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Abstract. Pneumococcal diseases, or infections from the etiological agent
Streptococcus pneumoniae, have long been a major cause of morbidity and
mortality worldwide. Recent advances in the development of vaccines for these
infections have raised questions concerning their widespread and/or long-term
use. In this work, we use surveillance data collected by the Australian National
Notifiable Diseases Surveillance system to estimate parameters in a mathemat-
ical model of pneumococcal infection dynamics in a population with partial
vaccination. The parameters obtained are of particular interest as they are not
typically available in reported literature or measurable. The calibrated model
is then used to assess the impact of the recent federally funded program that
provides pneumococcal vaccines to large risk groups. The results presented
here suggest the state of these infections may be changing in response to the
programs, and warrants close quantitative monitoring.

1. Introduction. Infections caused by Streptococcus pneumoniae, or the pneumo-
coccus, have long been a major cause of disease burden and mortality worldwide.
Most affected are children under the ages of 5 in developing countries, where it
is estimated that around 1 million die each year of pneumococcal pneumonia [40].
In more developed countries these diseases are prevalent in the young and the old,
with the elderly population commonly being affected by invasive pneumococcal dis-
eases (IPDs), commonly defined as pneumonia, meningitis, bacteremia, and sepsis.
These infections can result in case fatality, an outcome which occurs increasingly
often in older age groups [1]. While children in more developed countries are typ-
ically afflicted by less serious infections such as otitis media, or the common ear
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infection, it is one of the most common causes of childhood morbidity. In the US it
is estimated that 90% of children experience at least one episode by 2 years of age
[26, 27]. Treatment efforts, usually consisting of antibiotic regimes, not only cost
the US an estimated $2 billion per year [30], but also result in the generation of
antimicrobial resistance among common serotypes.

The pneumococcus is a gram-positive bacterium with over 90 serotypes/serogroups
identified thus far. S. pneumoniae commonly colonizes the nasopharyngeal region
of healthy adults, with estimates between 9-14 % of the population in the US and
Spain. This prevalence varies depending on factors such as crowding, age-profiles,
and previous exposure. This colonization is asymptomatic, occurs as a result of
casual contacts with other colonized individuals, and occurs for shorter periods of
time in healthy adults as opposed to young children [25, 29]. It is during this stage
that the pneumococcus may successfully establish an infection or be cleared by
one’s immune response. Thus, it is important to note that this stage always pre-
cedes infection. Most individuals are able to clear these transient colonies, although
some cannot without the aid of vaccination.

A polysaccharide vaccine protecting against 23 serotypes, which is relatively
inexpensive and safe, has been available since 1983. However, this vaccine is in-
effective in young children, who have not yet developed the ability to respond to
polysaccharide antigens. In response to this problem, the conjugate vaccine, in
which polysaccharides from 7 serotypes have been conjugated to a nontoxic pro-
tein, was developed and licensed in 2001. The implementation of this vaccine in
the US has dramatically reduced cases of invasive disease in children, as well as de-
creased rates of carriage. In addition, infections have been reduced in those who are
not vaccinated, suggesting a herd immunity effect. However, the long-term effects
of these and other vaccines currently in development are unknown. Thus, theoret-
ical population studies of the effects of vaccination on pneumococcal dynamics are
of increasing interest. Of particular interest are theoretical studies that have been
calibrated to a specific population and are therefore in a position to directly address
questions about the long-term effects of vaccines and the effects of potential control
scenarios.

In this paper we discuss a mathematical model of pneumococcal infection dy-
namics with generic vaccination. Crucial model parameters, not typically available
in relevant literature, are estimated using surveillance data collected by the Aus-
tralian government [10]. An accurate picture of the disease dynamics in the Aus-
tralian population is thereby described for January 2002 through December 2004.
As of January 1, 2005, pneumococcal vaccination for all recommended risk groups
was made publicly available and the number of infections has been dramatically
reduced. The impact of this widespread vaccination is assessed based on the cur-
rent data available, and the need for qualitative monitoring of this population is
illustrated.

2. Model. We introduce a model of Streptococcus pneumoniae infection dynamics
in which individuals are classified according to their epidemiological status. Individ-
uals may be susceptible, represented by the S class, or asymptomatically colonized
by S. pneumoniae, represented by the E class. In the event that a colony of S.
pneumoniae is able to successfully establish an infection, the individual is then
considered infected, represented by the I class.
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Figure 1. Pneumococcal infection dynamics with vaccination.

Individuals are recruited into the population at constant rate λ, with all new-
borns assumed to be susceptible. Susceptible individuals become asymptomatically
colonized through effective contacts, measured by per capita rate β, with other col-
onized individuals (E and EV ) and those with established pneumococcal infections
(I and IV ). Thus, the transfer between these two compartments occurs at rate
βS E+EV +I+IV

N where N represents the total population and is calculated by the
sum of all classes in the model, i.e., N = S +SV +E +EV +I +IV , which is not as-
sumed constant. Most individuals return to the susceptible class after colonization,
i.e., clearing the bacteria, at per capita rate α. Infection occurs in only a small
fraction of the colonized individuals, and is modeled by the rate lκE, where l < 1
is a scaling factor for the proportion of the population that is ‘at risk’ and κ is the
infection rate of this ‘at risk’ population. This linear term is a gross simplification,
as this process is actually a function of many factors, namely the health of the
individual’s immune system as well as their previous exposure to S. pneumoniae of
similar serotype. Thus it is likely that a good way to model this transfer will re-
quire further study at the ‘within host’ level. Death due to pneumococcal infection
occurs at per capita rate η, or the infection is cleared at rate γ. Natural death can
occur at any stage at per capita rate µ.

Seasonality of invasive pneumococcal diseases has been observed and studies sup-
port a seasonal infection rate, κ, rather than in a seasonal effective contact rate, β.
We assume that the observed fluctuations are due to seasonal changes in host sus-
ceptibility [15, 12]. For instance, it has been noted that the seasonal fluctuations of
pneumococccal pneumonia correspond to those observed in influenza cases [21, 37].
While seasonal influenza fluctuations are typically attributed to changes in effective
contacts, it is reasonable to interpret the effect of influenza on pneumococcal dis-
ease dynamics as increasing host susceptibility. Thus, seasonal influenza infections
serve to exacerbate the number of new infections and not the number of individuals
colonized. In addition, a household longitudinal study of nasopharyngeal carriage
rates over a 10 month period (including the months of highest IPD incidence) re-
ported the prevalence of colonized individuals remained relatively constant [19].
In a study of frequent nasopharyngeal colonizers, Marchisio et al. found seasonal
changes in colonization prevalence by some bacteria, but not that of Streptococcus
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Table 1. Descriptions and units for model variable and parameters.

Variable Description [Units]
S(t) susceptible individuals [individuals]
E(t) asymptotically colonized individuals [individuals]
SV (t) vaccinated susceptible individuals [individuals]
EV (t) vaccinated colonized individuals [individuals]
I(t) individuals with infections [individuals]
IV (t) vaccinated infected individuals [individuals]

Parameter Description [Units]
λ recruitment/birth rate [individuals/month]
µ natural death rate [1/month]
β effective contact rate [1/month]
α colonized recovery rate [1/month]
l proportion of unvaccinated ‘at risk’ [N/A]

κ0 mean infection rate [1/month]
κ1 seasonal deviation from mean infection rate [N/A]
ω seasonal frequency of infection rate [N/A]
τ infection rate phase shift [N/A]
γ infection recovery rate [1/month]
η disease-induced mortality rate [1/month]
φ effective vaccination rate [1/month]
ρ loss of protection rate [1/month]
ε reduction of vaccinated colonization events [N/A]
δ reduction of vaccinated infections [N/A]

pneumoniae [22]. Hendley, et al., found increased nasopharyngeal carriage due to
S. pneumoniae among nasal swabs in children, but also demonstrated that these
changes were due to increased nasal drainage, and thus heightened sensitivity of
the tests, during the colder months [18]. These studies support the implementation
of a time-dependent infection rate and not a time-dependent effective contact rate,
and thus we ascribe the form to κ(t) as

κ(t) = κ0 (1 + κ1 cos[ω(t− τ)]) . (1)

We incorporate general pneumococcal immunization–that is, any type(s) of vac-
cine implemented may be considered simply by specifying parameter values. For
this study, we consider a population vaccinated with either the 7-valent protein-
polysaccharide conjugate vaccine (PCV7) or the 23-valent polysaccharide vaccine
(PPV23). Upon effective vaccination, susceptible and colonized individuals enter
the SV and EV classes, respectively, at per capita rate φ. Thus, only individuals
who respond in some way progress to the vaccinated classes. Typically, adults over
the age of 65 lose protection from the PPV23, which we model by the transfer
of individuals in SV and EV to their corresponding unvaccinated classes at per
capita rate ρ. In the case that only the PCV7 is being implemented, ρ = 0, since
this is only recommended for children. However, PCV7 has noticeably conferred
protection against colonization and thus this rate would be reduced by a factor
0 < ε < 1, (1− ε would be the fraction by which colonization events are reduced).
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In contrast, PPV23 does not reduce susceptibility to colonization and ε = 1 in that
case. Upon immunization, not all individuals respond to all included serotypes,
and even in that case, protection against infection is not complete. Therefore, ef-
fective vaccination is modeled as preventing a fraction 1 − δ of infections. Thus,
colonized individuals who have been vaccinated, EV , progress to an infected state
at rate δκEV . We assume that the duration of a given infection in vaccinated and
unvaccinated individuals is roughly the same. However, the infection of vaccinated
individuals are not assumed to indicate any loss of protection, and therefore, these
individuals return to the SV class upon recovery. A complete list of variables can
be found in Table 1, and the model equations are given by

dS

dt
= λ− βS

E + EV + I + IV

N
+ αE + γI − φS + ρSV − µS (2)

dE

dt
= βS

E + EV + I + IV

N
− αE − lκ(t)E − φE + ρEV − µE (3)

dSV

dt
= φS − εβSV

E + EV + I + IV

N
+ αEV + γIV − ρSV − µSV (4)

dEV

dt
= εβSV

E + EV + I + IV

N
− αEV + φE − ρEV − δκ(t)EV − µEV (5)

dI

dt
= lκ(t)E − (γ + η + µ)I (6)

dIV

dt
= δκ(t)EV − (γ + η + µ)IV . (7)

3. Methodology: parameter estimation. Here we describe the formulation of
the inverse problem used to calibrate the model to the Australian population and
then to assess the impact of widespread vaccination. We briefly describe the data
set itself and the model quantities represented by the data in Section 3.1. Fixing
certain parameters and initial conditions, as described in Sections 3.3 and 3.4,
respectively, we use the data reported during the period January 2002 to December
2004 to estimate unknown model parameters, θ = (β, κ0, κ1, δ)T . The estimation
of these parameters via a weighted least squares algorithm is described in Section
3.2. The calibrated model, along with data collected after January 2005, is then
used to estimate vaccine parameters ε or δ.

3.1. Description of data. The number of cases of invasive pneumococcal diseases
(clinically defined here as pneumonia, meningitis and bacteremia, or the presence
of S. pneumoniae in normally sterile fluid) by month dating back to January 2001
are available on the Australian NNDS website [10]. However, it has been noted
in annual reports that there were some reporting discrepancies in the first year
of collection [38], which were resolved in subsequent years. Therefore, all of our
parameter estimates are based on data collected beginning in January 2002, al-
though information from December 2001 is used to calculate initial conditions (in
our model t = 0 corresponds to December 1, 2001).

Annual reports [31, 32, 33, 34] on this collected data are published in the Aus-
tralian journal Communicable Diseases Intelligence. The reports contain vaccina-
tion information if collected, and also case fatality estimates for the year. From
the case fatality data we directly calculate the disease-induced mortality rate (η)
as described in Section 3.3. The vaccination information from 2002, 2003, and
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2004 provides another six data points with information on the efficacy of the im-
plemented vaccine program. There is some slight underreporting evident when the
summaries in the annual reports are compared to the same data published on the
NNDS website. Because of this discrepancy, proportions were used to extrapolate
to the total number of cases in the data set for each year. This is described in
further detail in the Appendix. While this is of course not exact, we are likely
not committing errors of a magnitude that would influence the estimates of the
parameters significantly. Moreover, the data is not assumed to be error-free and
the extent to which this affects our estimates is taken into consideration in the error
analysis described in Section 3.2.

Monthly case notifications d
(1)
j are best represented as integrals of the new in-

fection rates (including those in the vaccinated class) over each month, since they
represent the number of cases reported during the month and do not provide any
information on how long individuals remain in an infected state. Similarly, the
annual observations d

(2)
k , d

(3)
k indicate the cases recorded during the year occurring

in either vaccinated or unvaccinated individuals. These data are integrals of the
infection rate into the vaccinated or unvaccinated classes over the year. Thus, the
observations and the model quantities are related by

• d
(1)
j ∼ ∫ tj+1

tj
[κ(s)E(s) + δκ(s)EV (s)] ds for j = 1, 2, .., 60 (monthly cases

[10]),
• d

(2)
k ∼ ∫ tk+1

tk
κ(s)E(s)ds for k = 1, 2, 3 (yearly unvaccinated cases [31, 32, 33]),

• d
(3)
k ∼ ∫ tk+1

tk
δκ(s)EV (s)ds for k = 1, 2, 3 (yearly vaccinated cases [31, 32, 33]).

Let us define Y (1)(tj , θ), Y (2)(tk, θ) and Y (3)(tk, θ) to represent the integrals above,
so that d

(1)
j ∼ Y (1)(tj , θ), d

(2)
k ∼ Y (2)(tk, θ), and d

(3)
k ∼ Y (3)(tk, θ).

The data collected during the period January 2002 and December 2004 are used
to estimate the parameters, β, κ0, κ1, and δ, and to directly calculate η. The
monthly case notification data beginning in January 2005 are then used to examine
the effects of increased conjugate vaccination on the population, by determining
values of ε and δ for fixed vaccination rates (φ) that could have generated the
number of cases observed.

3.2. Least squares estimation of parameters. To begin, we use n = 42 data
points (n1 = 36 monthly cases and n2 = 6 annual vaccinated or unvaccinated
cases) to estimate four unknown parameters: θ = (β, κ0, κ1, δ)T (θ ∈ Θ ⊂ Rp where
p = 4 and Θ is the feasible parameter space). As described above we have a vector
system of three types of longitudinal data. We use a statistical model to represent
these observations, made up of the deterministic model and error accounting for
discrepancies between the model predictions and the data. These include errors
incurred when the measurements are reported, along with any stochastic behavior
not accounted for by the deterministic model. We assume there exists a ‘true’ set
θ0 of parameters which generated the data, and our statistical model is then given
by

d
(1)
j ≡ Y (1)(tj , θ0) + ε

(1)
j j = 1, ..., 60, (8)

d
(2)
k ≡ Y (2)(tk, θ0) + ε

(2)
k k = 1, 2, 3, (9)

d
(3)
k ≡ Y (3)(tk, θ0) + ε

(3)
k k = 1, 2, 3. (10)



IPD PARAMETERS AND VACCINATION IN AUSTRALIA 181

The errors (ε(i)j in (8) - (10) for i = 1, 2, 3) in the above model are assumed to be

random variables with means E[ε(i)j ] = 0 and constant variances var(ε(i)j ) = σ2
0,i,

where σ0,i is unknown. Here we have assumed that the size of the errors committed
at each time for a given kind of “measurement” is constant and also does not
depend on the magnitude of the measurement itself. We also assume that ε

(i)
j are

independent and identically distributed (i.i.d.) random variables for each fixed i.
Thus since each d

(i)
j depends on the random variable ε

(i)
j , it is a random variable

itself with mean E[d(i)
j ] = Y (i)(tj , θ0) and variance var(d(i)

j ) = σ2
0,i, with the d

(i)
j

i.i.d. for fixed i. We further assume that var(ε(2)j ) = var(ε(3)j ) = σ2
0,2 = σ2

0,3 since
these data arose from the same counting process.

We seek the set of parameters θ̂ that minimizes

J42(θ, σ2
1 , σ2

2) =
w1

σ2
1

n1∑

j=1

∣∣∣d(1)
j − Y

(1)
j

∣∣∣
2

+
w2

σ2
2

n2/2∑

k=1

{∣∣∣d(2)
k − Y

(2)
k

∣∣∣
2

+
∣∣∣d(3)

k − Y
(3)
k

∣∣∣
2
}

,

(11)

thereby minimizing the weighted differences between the model quantities and data.
We remind the reader here that we have assumed σ2 = σ3. In the above cost
function, J42(θ, σ2

1 , σ2
2), each residual has been weighted by the variance in the

observations as well as a scaling factor to give equal importance to each type of
data (w1 = 1 and w2 = 9), giving rise to a weighted least squares (WLS) estimator.
The estimator θ̂WLS is also a random variable then, and its distribution is called
the sampling distribution. This sampling distribution provides information about
the uncertainty in the estimates θ̂ of the parameters obtained for a specific data
set, which is actually one realization of d(1), d(2), d(3) where d(1) = {d(1)

j }36j=1, d(2) =

{d(2)
k }3k=1, and d(3) = {d(3)

k }3k=1. For a summary of formulation involving ordinary
and weighted least squares along with asymptotic distribution results as discussed
below, see [7].

The parameters to be estimated are ψ = (θ, σ2
1 , σ2

2)T since the estimation of θ
depends on the unknowns σ1 and σ2. We employ an iterative approach, explained
in the algorithm:

1. Guess initial estimates for σ̂
(0)
1 , σ̂

(0)
2 where the superscript indexes the itera-

tion.
2. Minimize the objective functional (11) for θ̂(0):

θ̂(0) = arg min
θ∈Θ

J42(θ, σ̂
(0)
1 , σ̂

(0)
2 ).

3. Calculate σ̂
(1)
1 , σ̂

(1)
2 by the standard formulas

σ̂
(1)
1 =


 1

n1 − p

n1∑

j=1

∣∣∣d(1)
j − Y

(1)
j

∣∣∣
2




1
2

σ̂
(1)
2 =


 1

n2 − p





n2/2∑

k=1

∣∣∣d(2)
k − Y

(2)
k

∣∣∣
2

+

n2/2∑

k=1

∣∣∣d(3)
k − Y

(3)
k

∣∣∣
2








1
2

.
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4. Repeat steps 2 and 3 until
∣∣∣||ψ̂(k)|| − ||ψ̂(k−1)||

∣∣∣ ≤ 10−q where ψ̂ = (θ̂, σ̂1, σ̂2)T

and q is the resolution desired for convergence.
Under reasonable smoothness and regularity assumptions, the standard non-

linear regression approximation theory for asymptotic (as n → ∞) distributions
can be invoked (outlined in [11, 13, 20] and Chapter 12 of [35]). Smoothness re-
quirements are easily checked for this example and regularity requirements involve,
among others, conditions on the manner in which observations are taken as sample
size increases. This theory yields that the sampling distribution for θ̂WLS is approx-
imately a p-multivariate Gaussian with mean E[θ̂WLS(d(1), d(2), d(3))] = θ0 and co-

variance matrix cov[θ̂WLS(d(1), d(2), d(3))] = Σ0 =
[∑

i=1,2,3
1

σ2
0,i

χT
i (θ0)χi(θ0)

]−1

.

Since θ0, σ0,1, σ0,2, σ0,3 are unknown we must approximate them in Σ0 and we ob-
tain

Σ0 ≈ Σ̂ =


 ∑

i=1,2,3

1
σ̂2

i

χT
i (θ̂)χi(θ̂)



−1

.

Here χ(θ̂) = ∂Y
∂θ is the n×p sensitivity matrix where Y is a column vector of model

representation of the data given by Y = (Y (1), Y (2), Y (3))T . The sensitivity matrix
is then defined by

χi(θ̂) =
[
∂Ci

∂θ

∂X

∂θ

]

θ=θ̂

=
[
∂Ci

∂θ
z(θ)

]

θ=θ̂

,

with the quantities C, X, and Z defined as follows. Let Ci be the linear op-
erator such that Y (i) = CiX, X denote the state variables of the model, X =
(S,E, SV , EV , I, IV )T , and let G(X(t), t) denote the model dynamics so that dX

dt =
G(X(t), t). Then z is defined by z = ∂X

∂θ and satisfies the sensitivity equations

dz

dt
=

∂G

∂X
z +

∂G

∂θ
. (12)

Note that z depends on Ẋ(t) = G(X(t), t), a nonlinear system of ODEs, and its
solution X, and is therefore not available in closed form. We thus use the numerical
solution of both X and z in the estimation of Σ̂.

The standard errors for θ̂ = (β̂, κ̂0, κ̂1, δ̂)T can be computed from the diagonal
entries of the covariance matrix, SE(θ̂k) =

√
Σ̂kk. These standard errors do not

reveal how close the estimates are to the ‘true’ values for the parameters. But
rather, they are an indicator of the reliability of the estimation procedure we have
used to obtain them. Small standard errors can provide confidence in the values
obtained for the parameter estimate, but do not indicate that these values are
‘correct’ in any way. On the other hand, if the standard errors are relatively large,
our ability to estimate that parameter accurately is suspect. The standard error in
that case would not suggest reasonable confidence in the corresponding estimate.

Once the model has been calibrated to the Australian population, i.e., parameter
estimates found for β̂, κ̂0, κ̂1, δ̂ using the data from 2002-2004, we proceed by esti-
mating vaccination parameters that would quantify the impact of the widespread
vaccination program beginning in 2005. To this end, we use the monthly case noti-
fication data from January 2005 through December 2005 to estimate θ = ε or θ = δ.
The algorithm is simpler in the sense that we are now using one type of data and
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therefore can use an ordinary least squares (OLS) approach to find the parameters
θ̂ = ε̂ or θ̂ = δ̂ that minimizes the objective function

J12(θ̂) =
60∑

j=37

∣∣∣d(1)
j − Y

(1)
j

∣∣∣
2

.

Since this expression does not involve σ4, an iterative process is not required here
and we can first determine the values of the parameter estimates before using the
standard formula to arrive at an estimate for the observational variance

σ̂2
4 =

1
n3 − p

60∑

j=37

∣∣∣d(1)
j − Y

(1)
j

∣∣∣
2

,

where n3 = 12 and now p = 1.
We can apply the asymptotic theory of distributions again and see that the sam-

pling distribution of θ̂OLS(d(1)) is approximately a Gaussian with mean E[θ̂(d(1)] =
θ0 (θ0 = ε0 or θ0 = δ0) and covariance cov[θ̂(d(1))] = Σ0 = σ2

0,4[χ
T (θ0)χ(θ0)]−1.

Again we estimate Σ0 by Σ̂(θ̂, σ̂4). Further computations are analogous to those
described above.

3.3. Parameters calculated from literature. Many of the model parameters
are available from various sources of scientific literature. In this section we briefly
discuss which parameters can be reasonably estimated from reported values. De-
tails, if omitted here, of these calculations along with their explanation can be
found in the Appendix. The information here was gathered from primary scientific
research papers, S. pneumoniae reviews, or from the website of the Australian Bu-
reau of Statistics. All resources used for the calculation of each parameter are cited
next to their values in Table 2.

Parameters α, ρ, ω, and τ are readily calculated from literature. The length of
asymptomatic colonization, or carriage, has been described for children and adults
in a review by Bridy-Pappas et al., [8]. This information together with the age-sex
profile of the Australian population [5] was used to calculate a population average
for α. The age-sex profile was also used to calculate the population average for the
rate of loss of protection from vaccination, which occurs about three years after
PPV23 vaccination of adults over 65 years of age.

Two parameters governing the oscillatory behavior of the infection rate were
calculated directly from observing the infection patterns in the monthly data. It
was noted that the infections peak annually, and thus the frequency ω = 2π

6 , and
that they peak in July, so the phase shift is then τ = 8.

The proportion of the population who is considered to have a higher risk of
progressing to infection is not easily quantified, so we have chosen a value that
seems reasonable. The magnitude of this parameter seems to primarily affect the
value for the vaccine efficacy, δ, with smaller values of l corresponding to smaller
values of δ. Thus, we have chosen l = 0.05 simply because this value consistently
results in 0 < δ < 1. Therefore, our estimates of these parameters are not going to
be absolute, but rather allows for the discussion of relative changes in the values of
δ̂.

The rate of vaccination can be estimated by a description of the recommended
target groups and an estimate of the actual vaccine coverage attained reported in
[31, 34]. The first of these reports contains estimates for coverage as of 2001, and the
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Table 2. Estimates of “known” model parameters.

Value Description Sources
α 1.3555 colonized recovery rate [8, 5]

[1/month]
ρ 0.02741 loss of vaccine-induced protection rate [1, 5, 31]

[1/month]
ω π

6 infection rate oscillation frequency [10]
τ 8 infection rate oscillation phase shift [10]
l 0.05 fraction of susceptibles ‘at risk’ N/A
φ 0.0007579 effective vaccination rate [31, 5]

[1/month]
λ 25, 000 recruitment/birth rate see Appendix

[people/month]
µ 0.0003 natural death rate see Appendix

[1/month]
ε 0.953 or [0.94,1] reduction of colonization events [9, 14, 23, 24, 5]

due to vaccination
γ [ 12 , 2] infection recovery rate N/A

[1/month]
η 0.0787 disease-induced mortality rate [31, 32, 33]

[1/month]

second discusses coverage as of 2004 and estimated increases during the year 2005.
These numbers reported do not account for the individuals who do not respond
to the vaccine, and therefore this is not an effective vaccination rate. However,
in vaccine efficacy studies, this occurs in less than 5% of those who have received
either of the vaccines considered here. Therefore we do not distinguish between an
effective or practical vaccination rate.

Initial estimates for the parameters governing the overall population growth, λ
and µ, can be obtained from the Australian Bureau of Statistics website. They
have reported there the annual number of births and deaths for the years 1995-
2005 along with the estimated resident population estimates. The calculation of
these parameters from the reported births and deaths is discussed in the Appendix.
However, these parameters do not produce solutions that agree well with the pop-
ulation data, and the model drastically underestimates the resident population
growth with the calculated parameters. Since the calculation of both parameters,
λ and µ, are equally reliable, both values were slightly changed to produce better
agreement between the model total population and the reported population size of
Australia. Further discussion of the values used for these parameters can be found
in the Appendix.

The reduction in colonization events has been measured in previous vaccination
trials and in other populations after the implementation of the PCV7 vaccine. These
estimates were used to calculate an estimate for the parameter ε during the period
of January 2002 - December 2004. However, in populations where the use of the
conjugate vaccine has been widespread, significant reductions in colonization have
been observed, even in unvaccinated persons. While this parameter in our model
literally quantifies the direct reduction in vaccinated persons, a reduction in this
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value when the model is fitted to the set of data beginning in January 2005 would
indicate that either the protection from colonization is greater than thought, or
herd immunity could be occurring. On the other hand, a large value of ε would
indicate that serotype replacement has occurred to such an extent as to increase the
number of colonized individuals. This particular event would be disconcerting as it
would implicate the increased threat of serotype replacement in invasive infections,
a threat that the scientific and medical communities are aware of, although no
documentation has been found to support or dispell this fear.

In the literature, there is minimal information concerning the recovery rates for
pneumococcal infections, and certainly no mention of population averages for this
parameter. However, we can reason intuitively that it is not common to recover from
these serious infections in under 2 weeks. Similarly, we can guess that it is probably
rare to remain ill for more than 2 months. Thus, a broad reasonable range for the
recovery rate is 1

2 ≤ γ ≤ 2. Since the data we have obtained contains virtually no
information about this parameter (discussed in Section 4) we numerically explore
estimates of the other model parameters for fixed values of γ in this range in Section
5.

The disease-induced mortality rate can be calculated directly from the annual
reports of case fatalities under the assumption that the recovery rate, γ >> 1/year.
This assumption would allow us to justify the approximation

∫ j+12

j
κ(s)(E(s) +

δEV (s))ds ≈ ∫ j+12

j
I(s)ds. Under this assumption η is calculated as

η =
1
3
∗


 ∑

j=1,13,25

∫ j+12

t=j
ηI(s)ds

∫ j+12

j
I(s)ds


 ≈ 0.0787. (13)

3.4. Calculation of initial conditions. Initial conditions for the model are a
snapshot of the Australian population in December 2001, N(t0) = S(t0) + E(t0) +
SV (t0) + EV (t0) + I(t0) = 19, 529, 274 [4]. The estimates discussed here are by
no means exact and therefore sensitivity of estimated model parameters to these
initial conditions are later considered in Section 5. The number of cases of IPD
reported for December 2001 is 38 [10], but the vaccination status of these cases are
unknown, and we initially take I(t0) = 33 and IV (t0) = 5.

Many studies have estimated carriage prevalence rates in various populations,
especially in light of the effects that conjugate vaccination may have on this aspect
of pneumococcal diseases. Here we use studies that have focused on the Australian
population (both aboriginal and non-aboriginal) in an effort to quantify the propor-
tion of the population that will be colonized at any given time. In a review of the
relevant literature, we have found carriage rates in Australian aboriginal children
to be 89% ([16]), 90% ([36]), and 49% ([39]), which results in an average of 76%.
Non-aboriginal children in Australia were found to be colonized at rates of 29%
([17]), 43% ([36]), and 25% ([39]), or an average of 32.3%. Nasopharyngeal colo-
nization is not as commonly quantified in adults, so the data here is more sparse.
Carriage rates in aboriginal adults are around 34% ([16]), and in a study of UK
households, the adult population there (assumed to have characteristics similar to
Australian non-aboriginal adults) had about an 8% colonization prevalence ([19]).
These numbers, in conjunction with the age and sex profiles presented in [5] and
[6], allow for the estimation of the colonization prevalence, which we determine to
be around 10-15%.
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Table 3. Initial conditions of model state variables.

Variable Individuals
S(t0) 16,576,528
E(t0) 2,453,326
SV (t0) 435,002
EV (t0) 64,380
I(t0) 33
IV (t0) 5

The population for whom pneumococcal vaccination is recommended consists of
adults including and above the age of 65 years, and indigenous adults over 50 years
of age. Indigenous children 0-5 years of age in Central Australia and all indigenous
children 0-2 years of age were also recommended to be vaccinated. The vaccine
coverage as of 2002 is discussed in [31], and while it seems to be well quantified
in adults (≈ 26.5%), the coverage attained during the year 2001 among targeted
children is not mentioned. To begin, we assume that also 26.5% of the children have
been vaccinated. Later in the model calibration section, we will discuss any errors
that this could have introduced into our estimates for model parameters by using
initial conditions where 0 and 100% coverage of targeted children is assumed. By
this reasoning, we arrive at the estimates for the model initial conditions as shown
in Table 3.

4. Algorithm testing. As routine good practice before use with experimental
data, we explore the strength and weaknesses of the algorithm with simulated data
from model quantities which we believe the surveillance data represents. Through
this examination we are able to test the convergence of the parameter estimates θ̂
to the known values θ0. In this way we are able to identify which parameters we can
estimate from our data set. Further, we are able to explore how the reliability of
the algorithm, and hence that of the estimates, may change as error is introduced
in the observations. This testing may also suggest a poor interpretation of the
surveillance data if the algorithm gives drastically different results when using the
observed data as compared to the generated data. Thus this procedure provides us
with a means to avoid common pitfalls during the estimation process.

We generate a set of data Y (1), Y (2), Y (3) that corresponds to what we have on
hand, described in Section 3.1 with a fixed set of parameters ψ0 = (θ0, σ0.1, σ0.2)T .
We initiate the iterative weighted least squares estimation process (Section 3.2)
with an initial guess ψ̂ that is slightly perturbed from the ψ0. If the estimation
procedure is working well, the ψ̂ should converge to the ‘true’ set rather quickly.
We look to the standard errors as one indication of the ability of the algorithm to
estimate that particular parameter using the data set.

In reality, no data set is free of observation error, and we would like to see how
well our algorithm performs when the data contains some noise. To this end, we add
error by sampling from a normal distribution with mean 0 and constant variance
(ε(i)j ∼ N (0, σ2

i )) as per the assumptions of our statistical model (equations (8) -
(10)). The magnitude of this variance determines how much noise is added. We
can expect that 99% of the time, numbers generated from this distribution will be
within the interval [−3σi, 3σi]. Thus we take
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Table 4. Algorithm testing for parameter estimation of θ =
(β, κ0, κ1, δ)T . The model was fit to generated data with k =
0, 1, 5, 10% noise where subscripts in ψ(k) denote then the level of
noise in the simulated data.

ψ ψ0 initial ψ̂ ψ̂(0) SE(θ̂(0)) ψ̂(1) SE(θ̂(1))
β 1.5 1.4 1.5 2e−9 1.4984 1e−3

κ0 1.4e−3 1.35e−3 1.4e−3 1.6e−11 1.4113e−3 8.4e−6

κ1 0.55 0.6 0.55 4e−9 0.55219 2e−3

δ 0.5 0.45 0.5 1.5e−8 0.49296 6e−3

σ1,(0) 0 1e−4 2.527e−6

σ2,(0) 0 1 2.368e−5

σ1,(1) 1.6788 2 1.4305
σ2,(1) 10.0727 13 9.8923

ψ ψ0 initial ψ̂ ψ̂(5) SE(θ̂(5)) ψ̂(10) SE(θ̂(10))
β 1.5 1.4 1.4974 6e−3 1.5268 0.02
κ0 1.4e−3 1.35e−3 1.3885e−3 5e−5 1.2438e−3 1e−4

κ1 0.55 0.6 0.5223 0.01 0.52670 0.03
δ 0.5 0.45 0.5468 0.04 0.46690 0.1

σ1,(5) 8.3939 10 8.5024
σ2,(5) 50.3635 60 66.1831
σ1,(10) 16.7878 20 16.830
σ2,(10) 100.727 120 190.196

d
(i)
j ∼ Y

(i)
j + ε

(i)
j

where ε
(i)
j ∼ σi∗N (0, 1) = N (0, σ2

i ). We add noise that is scaled to our observations,
but with variance that is constant with respect to time. For k% noise then, we take
σi = k

100 ∗averagej(d
(i)
j ), so k scales the constant variance relative to the magnitude

of the observations.
The results from the testing of the algorithm’s ability to estimate the parameters

ψ̂ = (β̂, κ̂0, κ̂1, δ̂, σ̂1, σ̂2)T with k = 0, 1, 5, 10% noise are displayed in Table 4 and
Figure 2. The estimation procedure appears to be reliable for all parameters since
the values for the parameters are close to their true value and the standard errors
SE(θ̂k) are considerably less than their corresponding parameter value θ̂k. Initially,
the standard error of all parameters are many orders of magnitude less than their
parameter value, but the standard errors increase with added noise, indicating that
our ability may depend on the amount of observational error in the data. Still the
standard errors are sufficiently small to suggest confidence in parameter estimates.

As discussed in Section 3.3, there is relatively little information on recovery rates
from or duration of invasive pneumococcal diseases, so our ability to estimate this
rate (γ) is of interest. However, when the parameters to be estimated are expanded
to include γ, its estimated value does not converge to its true value (shown in Table
5). Although the fit to clean data is not discouraging, we see that with only 1%
noise the standard error SE(γ̂) for the recovery rate increases dramatically, and
we cannot justify estimating this parameter. While we cannot reliably determine a
value for this parameter with data of the type used in this paper, it is nevertheless
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Figure 2. Best fit model solutions to generated data with 0%
noise (left) and 5% noise (right). On each side, the top panels rep-
resent the monthly cases of IPD, and the bottom shows the annual
data with the unvaccinated cases on the left side and vaccinated
cases shown on the right.

Table 5. Algorithm test for the estimation of θ = (β, κ0, κ1, δ, γ)T

from 0 and 1% noisy data.

ψ ψ0 initial ψ̂ ψ̂(0) SE(θ̂(0)) ψ̂(1) SE(θ̂(1)

β 1.5 1.4 1.5 5e−6 1.4984 0.004
κ0 1.4e−3 1.35e−3 1.4046e−3 2e−7 1.4106e−3 4e−5

κ1 0.55 0.6 0.54999 6e−6 0.55203 0.006
δ 0.5 0.45 0.49181 3e−4 0.49309 0.02
γ 1 1.2 1.1646 0.05 1.1487 39

σ1,(0) 0 1e−4 0.00163
σ2,(0) 0 1 13.048
σ1,(1) 2.1547 2 1.45003
σ2,(1) 12.928 13 14.0705

Table 6. Algorithm test for the ability to estimate θ = (β, κ0, κ1, δ, l)T .

ψ ψ0 initial ψ̂ ψ̂(0) SE(θ̂(0))
β 1.5 1.4 1.5 5e−6

κ0 1.4e−3 1.35e−4 1.2908e−3 8e−4

κ1 0.55 0.6 0.54999 3e−6

δ 0.5 0.45 0.51065 0.3
l 0.05 0.052 0.05503 0.03

σ1,(0) 0 1e−4 0.0015966
σ2,(0) 0 1 57.9842

important to investigate any effect large changes in this value could have on our
results. This is done in Section 5.
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The lack of information concerning the parameter l, the proportion of the sus-
ceptible population which is particularly likely to develop infections, motivates us
to attempt to estimate this parameter with our data set. The results of this are
shown in Table 6, and suggests that the data available does not enable us to reliably
estimate this parameter since the estimated value δ̂, is significantly different from
the true value δ0, and the standard errors of both δ and l are quite large. Notably,
the parameter most affected is δ, suggesting that it is reasonable to fix l to a value
that restricts δ to a reasonable range.
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Figure 3. Best fit solution to Australian IPD data with param-
eters shown in Table 7. Top panel: monthly cases; bottom left
panel: annual unvaccinated cases; bottom right panel: annual vac-
cinated cases.

5. Model calibration. Using the iterative weighted least squares procedure de-
scribed in Section 3.2, we find a best fit solution to the Australian IPD data (Figure
3) and estimates for the model parameters, shown in Table 7. The model solution
and data agree well, and parameter values are on the scale of our initial guesses,
although their values differ slightly to minimize the cost function in the functional
(11). Further, the standard errors are relatively small and suggests that the esti-
mates obtained here are reliable (as we would have expected based on the results
in Section 4). These parameters are displayed several times in boldface throughout
this section for ease of comparison.

The data fits in Figure 3 reveal that the model solution with the parameters
shown in Table 7 fits the Australian surveillance data from 2002-2004, with the
top panel showing the fit to the monthly case notification data, the bottom left
panel the unvaccinated cases reported annually, and the bottom right the annual
vaccinated cases. The demographic parameters here are λ = 25, 000 and µ = 0.0003
instead of those reported on the Australian Bureau of Statistics website, since
those parameters seemed to underestimate the resident population of Australia,
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Table 7. Model calibration to Australian IPD data from 2002-
2004; estimation of ψ̂ = (β̂, κ̂0, κ̂1, δ̂, σ̂1, σ̂2)T .

ψ ψ̂ SE(θ̂)
β 1.52175 0.02
κ0 1.3656e−3 1.3e−4

κ1 0.56444 0.04
δ 0.7197 0.06
σ1 28.924
σ2 86.386

Table 8. Effect of vaccination rate φ on calibrated model param-
eters ψ̂ = (β̂, κ̂0, κ̂1, δ̂, σ̂1, σ̂2)T .

ψ ψ̂(φ = 6e−4) SE(θ̂) ψ̂(φ ≈ 7e−4) SE(θ̂)
β 1.525 0.02 1.52175 0.02
κ0 1.341e−3 1.3e−4 1.366e−3 1.3e−4

κ1 0.5649 0.04 0.56444 0.04
δ 0.7760 0.06 0.71957 0.06
σ1 28.967 28.924
σ2 81.939 86.386

ψ ψ̂(φ ≈ 0.001) SE(θ̂) ψ̂(φ = 0.007) SE(θ̂)
β 1.5217 0.02 1.5144 0.03
κ0 1.4439e−3 1.5e−4 1.5966e−3 1.8e−4

κ1 0.5638 0.04 0.5633 0.04
δ 0.5295 0.06 0.1482 0.04
σ1 29.0914 29.5498
σ2 134.98 289.1339

as discussed in further detail in the Appendix. For the sake of consistency of the
model to the Australian population, we use these values throughout the rest of the
paper. The initial conditions and vaccination rate used to generate this solution are
calculated under the assumption of 26.5% vaccine coverage of both the adult and
child target groups. This is fairly accurate for the adults, but no data is available
on the coverage for the younger target group at that time. We next explore how
the calibrated parameter values might change in the event that the vaccination rate
and initial conditions have been miscalculated.

The effects of changes in the vaccination rate φ on the estimated parameters
are given in Table 8. When φ is decreased by about 15% there are no notable
changes in the values from the original value of φ (displayed in boldface), and only
δ changes by about 80% if φ is increased by an order of magnitude. Since we are not
attempting to report an ‘absolute’ value for δ accurately, but are instead looking
for relative changes in this value based on data before and after 2005, there is no
cause for concern. Additionally, it is not likely that we have erred this greatly in
the calculation of the vaccination rate. In the annual report of 2005, it is stated
that 51% of adults over the age of 65 had been vaccinated, which would be reflected
by a vaccination rate of φ ≈ 0.001. However, the model and annual data with this
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Table 9. Effect of varied vaccine coverage of children on the es-
timation of parameters ψ̂ = (β̂, κ̂0, κ̂1, δ̂, σ̂1, σ̂2)T . The subscripts
denote the percent vaccination coverage of targeted children used
in the calculation of the ICs and φ.

ψ ψ̂(0) SE(θ̂(0)) ψ̂(26.5) SE(θ̂(26.5)) ψ̂(75) SE(θ̂(75))
β 1.5217 0.02 1.52175 0.02 1.5218 0.02
κ0 1.3650−3 1.3e−4 1.3656e−3 1.3e−4 1.3667e−3 1.3e−4

κ1 0.56444 0.04 0.56444 0.04 0.56444 0.04
δ 0.73269 0.06 0.71957 0.06 0.69663 0.06
σ1 28.924 28.924 28.924
σ2 86.3906 86.386 86.386

Table 10. Model parameters using Australian IPD data from
2002-2004 where the value of the recovery rate γ is shown in paren-
theses.

ψ ψ̂ (γ = 1
2 ) SE(θ̂) ψ̂ (γ = 1) SE(θ̂) ψ̂ (γ = 2) SE(θ̂)

β 1.52159 0.02 1.52175 0.02 1.5218 0.02
κ0 1.3660−3 1.3e−4 1.3656e−3 1.3e−4 1.3655e−3 1.3e−4

κ1 0.56467 0.04 0.56444 0.04 0.56444 0.04
δ 0.71965 0.06 0.71957 0.06 0.71951 0.06
σ1 28.924 28.924 28.924
σ2 86.377 86.386 86.388

vaccination rate no longer agreed, even in their general trends, as is evident by the
large estimated observational variance σ̂2. Thus we conclude that the current value
of the vaccination rate, for this set of initial conditions, appears adequate.

In the event that our assumption that 26.5% of targeted children to be vacci-
nated is incorrect, the initial conditions along with the vaccination rate would be
erroneous. In Table 9 we investigate the effect that this could possibly have on the
estimated values of the parameters. Results of all three inverse problem calcula-
tions appear to be essentially identical with only minor differences in the parameter
values. These results suggest that possible errors in the calculation of φ and the
initial conditions are inconsequential in the estimation of the desired parameters.

Another possible source of error in our calibration may be the recovery rate, γ,
on which there is relatively little information. However, we are able to reasonably
deduce a range over which this parameter might vary. To investigate the effects
of large changes in γ on our parameters we proceed by fixing γ = 1

2 and γ =
2. The corresponding results are displayed in Table 10. Again, the estimates of
all parameters change minimally and we conclude that even large changes in the
recovery rate γ do not affect our estimates.

The vaccination status of some of the cases were classified as partial for some
individuals who had not received the recommended doses for their age group. Recall
that this is not relevant for elderly receiving the polysaccharide vaccine, due to
this being given as a single dose. In the previous fits partial vaccinated cases
were considered fully vaccinated, resulting in an overestimation of the value for
δ. Parameters were estimated from data in which ‘partial’ vaccinated cases were
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Table 11. Model parameters using Australian IPD data from
2002-2004. The second column contains parameter estimates from
data with partial vaccinated cases considered as unvaccinated, and
the fourth column considers partial vaccination equivalent to full
vaccinated.

ψ ψ̂ (partial ≡ full) SE(θ̂) ψ̂ (partial ≡ unvacc) SE(θ̂)
β 1.52175 0.02 1.5268 0.02
κ0 1.3656−3 1.3e−4 1.5442e−3 1.7e−4

κ1 0.56444 0.04 0.56221 0.04
δ 0.71957 0.06 0.35145 0.07
σ1 28.924 28.822
σ2 86.386 132.753

considered unvaccinated. This is an underestimation of the cases due to vaccine
failure and therefore also an underestimation of δ (and an overestimation of the
vaccine efficacy 1 − δ). The parameters from both of these fits are displayed in
Table 11.

With the exception of δ, the estimates for all of the parameters change very
little. This agrees with our intuition since the only difference in the data sets used
to estimate these parameters is the annual data, which contains mostly information
on δ and relatively little on the other parameters. Thus, this numerical experiment
has provided us with a range of where a feasible value for δ during the time period
2002-2004 likely lies, i.e., δ ∈ [0.35, 0.72].

To test the assumptions of the statistical model that we have chosen to represent
our data, we plot the residuals between the model and observations as a function of
the model, that is, |d(1)

j − Y
(1)
j | vs Y

(1)
j (Figure 4). The lack of a clear relationship

between these two quantities would indicate that our assumptions are reasonable
and the errors of each observation does not depend on the model values. However,
we see six groups of points, which can be explained by the oscillatory pattern of
the infections. In the top panel we have plotted just one half of the period of
the infection rate and see a completely random pattern, indicating no relationship
among these quantities. When we extend this time period for another half of a
period, thus plotting an entire period in the middle panel, we see that there are
two points in each group of points. Thus, the pattern observed is driven by the
seasonality of the infections and not by any incorrect assumptions. On the contrary,
only a pattern in the dependent variable (the residuals) would suggest that incorrect
assumptions have been made. This analysis suggests that it is reasonable to assume
constant variance among observations of the same type, providing support for the
statistical model underlying the parameter estimation procedure.

A similar plot of the residuals from the best fit solution to data in which partial
vaccination is considered equivalent to unvaccination is not shown here. The differ-
ence between these two data sets lies in the annual data, and so the monthly data
is unchanged. Although the vaccine efficacy parameter δ is drastically different
when estimated from each data set, this does not appear to affect the model fit to
monthly data, as can be seen from Figure 5. In fact, when the difference between
the two monthly solutions are plotted the solution is in the range of [−1.5, 2] and
varies around zero.
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Figure 4. Residuals as a function of model variables. Top panel
is over the period January 2003 through June 2003, middle panel
is for January 2003 through December 2003, and bottom panel is
for all three years
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Figure 5. Difference in monthly data fits where partial vaccinated
cases were considered vaccinated subtracted from fits to data with
partially vaccinated considered as unvaccinated.

In this section, we have tested various sources of error as well as assumptions of
our statistical model used in the estimation. We have confirmed that the estimation
of these parameters for the purposes of calibrating this model to the Australian
invasive pneumococcal disease data has been successful. The calibrated parameters
are then taken as an average of the two sets displayed in Table 11 and are shown
here in Table 12.
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Table 12. Model parameters calibrated to Australian IPD
surveillance data during 2002-2004.

β 1.52475
κ0 1.4549e−3

κ1 0.56332
δ 0.53551

Table 13. Estimation of ε, the direct reduction of colonization
due to vaccination, from 2005 Australian IPD surveillance data.
The observed unvaccinated and vaccinated cases are 1211 and 537,
respectively. The three vaccination rates used are based on 0, 75,
100% increases in vaccinated adults.

φ 0.002253 0.007984 0.0139651
ε̂ 0.116 0.176 0.206

SE(ε̂) 0.3 0.4 0.4
Unvacc 1630 1470 1327
Vacc 113 287 442

6. Effect of increased vaccination. As of January 1, 2005, pneumococcal vac-
cination in Australia was offered free of charge to all adults over the age of 65,
indigenous adults over 50, and children under the age of 2. Free vaccination of
adults of these ages had been offered in some provinces such as Victoria since 1998,
and for some children, but it was not until 2005 that vaccination was funded na-
tionally. In this section, we use the model with parameters estimated from the
2002-2004 data together with the 2005-2006 data to investigate the impact of the
vaccination program on the Australian population.
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Figure 6. Best fit solution to 2005 Australian surveillance data
assuming a vaccination rate of φ = 0.007984.

We seek to find vaccination parameters that minimize the difference between the
model and observations via least squares estimation (see Section 3.2). Thus, we are
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Table 14. Estimation of ε̂ and δ̂ with l = 0.05 and l = 0.04.

l = 0.05 l = 0.04 l = 0.05 l = 0.04
ε̂ 0.176 0.353 δ̂ 3.22e−14 0.1202

SE(ε̂) 0.4 0.96 SE(δ̂) 2 2.3
Unvacc 1470 1231 Unvacc 1771 1417
Vacc 287 491 Vacc 7.58e−11 283

looking for values of ε and δ that could have resulted in the observed number of
cases. We do not estimate the vaccination rate φ since there is sufficient information
to determine a realistic range for this parameter in the annual report concerning the
data collected during the year 2005 [34]. It is reported here that 91% of children
under the age of 2 were vaccinated during the year 2005. Neglecting the loss of
protection during that time period, especially since this is unobserved in children
and most children were previously unvaccinated, we calculate a vaccination rate of
children. The proportion of adults 65 and over who had been vaccinated as of 2004
is reported here as 51% and we calculate a range of φ that would have resulted
from zero to 100% vaccinated. Additionally, the number of cases that occurred in
vaccinated or unvaccinated individuals is given in the 2005 annual report (again,
this information was reported in 70% of cases and we have applied these proportions
to characterize the remaining cases in the data set). While this only represents one
annual data point and hence is not appropriate for least squares estimation, it does
provide additional information against which we can verify the validity of our fitted
solutions.

We first consider changes in ε that could have resulted in the observed decreases
in infections during the year 2005 with estimates displayed in Table 13 and a sample
fit shown in Figure 6. Initial conditions for these fits have been taken as state
variable quantities when the model has been run with calibrated parameters to
the time step corresponding to January 1, 2005. All estimates for ε are drastically
lower (by about 90%) than the feasible lower bound for this parameter, which
is 0.93875. This parameter is strictly interpreted here as representing the direct
reduction in colonization in vaccinated individuals, an effect which has only been
observed in protein conjugate vaccination. A substantially lower value, like those
estimated here, could suggest herd immunity, an effect in which the vaccination
of a portion of the population provides protection for the unvaccinated portion as
well. In this case, herd immunity could be interpreted as a decrease in infections in
unvaccinated individuals who are colonized at a lower rate due to the decrease in
colonized vaccinated individuals. This suggests that the unvaccinated cases would
be overestimated by our model and the vaccinated cases underestimated if herd
immunity is occuring which is precisely what occurs across all three vaccination
rates used. The standard errors are notably large, and do not provide additional
confidence in our estimates. However, the annual report did note that there were
reduced infections in unvaccinated groups, and thus, it is likely that herd immunity
is occurring. However, other changes in the population could have occurred which
would have also produced a reduction in infections.

The PCV7 vaccine is thought to be much more effective in children than the
PPV23 is in the individuals for whom it is recommended, and the large increase of
PCV7 vaccine could have resulted in improved protection of vaccinated individuals,
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notable at even the population level. With this in mind, we have held ε = 0.93875
constant and estimated δ̂ as δ̂ = 3.22e−14. The standard error SE(δ̂) = 2, suggests
that we will not be able to get a reliable estimate for δ from this data with the pa-
rameters used. Also, the number of vaccinated individuals estimated was 7.58e−11,
which is, of course, unrealistic. We conclude that it is not likely that a sufficiently
large decrease in δ could have accounted for the reduction of infections observed in
2005.
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Figure 7. Best fit solution from 2005 Australian surveillance data
run out to June 2007.

With the increased vaccination of recommended groups it is likely that the pa-
rameter, l, would decrease. This parameter, which scales for the relative risk of the
individuals in the unvaccinated population to that of the vaccinated population, is
not easily quantified and we were unable to calculate any reasonable estimate of
it. We do not attempt to estimate this parameter here, instead, we note the effect
of a 20% decrease in l on estimates of ε and δ (Table 14). Most notable in this
experiment is the substantial change observed in the estimate of δ, which could
indicate that a smaller herd immunity effect is occurring and also the population
vaccine efficacy has changed when PCV7 is implemented. This indicates that some
measurement of the relative risk to pneumococcal infections is of interest to those
wishing to understand the effects of the vaccination programs.

Another aspect of immunization by PCV7 is that the long-term effects on a
population are essentially unknown, so the effects of the new vaccination program
should be evaluated as time progresses. If we overlay a best fit solution of the model
with the data up to June 2007, we see a general underestimation of cases after 2005
(Figure 7), with the effect exaggerated in 2007 as compared with 2006. The data
suggests that the landscape of pneumococcal disease dynamics is changing on a
yearly basis under this vaccination program. If the changes could be explained via
vaccination rates alone, we would likely see an overestimation of the data by the
model, since the vaccination rate, φ, has likely decreased after the first year of the
federally funded program. Since the opposite is observed, it appears that the values
of ε or δ (or possibly both) have increased over these time periods. However, we
are not able to estimate these parameters reliably with the available data, as their
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standard errors are an order of magnitude larger than their values and thus are not
shown here.
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Figure 8. Model overlayed with Australian surveillance data dur-
ing January 2006 thru June 2007. Left: ε = 0.7, δ = 0.53551;
Right: ε = 0.353, δ = 1.

Although we are not able to reliably estimate ε or δ over the 2006-2007 time
period, we see by inspection better agreement between the model and data when ε
has been increased from 0.353 to 0.7 (Figure 8 left) or δ has been increased from
0.53551 to 1 (Figure 8 right). Here, the cases are still underestimated considerably,
and it is likely that even greater increases in these parameters would have pro-
duced the data. Increases in ε could indicate serotype replacement by non-vaccine
serotypes, a possibility which authorities are aware of, but no conclusive evidence
has yet been found. Similarly, an increase in δ would indicate that the vaccines are,
in general, less effective in the population than in previous times. Again, this would
suggest either an evolutionary change in the pneumococcus, or the host response
to the vaccines. In either case, a reevaluation of the vaccination programs would be
necessary. These results are presented not to support or dispute specific changes
associated with the Australian population or the pneumococci prevalent there, but
rather, to demonstrate that changes appear to be occurring at a rapid pace. These
studies suggest further close and quantitative study of the vaccination programs.

7. Discussion and concluding remarks. In this work, we have calibrated a
mathematical model describing the dynamics of pneumococcal infections in the
Australian population. We have estimated via a weighted least squares procedure
pertinent model parameters of interest, but not typically measurable or reported in
literature. All standard errors for these parameters provide confidence in the values
obtained, even when initial assumptions have been relaxed as discussed in Section
5. We have shown in Section 4 that certain parameter values, namely the vaccine
efficacy and infection rate parameters, depend on the relative risk of unvaccinated
to vaccinated individuals, a measure not available in literature. Studies quantify-
ing rates of infection in populations comparing predisposing effects of certain risk
factors would provide some measure of this effect. With this knowledge, we would
be better able to determine a suitable value for l, which is otherwise complicated
by the movement of “at risk” individuals from the unvaccinated to the vaccinated
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classes. Alternatively, we could explicitly model the distinction between individu-
als who are more or less likely to proceed to infection upon colonization. However,
this would introduce additional complexity which would likely result in difficulty in
the least squares determination of model parameters. Here, the parameter values
reported allow for the study of changes in the effects of the immunization programs
before and after 2005.

Once pneumococcal vaccination was made publicly available to large recom-
mended risk groups, a notable decrease in infections was observed. Our analysis
suggests that this reduction is not solely accounted for by an increase in vacci-
nation, but also a decrease in vaccinated colonized individuals, and even appears
to suggest the presence of herd immunity in 2005. The potential impact of this
reduction of colonization due to PCV7 is very promising from a public health per-
spective, but serotype replacement has been observed in some populations in the
colonization stage, and its effects are uncertain. It is possible that widespread and
long-term vaccination by PCV7 could provide a selective pressure for the increased
invasiveness of non-vaccine-included pneumococcal serotypes.

We have shown that vaccination parameters which accurately describe the in-
fections for 2005 underestimate the cases for 2006 and 2007. In contrast, changing
parameters to reduce the effect of the vaccines provides better agreement between
the model and observed data. These results do not conclusively support any one
effect generating this behavior but clearly suggest that changes are occurring within
the Australian population, such as susceptibility to infection, and possibly the evo-
lution of the pneumococci themselves endemic in that area. The dynamics of S.
pneumoniae infections, along with many aspects of their vaccination, are highly
dependent on age and other physiological factors such as nutrition and previous
infections. As such, mathematical models structured in this way would better be
able to comment on specific mechanisms responsible for disease persistence, and
to assess the impact of vaccination programs. However, here the data available in
this case does not motivate the use of such a framework, and the simpler model
is more appropriate. At any rate, the analysis here clearly suggests that the high
rate of PCV7 immunization will likely result in a drastic change of the landscape
of pneumococcal disease dynamics, and requires close monitoring and quantitative
study by public health officials.
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Appendix.

Data. In the annual reports of the pneumococcal surveillance data there is a slight
record-keeping discrepancy that is evident when comparing the annual number of
total infections reported on the NNDS website and in the papers. There is no
explanation for this in the reports, and thus we have no reason to assume that
there are known errors in the monthly data presented online. Here we describe the
manner in which the vaccinated/unvaccinated cases from the annual reports were
converted for use in the least squares estimation.

The total number of cases for which vaccination information is reported (totv),
along with the number of cases considered fully vaccinated (full), the cases which
occurred in partially vaccinated individuals (part) and those which occurred in
unvaccinated individuals (un). Unless otherwise noted, partially vaccinated cases
were considered equivalent to fully vaccinated cases, and the vaccination data was
then calculated by the formulas

Unvacc =
un

totv
∗ total (14)

V acc =
part + full

totv
∗ total

where total refers to the total annual cases reported on the NNDS website.

Parameter calculation. In this section we describe in detail the calculation of
the parameters which are not estimated in the paper.

• α: The average length of carriage is 4 months in infants (up to 24 months
old), and 2-4 weeks in adults [8]. The age-sex profile of the Australian popu-
lation was found in the Health and Ageing Factbook 2006 [5], with children
ages 0-4 comprising 6.2% of the population. Since the length of time in this
compartment adversely affects (increases) the number of colonization events,
an overestimate of this parameter would result in an overestimate in colonized
individuals and thus, infections. Also, it would likely be more reasonable that
there is some continuity in the colonization period as a function of age, so
while this average overestimates the period for children 2-4 yrs old, it likely
underestimates the period for children 5-10 yrs old. Therefore, it is reasonable
to estimate α as α = 1

4 ∗ 0.062 + 1
0.7 ∗ 0.938 = 1.3555.

• ρ: Loss of protection from vaccination only occurs in adults ≥ 65, and an-
tibody levels reach pre-vaccination levels in ≈ 3 yrs (36 months) [1]. The
proportion of the elderly individuals, both non-indigenous and indigenous, in
the target group of vaccinated individuals is 1

2,548,936 ∗ (40, 112 + 2, 475, 623)
based on demographic information as of 2001, found in [5]. ρ is then ρ =
1
36 ∗ (40,112+2,475,623)

2,548,936 = 0.02741. For a description of the target population
for vaccination see the discussion for the calculation of the initial conditions
in Section 3.4.

• φ: The vaccination rate is estimated by assuming that the vaccinated and
unvaccinated portions of the population have reached a quasi-steady state in
that no notable exchange is occuring between the two kinds of classes. That
is, no significant surge of vaccination or loss of protection change is reported
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in the annual summaries or observed in the annual data. If the system is
completely free of infection, the steady state, or disease-free equilibrium is
given by




S0

E0

S0
V

E0
V

I0

I0
V




=




λ
µ

ρ+µ
φ+ρ+µ

0
λ
µ

φ
φ+ρ+µ

0
0
0




.

The proportions of the population in S0 or S0
V were calculated based on

the vaccine coverage estimates used in calculating the initial conditions, and
we then solved for the vaccination rate φ that would give those proportions.
In this way, we have calculated vaccination rates corresponding to 0, 26.5
and 100% vaccine coverage of children shown below with the percentage of
children vaccinated denoted in superscripts

φ(0) = 7.206e−4 (15)

φ(26.5) = 7.3375e−4

φ(100) = 7.579e−4.

When the model is run with these initial conditions and vaccination rates,
very little transfer between the vaccinated and unvaccinated classes is notice-
able. This is by no means accurate and in the model calibration we have
checked the effects of miscalculating the initial conditions, as well as various
vaccination rates for a fixed set of initial conditions. In both cases, it ap-
pears that our initial guesses for initial conditions and vaccination rates are
sufficient.

• λ: The number of births per year for the years 1995-2005 is found on the
Australian Bureau of Statistics website at [2]. An estimate for λ can be ob-
tained by averaging the annual births for Australia over the years 2002-2004
and dividing this by 12. Thus, λ = 21, 011 births/month.

• µ: The number of deaths per year for the years 1995-2005 is found on the
Australian Bureau of Statistics website [3], along with the annual estimated
resident population. The IPD case fatalities were subtracted from the deaths
for the years 2002-2004, and this average was then divided by the average
resident population for those years. Thus,

µ =
deaths− IPD deaths

total popn
≈ 0.000551.

• ε: Reduced susceptibility to colonization has been observed in children vac-
cinated by PCV7 in numerous studies. Three such studies’ results showed
vaccinated individuals susceptibilities being reduced to 80.2% [9], 86% [14],
and 60.2% (average ≈ 75.5%) as compared to unvaccinated children. Two
studies, however, showed no significant decrease in carriage in two high-risk
populations ([23], [24]). Notably, Australian aborigines are considered to be
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a very high-risk population, with some of the largest prevalence rates ob-
served anywhere in the world. If we assume the carriage in aboriginal chil-
dren could be reduced as well, and that children will make up at most 25%
of the vaccinated population, then we would arrive at a lower bound for ε as
ε ≈ 0.25∗0.755+0.75 = 0.93875. Thus a feasible range for ε is ε ∈ [0.93875, 1].
We hold ε = 1 fixed for the model calibration since the portion of vaccinated
individuals who received PCV7 during 2002-2004 was small.

Population data. Estimates of the resident population of Australia is collected
quarterly, available on the website of the Australian Bureau of Statistics [4]. We
use the estimate in December 2001 in the calculation of the initial conditions, and
the estimates reported for March 2002 through June 2006 to refine our estimates
of λ and µ from those calculated in Section 3.3. These data are then of the form

• d
(4)
l ∼ N(tl) = S(tl) + E(tl) + SV (tl) + EV (tl) + I(tl) for l = 1, ..., 12 and

(t1, ..., t12) = (3, 6, .., 36) (quarterly population estimates [4]).
The demographic parameters, λ and µ, are estimated from the population data

only, represented by the statistical model below (16). Again, we assume that ε
(4)
l

are i.i.d. for l = 1, .., 12 and E[ε(4)l ] = 0, var(ε(4)l ) = σ2
4 for each l.

d
(4)
l = Y (4)(tl, θ) + ε

(4)
l = N(tl) + ε

(4)
l l = 1, ..., 12. (16)

Since this is a scalar system, we can use an ordinary least squares approach to
estimate the parameters (θ = (λ, µ)T ) by minimizing the objective functional in
(17)

J12(θ, σ4) =
12∑

l=1

∣∣∣d(4)
l − Y

(4)
l

∣∣∣
2

(17)

and the standard deviation of the observational errors can be computed directly
from the formula

σ̂2
4 =

1
n3 − p

n3∑

l=1

∣∣∣d(4)
l − Y

(4)
l

∣∣∣
2

where n3 = 12 and p = 2.
The standard errors for θ̂ = (λ̂, µ̂)T are computed analogously to the vector case

where the covariance matrix is defined as

Σ̂ = σ̂2
4

[
χT

4 (θ̂)χ4(θ̂)
]−1

.

Table 15 contains the results of fixing the demographic parameters, λ and µ,
or estimating them via OLS. The first two columns show the residual when the
model is compared with the data and the parameters are fixed at the displayed
values. In the other columns, standard errors are reported for parameters which
have been estimated, and otherwise the parameter is fixed at the displayed value.
When we estimate both parameters, they quickly reach the constraints placed on
them, regardless of how large the restraints are set. This suggests that we may
not be able to estimate both of these parameters simultaneously. When estimating
just one parameter at a time, we see that the value does not differ much from the
initial guess, and from a comparison of the residual sum of squares, we see that not
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Figure 9. Total population of the model overlayed with estimated
resident population data. Left: λ = 21, 011 and µ = 0.000551
calculated from ABS. Right: λ = 25, 000 and µ = 0.0003.

Table 15. Estimation of demographic parameters, θ = (λ, µ)T ,
from quarterly Australian population estimates. Standard errors,
SE(θ̂) are displayed next to parameters estimated via OLS. The
first 2 columns shows the residual sum of squares between the
model and observed data when θ = (λ, µ)T are fixed at the dis-
played values. The remaining columns show the results of esti-
mating both or one of the demographic parameters. ∗ denotes
estimated values coinciding with the imposed limits on the feasible
parameter space.

θ θ Estimate SE(θ̂)
λ 21,011 25,000 35, 000∗ 1.8e8

µ 0.000551 0.0003 0.001∗ 8.9
σ̂ N/A N/A 4.6156e7

RSS 4.5096e11 5.7456e8 4.6146e8

Estimate SE(θ̂) Estimate SE(θ̂)
λ 24,886 1.7e8 25,000 N/A
µ 0.0003 N/A 3.058e−4 8.7
σ̂ 4.5323e7 4.5278e7

RSS 4.9856e8 4.9806e8

much is to be gained from estimating either λ or µ. However, the model population
corresponds much closer to the observed data when λ = 25, 000 and µ = 0.0003,
and since it is important that our model follows the population over a period of
years, we take these as the parameters used in the study.
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