηH

0 βH −K1 βHη2 βHηH

0 σ −K2 θtσ
0 τ1 τ2 −K9









,

from which it can be shown that

RH =
βH

K1

[

1 +
η2σ(K9 + θtτ1)

(µ+ δH)K9 + µτ2
+

ηH(στ2 +K2τ1)

(µ+ δH)K9 + µτ2

]

. (22)

Consider the case when RH = 1. Suppose, further, that βH is chosen as a bifurca-
tion parameter. Solving (22) for βH gives RH = 1 when

βH = β∗ =
K1

1 +
η2σ(K9 + θtτ1)

(µ+ δH)K9 + µτ2
+

ηH(στ2 +K2τ1)

(µ+ δH)K9 + µτ2

. (23)

Note that the above linearized system, of the transformed system (21) with βH =
β∗, has a zero eigenvalue which is simple. Hence, the center manifold theory [6]
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can be used to analyze the dynamics of (21) near βH = β∗. In particular, Theorem
4.1 in [9] will be used to show the LAS of the endemic equilibrium point of (21)
(which is the same as the endemic equilibrium point of the original system (9)), for
βH near β∗.

Eigenvectors of J(E0)

∣

∣

∣

∣

βH=β∗

It can be shown that the Jacobian of (21) at βH = β∗ (denoted by Jβ∗) has a right
eigenvector (associated with the zero eigenvalue) given by w = [w1, w2, w3, w4]

T ,
where

w1 = −
(β∗w2 + β∗η2w3 + β∗ηHw4)

µ
,

w2 =
β∗(η2w3 + ηHw4)

K1 − β∗
,

w3 = w3 > 0, w4 =
K2τ1 + τ2σ

τ2θtσ +K9σ
w3.

The denominator K1 − β∗ > 0 since it follows from (23) that K1 > β∗. Further,
Jβ∗ has a left eigenvector v = [v1, v2, v3, v4] (associated with the zero eigenvalue),
where

v1 = 0, v2 =
στ2 +K2τ1

(K1 − β∗)τ2 + β∗η2τ1
v3, v3 = v3 > 0,

v4 =
β∗ηHv2 + θtσv3

K9
.

For convenience, the theorem in [9] (see also [6, 10, 33]) is reproduced below.

Theorem 3.6 (Castillo-Chavez & Song [9]). Consider the following general system
of ordinary differential equations with a parameter φ

dx

dt
= f(x, φ), f : R

n × R → R and f ∈ C
2(Rn × R), (24)

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ) and
assume

A1: A = Dxf(0, 0) =
(

∂fi

∂xj
(0, 0)

)

is the linearization matrix of the system (24)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue
of A and other eigenvalues of A have negative real parts;

A2: Matrix A has a right eigenvector w and a left eigenvector v (each corre-
sponding to the zero eigenvalue).

Let fk be the kth component of f and

a =

n
∑

k,i,j=1

vkwiwj

∂2fk

∂xi∂xj

(0, 0),

b =

n
∑

k,i=1

vkwi

∂2fk

∂xi∂φ
(0, 0).

The local dynamics of the system around 0 is totally determined by the signs of a
and b.
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i: a > 0, b > 0. When φ < 0 with |φ| ≪ 1, 0 is locally asymptotically stable and
there exists a positive unstable equilibrium; when 0 < φ ≪ 1, 0 is unstable
and there exists a negative, locally asymptotically stable equilibrium;

ii: a < 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable; when 0 < φ ≪ 1, 0 is
locally asymptotically stable equilibrium, and there exists a positive unstable
equilibrium;

iii: a > 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable, and there exists a
locally asymptotically stable negative equilibrium; when 0 < φ≪ 1, 0 is stable,
and a positive unstable equilibrium appears;

iv: a < 0, b > 0. When φ changes from negative to positive, 0 changes its stabil-
ity from stable to unstable. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

Computations of a and b :
For the system (21), the associated non-zero partial derivatives of F (at the DFE)
are given by

∂2f2
∂x2

2

= −
2β∗µ

Π
,

∂2f2
∂x2∂x3

= −
β∗µ(1 + η2)

Π
,

∂2f2
∂x2∂x4

= −
β∗µ(1 + ηH)

Π
,
∂2f2
∂x2

3

= −
2β∗µν2

Π
,

∂2f2
∂x3∂x4

= −
β∗ν2ηµ(ν2 + νH)

Π
,
∂2f2
∂x2

4

=
2β∗µηH

Π
.

It follows from the above expressions that

a = −
2v2β

∗µ(w2 + w3 + w4)(w2 + w4ηH + w3η2)

Π
< 0.

For the sign of b, it can be shown that the associated non-vanishing partial deriva-
tives of F are

∂2f1
∂x2∂β∗

= −1,
∂2f1
∂x3∂β∗

= −η2,
∂2f2
∂x4∂β∗

= −ηH ,

∂2f2
∂x2∂β∗

= 1,
∂2f2
∂x3∂β∗

= η2,
∂2f2
∂x4∂β∗

= ηH .

It also follows from the above expressions that

b = v2(w2 + w3η2 + w4ηH) > 0.

Thus, a < 0 and b > 0. So (by Theorem 2, Item (iv)), we have established the
following result (note that this result holds for RH > 1 but close to 1):

Theorem 3.7. The unique endemic equilibrium guaranteed by Theorem 2 is LAS
for RH near 1.

In summary, the HIV-only model (9) has a globally-asymptotically stable DFE
whenever RH ≤ 1, and a unique endemic equilibrium point whenever RH > 1. The
unique endemic equilibrium point is LAS at least near RH = 1. The dynamics of
TB-only is also explored as below.
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3.2. TB-only model. The model for the transmission dynamics of TB only (ob-
tained by setting H1 = H2 = I1

HL = I1
HT = I2

HL = I2
HT = WH = WH

HL = WH
HT =

WT
HT = WM

HT = 0 in (7)), given by

dS

dt
= Π − λTS − µS,

dL

dt
= lλTS + ρWT − λRL−K3L,

dT

dt
= (1 − l)λTS + λRL+ αL−K4T,

dWT

dt
= τ3T −K10WT ,

(25)

with,

λT =
βT (T + ηTWT )

N
, λR =

βηrT

N
with N = S + L+ T +WT .

The TB-only model (25) is formulated along the lines of the model in Feng et al.
[12], but with the additional features of (i) newly-infected individuals can have
either latent or active TB (0 < l < 1) and (ii) treated (TB-infected) individuals
can transmit TB (ηT 6= 0).

3.2.1. Local stability of DFE. The TB-only model (25) has a DFE given by

E0t = (S∗, L∗, T ∗,W ∗

T ) =

(

Π

µ
, 0, 0, 0

)

. (26)

Here, the F and V matrices are given, respectively, by

F =





0 lβT lβT ηT

0 (1 − l)βT (1 − l)βT ηT

0 0 0



 , V =





K3 0 −ρ
−α K4 0
0 −τ3 K10



 .

It follows that

RT =
(1 − l)K3βT (K10 + ηT τ3) + βT lα(K10 + ηT τ3)

K3K4K10 − αρτ3
, (27)

where, K3K4K10 − αρτ3 = µ(µ+ ρ+ α)(µ+ δT + τ3) + αρ(µ+ δT ) > 0. Thus, the
following result is established (from Theorem 2 of [33]).

Lemma 3.8. The DFE of the model (25), given by (26), is LAS if RT < 1, and
unstable if RT > 1.

The threshold quantity, RT , is the reproduction number for TB.

3.2.2. Analysis of RT . Here, the reproduction threshold, RT , will be analyzed to
determine whether or not treating people with active TB (modelled by the rate τ3)
can lead to the effective control or elimination of TB in the population. It follows
from (27), that

lim
τ3→∞

RT =
(1 − l)βTK3ηT + lβTαηT

µ(µ+ ρ+ α)
=
βT ηT [µ(1 − l) + α]

µ(µ+ ρ+ α)
> 0,

from which it is evident that the parameters βT and ηT play an important role
in determining the value of RT . A plot of RT as a function of τ3 is depicted in
Figure 1B. This figure shows that, for the set of parameters used in the simulations,
an effective strategy for treating people with active TB may not be adequate to
eliminate TB in the community, since it only brings RT down to about RT = 5 at
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steady state (and the condition RT < 1 is needed for effective control of TB in a
population).

Biologically speaking, Lemma (3.8) implies that TB can be eliminated from the
community (when RT < 1) if the initial sizes of the sub-populations of the model
are in the basin of attraction of E0t. Since TB models are often shown to exhibit the
phenomenon of backward bifurcation [9, 12], where the stable DFE co-exists with
a stable endemic equilibrium when the associated reproduction threshold (RT ) is
less than unity, it is instructive to determine whether or not the TB-only model
(25) exhibits this feature. This is done below.

3.2.3. Bifurcation analysis. Models of TB dynamics with exogenous re-infection
are known to exhibit the phenomenon of backward bifurcation [9, 12], where the
stable DFE co-exists with a stable endemic equilibrium. Here, the model (25) will
be analysed to see whether or not the new features (l 6= 1 and ηT 6= 0) added
to some of the earlier TB models (e.g., the model in [12]) would have any effect
on the expected reinfection-induced backward bifurcation property of TB disease.
Here, too, the Centre Manifold theory will be used on the model system (25). Let
S = x1, L = x2, T = x3, and WT = x4, so that N = x1 + x2 + x3 + x4, so that the
model (25) is re-written in the form:

dx1

dt
= f1 = Π −

βT (x3 + ηtx4)x1

x1 + x2 + x3 + x4
− µx1,

dx2

dt
= f2 = l

βT (x3 + ηtx4)x1

x1 + x2 + x3 + x4
+ ρx4 −

βT ηrx3x2

x1 + x2 + x3 + x4
−K3x2,

dx3

dt
= f3 = (1 − l)

βT (x3 + ηtx4)x1

x1 + x2 + x3 + x4
+

βT ηrx3x2

x1 + x2 + x3 + x4
+ αx2 −K4x3,

dx4

dt
= f4 = τ3x3 −K10x4.

(28)

The Jacobian of the system (28), at the DFE (26), is given by

J(E0t) =









−µ 0 −βT −βT ηT

0 −K3 lβT lβTηT + ρ
0 α (1 − l)βT −K4 (1 − l)βT ηT

0 0 τ3 −K10









,

from which it can also be shown that

RT =
βT [(1 − l)K3(K10 + ηT τ3) + lα(K10 + ηT τ3)]

K3K4K10 − αρτ3
. (29)

Suppose βT is chosen as a bifurcation parameter. Solving (29) for RT = 1, gives

βT = β∗ =
K3K4K10 − αρτ3

(1 − l)K3(K10 + ηT τ3) + lα(K10 + ηT τ3)
.

Eigenvectors of J(E0t)

∣

∣

∣

∣

βT =β∗

It can be shown that the Jacobian of (28) at βT = β∗ (denoted by J(E0t)

∣

∣

∣

∣

βT =β∗

=

Jβ∗) has a right eigenvector (corresponding to the zero eigenvalue) given by w =
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[w1, w2, w3, w4]
T , where

w1 =
−β∗w3 − β∗ηtw4

µ
,

w2 =
lβ∗w3 + (lβ∗ηT + ρ)w4

K3
,

w3 = w3,

w4 =
τ3w3

K10
.

Further, the Jacobian Jβ∗ has a left eigenvector (associated with the zero eigen-
value) given by v = [v1, v2, v3, v4], where

v1 = 0,

v2 =
α

K3
v3,

v3 = v3,

v4 =
(lβ∗ηT + ρ)v2 + (1 − l)β∗ηtv3

K10
.

Theorem 2 will be used to establish the presence of backward bifurcation in the
TB-only model (25).

Computations of a and b :

For the system (28), the associated non-zero partial derivatives of F (at the DFE)
are given by

∂2f2
∂x2∂x3

= −
β∗µ

Π
(l + ηr),

∂2f2
∂x2∂x4

= −
lβ∗ηTµ

Π
,
∂2f2
∂x2

3

= −
2lβ∗µ

Π
,

∂2f2
∂x3∂x4

= −
lβ∗µ

Π
(1 + ηT ),

∂2f2
∂x2

4

=
−2lβ∗ηTµ

Π
,

∂2f3
∂x2∂x3

= −
β∗µ

Π
(1 − l− ηr),

∂2f3
∂x2∂x4

= −
(1 − l)β∗ηTµ

Π
,

∂2f3
∂x2

3

= −
2(1 − l)β∗µ

Π
,

∂2f3
∂x3∂x4

= −
(1 − l)β∗µ

Π
(1 + ηT ),

∂2f3
∂x2

4

=
−2(1 − l)β∗ηTµ

Π
.

It follows from the above expressions that

a = v2

4
∑

i,j=1

wiwj

∂2f2
∂xi∂xj

+ v3

4
∑

i,j=1

wiwj

∂2f3
∂xi∂xj

,

= −
2β∗µ

Π
[A11l +A12(1 − l) − (v3 − v2)w2w3ηr],

from which it can be shown that a > 0 iff

w2w3ηr(v3 − v2) > A11l +A12(1 − l),

where,

A11 = v2(w2 + w3 + w4)(w3 + w4ηT ), A12 =
v3A11

v2
.
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Hence, a > 0 whenever (note that v3 − v2 = µv3 > 0)

ηr >
A11l +A12(1 − l)

w2w3(v3 − v2)
.

For the sign of b, it can be shown that the associated non-vanishing partial
derivatives of F are

∂2f2
∂x3∂β∗

= l,
∂2f2
∂x4∂β∗

= lηT ,
∂2f3
∂x3∂β∗

= 1 − l,
∂2f3
∂x4∂β∗

= (1 − l)ηT ,

so that,

b = v2

4
∑

i=1

wi

∂2f2
∂xi∂β∗

+ v3

4
∑

i=1

wi

∂2f3
∂xi∂β∗

= (w3 + w4ηT )[v2l + v3(1 − l)] > 0.

Thus, we have established the following result:

Theorem 3.9. If

ηr >
A11l +A12(1 − l)

w2w3(v3 − v2)
,

with v3 − v2 > 0, then the TB-only model (28) undergoes a backward bifurcation at
RT = 1.

It should be noted that the inequality in Theorem 4 does not hold if ηr = 0 (since
the right hand side of the inequality is positive). Thus, the backward bifurcation
phenomenon of the TB-only model (28) will not occur if ηr = 0 (i.e., the TB-
only model will not undergo backward bifurcation in the absence of exogenous
re-infection).

Numerical simulations are carried out, using an appropriate set of parameter val-
ues (satisfying the inequality in Theorem 4), to illustrate the backward bifurcation
phenomenon of model (28) (see Figure 2).

It should be emphasized that these parameter values are chosen only to illus-
trate the backward bifurcation phenomenon of model (28), and may not all be
realistic epidemiologically. With the chosen set of parameter values, the ratio
A11l +A12(1 − l)

w2w3(v3 − v2)
= 2. Thus, the inequality in Theorem 4 will hold by choos-

ing a value of ηr > 2, such as ηr = 3. Thus, it follows from Theorem 4 (and Figure
2) that the additional features l = 1 (i.e., all newly-infected individuals have latent
TB) and ηT = 0 (i.e., treated people do not transmit the disease) do not affect the
backward bifurcation property of the TB disease (since, the inequality in Theorem
4 still holds if l = 1 and ηT = 0 with ηr = 3).

In summary, unlike the HIV-only model (9), the TB-only model (28) under-
goes backward bifurcation, where multiple stable equilibria co-exist when RT < 1.
Backward bifurcations have been observed in a number of epidemiological settings,
such as those associated with behavioral responses to perceived risks [10, 15], multi-
group models [7, 8, 20, 31], vaccination models [2, 4, 11, 22, 32], disease treatment
[34] and models of the transmission of TB with exogenous re-infection [9, 12] and
HTLV-I [13].

Having analysed the dynamics of the two sub-models, the full HIV-TB model
(7) will now be anlysed.
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(A) (B)

(C) (D)

Figure 2. Simulations of the TB-only model (25). Backward bi-
furcation diagrams for (A) susceptible, (B) active TB, (C) latent
TB and (D) treated TB classes using β = 0.56, ηT = 0.001, α =
0.03, µ = 0.03, ρ = 0.1, δt = 0.02, τ3 = 0.5, l = 0.6 and ηr = 3.

4. Analysis of the full model. Consider, now, the full model (7), with DFE
given by

E1 = (S∗, H∗

1 , H
∗

2 , L
∗, T ∗, I1∗

HL, I
1∗
HT , I

2∗
HL, I

2∗
HT ,W

∗

H ,W
∗

T ,W
H∗

HL,W
H∗

HT ,W
T∗

HT ,W
M∗

HT )

= (Π/µ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and the associated matrices F and V, are given, respectively, by

F =

[

F1 F2

010×8 010×6

]

,

where,

F1 =









βH βHη2 0 0 βH βHηD βHc2η2 βHc2η2ηD

0 0 0 0 0 0 0 0
0 0 0 lβT 0 lβT 0 lβT

0 0 0 (1 − l)βT 0 (1 − l)βT 0 (1 − l)βT









,

F2 =









βHηH 0 βHηH βHηH βH βHηH

0 0 0 0 0 0
0 lβT ηT 0 lβT lβTηT lβT ηT

0 (1 − l)βT ηT 0 (1 − l)βT (1 − l)βT ηT (1 − l)βT ηT









,
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and,

V =

[

V1 V2

V3 V4

]

,

with,

V1 =

















K1 0 0 0 0 0
−σ K2 0 0 0 0
0 0 K3 0 0 0
0 0 −α K4 0 0
0 0 0 0 K5 0
0 0 0 0 −θ1α K6

















,

V2 =

















0 0 0 0 0 0 0 0
0 0 −θtσ 0 0 0 0 0
0 0 0 −ρ 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

















,

V3 =

























0 0 0 0 −(1 − ξ)γHT 0
0 0 0 0 −ξγHT −η1σ

−τ1 −τ2 0 0 0 0
0 0 0 −τ3 0 0
0 0 0 0 −τ1 0
0 0 0 0 0 −τ1
0 0 0 0 0 −τ3
0 0 0 0 0 0

























,

and

V4 =

























K7 0 0 0 −θtσ 0 −σT −σHT

−θ2α K8 0 0 0 −σH 0 0
0 0 K9 0 0 0 0 0
0 0 0 K10 0 0 0 0

−τ2 0 0 0 K11 0 0 0
0 −τ2 0 0 −θ1α K12 0 0
0 −τ3 0 0 0 0 K13 0
0 0 0 0 0 −τ3 −τ2 K14

























.

Here, it is shown that the associated reproduction number is given by,

Rc = max{RH ,RT },

where, RH and RT are as defined before. Using Theorem 2 in [33], the following
result is established.
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Lemma 4.1. The DFE of the full HIV-TB model (7), given by E1, is LAS if
Rc < 1, and unstable if Rc > 1.

It can be shown, using similar approach as in Section 3.2.3, that the full model
(7) will exhibit backward bifurcation for Rc < 1.

5. Simulations. The full model (7) is now simulated, using the parameter esti-
mates in Table 2 (unless otherwise stated), to assess the potential impact of treat-
ment strategies against HIV and TB, as follows.
Table 2: Parameter Values

Parameter Nominal value References

Π 50,000
µ 0.02
βH , βT variable
θ1, θ2, θt 6, 6, 0.01
ρ 0.1 [9]
α 0.03
σ 1/33 [9]
δH , δT , δHT 0.01, 0.02, 0.03
l 0.7
τ1, τ2, τ3 variable
η1, ηD, ηr, η2, ηT , ηH 1.2, 1.2, 1, 1.2, 0.001, 0.001
c2 1
ψ1, ψ2 1.2, 1.4
ω 1.4
σH , σT , σHT 0.1,0.2,1/15
γHT 0.4
ξ 0.5
φ 0.7

5.1. Threshold simulations. Simulations are carried out to monitor the dynam-
ics of the full model (7) for various values of the associated reproduction thresholds
(RH and RT ). For the case when RH < 1 and RT < 1, (that is, Rc < 1), the
solution profiles can converge to the DFE or the EEP owing to the phenomenon of
backward bifurcation in the full model (7). Figure 3 shows convergence of the so-
lutions to the DFE for Rc < 1 (in line with Lemma 6), whereas Figure 4 illustrates
the backward bifurcation phenomenon of the full model (7), with some solutions
converging to an EEP and others to a DFE when the threshold quantity Rc is less
than unity. Note that, for the set of parameter values used, the simulations have
to be run for long time periods (in hundreds of years) to generate the backward
bifurcation pictures depicted in Figure 4.

5.2. Evaluation of treatment strategies. As stated earlier, the paper offers four
main treatment strategies namely the, (i) HIV-only strategy, (ii) TB-only strategy,
(iii) mixed-only strategy, and (iv) universal strategy. The full model (7) is now
simulated (for a four-year period) to assess these strategies as follows:
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Figure 3. Simulations of the full model (7). Total infectives as
a function of time using different initial conditions, with RH =
0.29,RT = 0.50; so that Rc = 0.50. (A) HIV cases, (B) TB cases,
and (C) HIV-TB cases. All other parameters as in Table 2.
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Figure 4. Simulations of the full model (7). Backward bifurcation
diagrams using different initial conditions and parameter values
such that RH = 0.87,RT = 0.96; so that Rc = 0.96. (A) HIV
cases, (B) TB cases, and (C) HIV-TB cases. All other parameters
as in Table 2.

5.2.1. HIV-only treatment strategy. Here, simulations are carried out to monitor
the impact of treating for HIV only. That is, singly-infected individuals in the H1
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and H2 classes are treated at the rates τ1 and τ2, respectively; while dually-infected
individuals are treated for HIV at the rate τ2 (i.e., individuals infected with TB,
either singly or dually, are not treated for TB, so that τ3 = 0). Using a modest rate
of τ1 = τ2 = 0.5, the results, depicted in Figure 5A, show a significant reduction
of the number of new cases of HIV as well as those of the mixed HIV-TB infection
(although more new cases of HIV are prevented than those of the mixed infection).
Similar trends were observed when the treatment rate was increased by 10-fold
(Figure 5B).
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Figure 5. Simulations of the full model (7). Cumulative new
cases averted using HIV-only treatment strategy with (A) τ1 =
τ2 = 0.5 and τ3 = 0 and (B) τ1 = τ2 = 5 and τ3 = 0. All other
parameters as in Table 2.

5.2.2. TB-only treatment strategy. In these simulations, only individuals infected
with TB are treated for TB. That is, only individuals in the active TB classes (i.e.,
those in T, I1

HT , I
2
HT , and WH

HT ) are treated (at the rate τ3) and those with HIV
or latent TB are not treated (i.e., τ1 = τ2 = 0). Figure 6A shows a significant
reduction of the cumulative number of new TB cases followed by that of the mixed
infection. It should be stated that the number of TB cases prevented (Figure
6A) exceeds the corresponding number of HIV cases prevented under the HIV-only
treatment strategy (Figure 5A). However, more cases of the mixed infection were
prevented in the HIV-only treatment strategy than in this (TB-only) treatment
scenario. Similar trends were observed when the treatment rate is increased by
10-fold (Figure 6B).

5.2.3. Mixed-only treatment strategy. In these simulations, only individuals with
the mixed infection are treated for both diseases (HIV infected individuals are
treated at the rates τ1 and τ2; and those with active TB are treated at the rate τ3).
That is, we set τ1 = τ2 = τ3 = 0 in the H1, H2, T,WH and WT classes but use these
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Figure 6. Simulations of the full model (7). Cumulative new
cases averted using TB-only treatment strategy with (A) τ3 =
0.5, τ1 = τ2 = 0 and (B) τ3 = 5 and τ1 = τ2 = 0. All other
parameters as in Table 2.

rates in each of the mixed infection classes. The results obtained for low treatment
rate, depicted in Figure 7A, show more reductions of cumulative new cases of HIV
followed by those of the mixed infection and then TB. However, this strategy saves
far fewer cases than either the HIV-only or TB-only treatment strategy. Increasing
the treatment rate by 10-fold shows more savings of the cumulative new cases of
TB followed by those of HIV and then the mixed infection (Figure 7B). It should be
noted that although the mixed-only strategy saves fewer cumulative cases for low
treatment rates (in comparison to the other two strategies discussed above), the
mixed-only strategies compares reasonably well with the other (aforementioned)
two strategies when the treatment rate is high enough (Figure 7B).

5.2.4. Universal treatment strategy. Here, all infected individuals, either those with
TB-only, HIV-only or mixed infection-only, are treated for each of the diseases
they have. Figure 8A shows that, on average (within the four year period), more
cumulative new cases of TB are prevented followed by those of HIV and then the
mixed infection if the treatment rate is low (although the number of cases of HIV
and the mixed infection prevented are almost identical). Figure 8B shows similar
trends when the treatment rate is increased by 10-fold. It is evident from Figure
8B that although the universal strategy saves the same cumulative number of new
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Figure 7. Simulations of the full model (7). Cumulative new
cases averted using mixed-only treatment strategy with (A) τ1 =
τ2 = τ3 = 0.5 and (B) τ1 = τ2 = τ3 = 5. All other parameters as
in Table 2.

cases of HIV and TB as the HIV-only and TB-only strategies, the universal strategy
saves more mixed infections than any of the other three strategies.

Conclusions. A realistic deterministic model for the transmission dynamics of
HIV and TB in a population is designed and rigorously analysed. The HIV-only
model is shown to have a globally-asymptotically stable disease-free equilibrium
whenever its associated reproduction number is less than unity; and has a unique
and locally-asymptotically stable endemic equilibrium when the number exceeds
unity. On the hand, it was shown (using Centre Manifold theory) that the model
with TB infection only undergoes the phenomenon of backward bifurcation, when
the associated reproduction number is less than unity. The full model has a disease-
free equilibrium which is locally-asymptotically stable whenever the maximum of
the reproduction numbers of the two sub-models described above is less than unity.
Numerical simulations show that the full model, like the TB-only sub-model, also
undergoes backward bifurcation. These results have important public health im-
plication, as they govern the elimination and/or persistence of the two diseases
in a community. By analyzing the various associated reproduction numbers, it
was shown that the targeted use of ARVs for individuals with or without AIDS
symptoms can lead to HIV elimination in the community if the (average) relative
infectiousness of the individuals treated, in comparison to untreated HIV-infected
individuals, does not exceed a certain critical value.

Numerical simulations of the full model were carried out to assess the impact of
the associated (four) treatment strategies. Some of main epidemiological findings
of this study include:



172 O. SHAROMI, C.N. PODDER, A.B. GUMEL AND B. SONG

(A)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

C
um

ul
at

iv
e 

ne
w

 c
as

es
 a

ve
rt

ed

Time (years)

TB cases

HIV cases

HIV−TB cases

(B)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8
x 10

4

C
um

ul
at

iv
e 

ne
w

 c
as

es
 a

ve
rt

ed

Time (years)

HIV cases

HIV−TB cases

TB cases

Figure 8. Simulations of the full model (7). Cumulative new
cases averted using the universal treatment strategy with (A) τ1 =
τ2 = τ3 = 0.5 and (B) τ1 = τ2 = τ3 = 5. All other parameters as
in Table 2.

(i) Treating any of the two diseases alone prevents significant number of cumu-
lative new cases of the disease being treated as well as that of the mixed
infection (and more cumulative new cases are prevented for higher treatment
rates);

(ii) The HIV-only strategy prevents more cumulative new cases of the mixed
infection than the TB-only strategy;

(iii) For low treatment rates, the mixed-only strategy saves the least cumulative
new cases of HIV, TB and the mixed infection in comparison to the other
strategies. That is, if resources are low and the objective is to minimize cases
of mixed infection, than such resources should be targeted to treating either
HIV or TB but not the mixed HIV-TB infection;

(iv) For high treatment rates, the mixed-only strategy compares reasonably well
(in terms of cumulative new cases averted) with the other strategies;

(v) The universal strategy saves more cumulative new cases of the mixed infection
than any of the other strategies.

Overall, this study shows that the prospects of effectively controlling the spread
of HIV and TB in a community, using effective treatment for both diseases, is
bright.
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