Loading [Contrib]/a11y/accessibility-menu.js

Estimation of invasive pneumococcal disease dynamics parameters and the impact of conjugate vaccination in Australia

  • Received: 01 August 2007 Accepted: 29 June 2018 Published: 01 January 2008
  • MSC : Primary: 92D30, 49N45; Secondary: 62P10.

  • Pneumococcal diseases, or infections from the etiological agent Streptococcus pneumoniae, have long been a major cause of morbidity and mortality worldwide. Recent advances in the development of vaccines for these infections have raised questions concerning their widespread and/or long-term use. In this work, we use surveillance data collected by the Australian National Notifiable Diseases Surveillance system to estimate parameters in a mathemat- ical model of pneumococcal infection dynamics in a population with partial vaccination. The parameters obtained are of particular interest as they are not typically available in reported literature or measurable. The calibrated model is then used to assess the impact of the recent federally funded program that provides pneumococcal vaccines to large risk groups. The results presented here suggest the state of these infections may be changing in response to the programs, and warrants close quantitative monitoring.

    Citation: Karyn L. Sutton, H.T. Banks, Carlos Castillo-Chávez. Estimation of invasive pneumococcal disease dynamics parameters and the impact of conjugate vaccination in Australia[J]. Mathematical Biosciences and Engineering, 2008, 5(1): 175-204. doi: 10.3934/mbe.2008.5.175

    Related Papers:

    [1] Hao Wang, Yang Kuang . Alternative models for cyclic lemming dynamics. Mathematical Biosciences and Engineering, 2007, 4(1): 85-99. doi: 10.3934/mbe.2007.4.85
    [2] Georgi Kapitanov, Christina Alvey, Katia Vogt-Geisse, Zhilan Feng . An age-structured model for the coupled dynamics of HIV and HSV-2. Mathematical Biosciences and Engineering, 2015, 12(4): 803-840. doi: 10.3934/mbe.2015.12.803
    [3] Ahmed Alshehri, Saif Ullah . A numerical study of COVID-19 epidemic model with vaccination and diffusion. Mathematical Biosciences and Engineering, 2023, 20(3): 4643-4672. doi: 10.3934/mbe.2023215
    [4] Anthony Morciglio, R. K. P. Zia, James M. Hyman, Yi Jiang . Understanding the oscillations of an epidemic due to vaccine hesitancy. Mathematical Biosciences and Engineering, 2024, 21(8): 6829-6846. doi: 10.3934/mbe.2024299
    [5] Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445
    [6] Adam Sullivan, Folashade Agusto, Sharon Bewick, Chunlei Su, Suzanne Lenhart, Xiaopeng Zhao . A mathematical model for within-host Toxoplasma gondii invasion dynamics. Mathematical Biosciences and Engineering, 2012, 9(3): 647-662. doi: 10.3934/mbe.2012.9.647
    [7] Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky . Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences and Engineering, 2006, 3(3): 527-544. doi: 10.3934/mbe.2006.3.527
    [8] Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045
    [9] Najat Ziyadi . A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences and Engineering, 2017, 14(1): 339-358. doi: 10.3934/mbe.2017022
    [10] Kwadwo Antwi-Fordjour, Folashade B. Agusto, Isabella Kemajou-Brown . Modeling the effects of lethal and non-lethal predation on the dynamics of tick-borne disease. Mathematical Biosciences and Engineering, 2025, 22(6): 1428-1463. doi: 10.3934/mbe.2025054
  • Pneumococcal diseases, or infections from the etiological agent Streptococcus pneumoniae, have long been a major cause of morbidity and mortality worldwide. Recent advances in the development of vaccines for these infections have raised questions concerning their widespread and/or long-term use. In this work, we use surveillance data collected by the Australian National Notifiable Diseases Surveillance system to estimate parameters in a mathemat- ical model of pneumococcal infection dynamics in a population with partial vaccination. The parameters obtained are of particular interest as they are not typically available in reported literature or measurable. The calibrated model is then used to assess the impact of the recent federally funded program that provides pneumococcal vaccines to large risk groups. The results presented here suggest the state of these infections may be changing in response to the programs, and warrants close quantitative monitoring.


  • This article has been cited by:

    1. A. Løchen, R.M. Anderson, Dynamic transmission models and economic evaluations of pneumococcal conjugate vaccines: a quality appraisal and limitations, 2020, 26, 1198743X, 60, 10.1016/j.cmi.2019.04.026
    2. Fulgensia Kamugisha Mbabazi, Joseph Y. T. Mugisha, Mark Kimathi, Hopf-Bifurcation Analysis of Pneumococcal Pneumonia with Time Delays, 2019, 2019, 1085-3375, 1, 10.1155/2019/3757036
    3. H. Thomas Banks, Marie Davidian, John R. Samuels, Karyn L. Sutton, 2009, Chapter 11, 978-90-481-2312-4, 249, 10.1007/978-90-481-2313-1_11
    4. David Greenhalgh, Karen E. Lamb, Chris Robertson, A mathematical model for the spread ofStrepotococcus pneumoniaewith transmission dependent on serotype, 2012, 6, 1751-3758, 72, 10.1080/17513758.2011.592548
    5. Baojun Song, Zhilan Feng, Gerardo Chowell, From the guest editors, 2013, 10, 1551-0018, 10.3934/mbe.2013.10.5i
    6. Matthieu Domenech de Cellès, Margarita Pons-Salort, Emmanuelle Varon, Marie-Anne Vibet, Caroline Ligier, Véronique Letort, Lulla Opatowski, Didier Guillemot, Interaction of Vaccination and Reduction of Antibiotic Use Drives Unexpected Increase of Pneumococcal Meningitis, 2015, 5, 2045-2322, 10.1038/srep11293
    7. Alessia Melegaro, Yoon Hong Choi, Robert George, W John Edmunds, Elizabeth Miller, Nigel J Gay, Dynamic models of pneumococcal carriage and the impact of the Heptavalent Pneumococcal Conjugate Vaccine on invasive pneumococcal disease, 2010, 10, 1471-2334, 10.1186/1471-2334-10-90
    8. Alessandra Løchen, Roy M. Anderson, Dynamic transmission models and economic evaluations of pneumococcal conjugate vaccines: a quality appraisal and limitations, 2021, 27, 1198743X, 1546, 10.1016/j.cmi.2021.07.002
    9. Cole Butler, Peter Stechlinski, Modeling Opioid Abuse: A Case Study of the Opioid Crisis in New England, 2023, 85, 0092-8240, 10.1007/s11538-023-01148-1
    10. Rachel J. Oidtman, Giulio Meleleo, Oluwaseun Sharomi, Ian R. Matthews, Dionysios Ntais, Robert B. Nachbar, Tufail M. Malik, Kevin M. Bakker, Modelling the Epidemiological Impact of Different Adult Pneumococcal Vaccination Strategies in the United Kingdom, 2025, 2193-8229, 10.1007/s40121-025-01111-8
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3014) PDF downloads(457) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog