Stochastic epidemic models with a backward bifurcation

  • Received: 01 March 2006 Accepted: 29 June 2018 Published: 01 May 2006
  • MSC : 92D30.

  • Two new stochastic epidemic models, a continuous-time Markov chain model and a stochastic differential equation model, are formulated. These are based on a deterministic model that includes vaccination and is applicable to pertussis. For some parameter values, the deterministic model exhibits a backward bifurcation if the vaccine is imperfect. Thus a region of bistability exists in a subset of parameter space. The dynamics of the stochastic epidemic models are investigated in this region of bistability, and compared with those of the deterministic model. In this region the probability distribution associated with the infective population exhibits bimodality with one mode at the disease-free equilibrium and the other at the larger endemic equilibrium. For population sizes N1000, the deterministic and stochastic models agree, but for small population sizes the stochastic models indicate that the backward bifurcation may have little effect on the disease dynamics.

    Citation: Linda J. S. Allen, P. van den Driessche. Stochastic epidemic models with a backward bifurcation[J]. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445

    Related Papers:

    [1] ZongWang, Qimin Zhang, Xining Li . Markovian switching for near-optimal control of a stochastic SIV epidemic model. Mathematical Biosciences and Engineering, 2019, 16(3): 1348-1375. doi: 10.3934/mbe.2019066
    [2] Damilola Olabode, Jordan Culp, Allison Fisher, Angela Tower, Dylan Hull-Nye, Xueying Wang . Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China. Mathematical Biosciences and Engineering, 2021, 18(1): 950-967. doi: 10.3934/mbe.2021050
    [3] Linda J. S. Allen, Vrushali A. Bokil . Stochastic models for competing species with a shared pathogen. Mathematical Biosciences and Engineering, 2012, 9(3): 461-485. doi: 10.3934/mbe.2012.9.461
    [4] Thomas Torku, Abdul Khaliq, Fathalla Rihan . SEINN: A deep learning algorithm for the stochastic epidemic model. Mathematical Biosciences and Engineering, 2023, 20(9): 16330-16361. doi: 10.3934/mbe.2023729
    [5] Edward J. Allen . Derivation and computation of discrete-delayand continuous-delay SDEs in mathematical biology. Mathematical Biosciences and Engineering, 2014, 11(3): 403-425. doi: 10.3934/mbe.2014.11.403
    [6] Ling Xue, Caterina Scoglio . Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences and Engineering, 2015, 12(3): 565-584. doi: 10.3934/mbe.2015.12.565
    [7] A Othman Almatroud, Noureddine Djenina, Adel Ouannas, Giuseppe Grassi, M Mossa Al-sawalha . A novel discrete-time COVID-19 epidemic model including the compartment of vaccinated individuals. Mathematical Biosciences and Engineering, 2022, 19(12): 12387-12404. doi: 10.3934/mbe.2022578
    [8] Jinna Lu, Xiaoguang Zhang . Bifurcation analysis of a pair-wise epidemic model on adaptive networks. Mathematical Biosciences and Engineering, 2019, 16(4): 2973-2989. doi: 10.3934/mbe.2019147
    [9] Tingting Xue, Xiaolin Fan, Zhiguo Chang . Dynamics of a stochastic SIRS epidemic model with standard incidence and vaccination. Mathematical Biosciences and Engineering, 2022, 19(10): 10618-10636. doi: 10.3934/mbe.2022496
    [10] Damilola Olabode, Libin Rong, Xueying Wang . Stochastic investigation of HIV infection and the emergence of drug resistance. Mathematical Biosciences and Engineering, 2022, 19(2): 1174-1194. doi: 10.3934/mbe.2022054
  • Two new stochastic epidemic models, a continuous-time Markov chain model and a stochastic differential equation model, are formulated. These are based on a deterministic model that includes vaccination and is applicable to pertussis. For some parameter values, the deterministic model exhibits a backward bifurcation if the vaccine is imperfect. Thus a region of bistability exists in a subset of parameter space. The dynamics of the stochastic epidemic models are investigated in this region of bistability, and compared with those of the deterministic model. In this region the probability distribution associated with the infective population exhibits bimodality with one mode at the disease-free equilibrium and the other at the larger endemic equilibrium. For population sizes N1000, the deterministic and stochastic models agree, but for small population sizes the stochastic models indicate that the backward bifurcation may have little effect on the disease dynamics.


  • This article has been cited by:

    1. M Simões, M.M Telo da Gama, A Nunes, Stochastic fluctuations in epidemics on networks, 2008, 5, 1742-5689, 555, 10.1098/rsif.2007.1206
    2. Masaaki Ishikawa, Stability Analyses of the Stochastic Delayed Infectious Models with Reinfection, 2019, 32, 1342-5668, 1, 10.5687/iscie.32.1
    3. Lin Zhu, Tiansi Zhang, A Stochastic SIVS Epidemic Model Based on Birth and Death Process, 2016, 04, 2327-4352, 1837, 10.4236/jamp.2016.49186
    4. Priscilla E. Greenwood, Luis F. Gordillo, 2009, Chapter 2, 978-90-481-2312-4, 31, 10.1007/978-90-481-2313-1_2
    5. Masaaki Ishikawa, Stochastic Optimal Control of an SIR Epidemic Model with Vaccination, 2012, 2012, 2188-4730, 57, 10.5687/sss.2012.57
    6. Edward J. Allen, Linda J. S. Allen, Armando Arciniega, Priscilla E. Greenwood, Construction of Equivalent Stochastic Differential Equation Models, 2008, 26, 0736-2994, 274, 10.1080/07362990701857129
    7. Masaaki Ishikawa, On the Stability Analysis of the Stochastic Infectious Model with Distributed Time Delay, 2018, 31, 1342-5668, 129, 10.5687/iscie.31.129
    8. D. Ndanguza, I. S. Mbalawata, J. P. Nsabimana, Analysis of SDEs Applied to SEIR Epidemic Models by Extended Kalman Filter Method, 2016, 07, 2152-7385, 2195, 10.4236/am.2016.717175
    9. Martin Griffiths, David Greenhalgh, The probability of extinction in a bovine respiratory syncytial virus epidemic model, 2011, 231, 00255564, 144, 10.1016/j.mbs.2011.02.011
    10. Masaaki Ishikawa, Optimal Vaccination Problems for the Stochastic SIR Model with Saturated Treatment, 2013, 2013, 2188-4730, 203, 10.5687/sss.2013.203
    11. David Greenhalgh, Martin Griffiths, Dynamic phenomena arising from an extended Core Group model, 2009, 221, 00255564, 136, 10.1016/j.mbs.2009.08.003
    12. SOPHIA R.-J. JANG, BACKWARD BIFURCATION IN A DISCRETE SIS MODEL WITH VACCINATION, 2008, 16, 0218-3390, 479, 10.1142/S0218339008002630
    13. Davood Rostamy, Ehsan Mottaghi, Forward and Backward Bifurcation in a Fractional-Order SIR Epidemic Model with Vaccination, 2018, 42, 1028-6276, 663, 10.1007/s40995-018-0519-7
    14. Davood Rostamy, Ehsan Mottaghi, Stability analysis of a fractional-order epidemics model with multiple equilibriums, 2016, 2016, 1687-1847, 10.1186/s13662-016-0905-4
    15. Ariel Cintrón-Arias, Fabio Sánchez, Xiaohong Wang, Carlos Castillo-Chavez, Dennis M. Gorman, Paul J. Gruenewald, 2009, Chapter 14, 978-90-481-2312-4, 343, 10.1007/978-90-481-2313-1_14
    16. Yves Emvudu, Danhrée Bongor, Rodoumta Koïna, Mathematical analysis of HIV/AIDS stochastic dynamic models, 2016, 40, 0307904X, 9131, 10.1016/j.apm.2016.05.007
    17. Masaaki Ishikawa, On the Simulation Analysis in the Stochastic Endemic Model with Vaccination, 2010, 2010, 2188-4730, 134, 10.5687/sss.2010.134
    18. A. Corberán-Vallet, F. J. Santonja, M. Jornet-Sanz, R.-J. Villanueva, Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model, 2018, 2018, 1076-2787, 1, 10.1155/2018/3060368
    19. Chunjuan Zhu, Guangzhao Zeng, Yufeng Sun, The Threshold of a Stochastic SIRS Model with Vertical Transmission and Saturated Incidence, 2017, 2017, 1026-0226, 1, 10.1155/2017/5620301
    20. Masaaki Ishikawa, Stability Analysis of the Stochastic Delayed Infectious Model with Vaccination, 2018, 31, 1342-5668, 1, 10.5687/iscie.31.1
    21. Ganna Rozhnova, Ana Nunes, Modelling the long-term dynamics of pre-vaccination pertussis, 2012, 9, 1742-5689, 2959, 10.1098/rsif.2012.0432
    22. Masaaki Ishikawa, Mathematical Analysis of the Stochastic Delayed Epidemic Models with Reinfection, 2018, 2018, 2188-4730, 147, 10.5687/sss.2018.147
    23. Adnan Khan, Muhammad Hassan, Mudassar Imran, The Effects of a Backward Bifurcation on a Continuous Time Markov Chain Model for the Transmission Dynamics of Single Strain Dengue Virus, 2013, 04, 2152-7385, 663, 10.4236/am.2013.44091
    24. Yongli Cai, Yun Kang, Malay Banerjee, Weiming Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, 2015, 259, 00220396, 7463, 10.1016/j.jde.2015.08.024
    25. Théo Michelot, Richard Glennie, Catriona Harris, Len Thomas, Varying-Coefficient Stochastic Differential Equations with Applications in Ecology, 2021, 1085-7117, 10.1007/s13253-021-00450-6
    26. Ramziya Rifhat, Zhidong Teng, Chunxia Wang, Extinction and persistence of a stochastic SIRV epidemic model with nonlinear incidence rate, 2021, 2021, 1687-1847, 10.1186/s13662-021-03347-3
    27. Baojun Song, Basic reinfection number and backward bifurcation, 2021, 18, 1551-0018, 8064, 10.3934/mbe.2021400
    28. Adnan Khan, Muhammad Hassan, Mudassar Imran, Estimating the basic reproduction number for single-strain dengue fever epidemics, 2014, 3, 2049-9957, 10.1186/2049-9957-3-12
    29. Julien Arino, Evan Milliken, Bistability in deterministic and stochastic SLIAR-type models with imperfect and waning vaccine protection, 2022, 84, 0303-6812, 10.1007/s00285-022-01765-9
    30. Tarun Kumar Martheswaran, Hamida Hamdi, Amal Al-Barty, Abeer Abu Zaid, Biswadeep Das, Prediction of dengue fever outbreaks using climate variability and Markov chain Monte Carlo techniques in a stochastic susceptible-infected-removed model, 2022, 12, 2045-2322, 10.1038/s41598-022-09489-y
    31. Margaritis Kostoglou, Thodoris Karapantsios, Maria Petala, Emmanuel Roilides, Chrysostomos I. Dovas, Anna Papa, Simeon Metallidis, Efstratios Stylianidis, Theodoros Lytras, Dimitrios Paraskevis, Anastasia Koutsolioutsou-Benaki, Georgios Panagiotakopoulos, Sotirios Tsiodras, Nikolaos Papaioannou, The COVID-19 pandemic as inspiration to reconsider epidemic models: A novel approach to spatially homogeneous epidemic spread modeling, 2022, 19, 1551-0018, 9853, 10.3934/mbe.2022459
    32. Anwarud Din, Yongjin Li, Mathematical analysis of a new nonlinear stochastic hepatitis B epidemic model with vaccination effect and a case study, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-02748-x
    33. Masaaki Ishikawa, On the Mathematical Analysis for the Stochastic Infectious Model under Subclinical Infections and Vaccination, 2022, 2022, 2188-4730, 1, 10.5687/sss.2022.1
    34. Cosmas Muhumuza, Fred Mayambala, Joseph Y. T. Mugisha, A Stochastic Model of Fowl Pox Disease: Estimating the Probability of Disease Outbreak, 2022, 8, 2349-5103, 10.1007/s40819-022-01442-x
    35. Masaaki Ishikawa, On the Stability Analysis of the Stochastic Infectious Model under Subclinical Infections, 2021, 2021, 2188-4730, 28, 10.5687/sss.2021.28
    36. Masaaki Ishikawa, On the Stability Analysis for the Stochastic Infectious Model under Subclinical Infections and Vaccination with Waning Immunity, 2023, 36, 1342-5668, 1, 10.5687/iscie.36.1
    37. Masaaki Ishikawa, On the Mathematical Analysis of the Stochastic Age-structured Infectious Model, 2023, 2023, 2188-4730, 28, 10.5687/sss.2023.28
    38. Anwarud Din, Yassine Sabbar, Peng Wu, A novel stochastic Hepatitis B virus epidemic model with second-order multiplicative α-stable noise and real data, 2024, 44, 0252-9602, 752, 10.1007/s10473-024-0220-1
    39. Jenny Huang, Raphaël Morsomme, David Dunson, Jason Xu, Detecting changes in the transmission rate of a stochastic epidemic model, 2024, 0277-6715, 10.1002/sim.10050
    40. Prince Achankunju, Saroj Kumar Dash, Parameter estimation for networked SIR models with stochastic perturbations using JEKF: a study using COVID-19 daily data from Indian states, 2024, 12, 2164-2583, 10.1080/21642583.2024.2436662
    41. Prince Achankunju, Saroj Kumar Dash, Joint extented Kalman filter-based parameter estimation in networked SEIR models with stochastic variability: analysis using COVID-19 daily data from southern India, 2024, 0020-7721, 1, 10.1080/00207721.2024.2435570
    42. F. Luhanda, M.M. Mayengo, J.I. Irunde, F. Chirove, Transmission dynamics of cryptosporidiosis in humans and cattle: A CTMC stochastic model integrating the role of human immune status, 2025, 11, 27731863, 100258, 10.1016/j.fraope.2025.100258
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3477) PDF downloads(725) Cited by(42)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog