Research article Special Issues

An efficient and flexible multiplicity adjustment for chi-square endpoints

  • Received: 24 February 2021 Accepted: 19 May 2021 Published: 07 June 2021
  • This manuscript proposes a fast and efficient multiplicity adjustment that strictly controls the type I error for a family of high-dimensional chi-square distributed endpoints. The method is flexible and may be efficiently applied to chi-square distributed endpoints with any positive definite correlation structure. Controlling the family-wise error rate ensures that the results have a high standard of credulity due to the strict limitation of type I errors. Numerical results confirm that this procedure is effective at controlling familywise error, is far more powerful than utilizing a Bonferroni adjustment, is more computationally feasible in high-dimensional settings than existing methods, and, except for highly correlated data, performs similarly to less accessible simulation-based methods. Additionally, since this method controls the family-wise error rate, it provides protection against reproducibility issues. An application illustrates the use of the proposed multiplicity adjustment to a large scale testing example.

    Citation: Amy Wagler, Melinda McCann. An efficient and flexible multiplicity adjustment for chi-square endpoints[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 4971-4986. doi: 10.3934/mbe.2021253

    Related Papers:

    [1] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [2] Markus Gahn, Maria Neuss-Radu, Peter Knabner . Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028
    [3] Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025
    [4] François Murat, Ali Sili . A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15(1): 125-142. doi: 10.3934/nhm.2020006
    [5] Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012
    [6] María Anguiano, Renata Bunoiu . Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15(1): 87-110. doi: 10.3934/nhm.2020004
    [7] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [8] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651
    [9] Mohamed Belhadj, Eric Cancès, Jean-Frédéric Gerbeau, Andro Mikelić . Homogenization approach to filtration through a fibrous medium. Networks and Heterogeneous Media, 2007, 2(3): 529-550. doi: 10.3934/nhm.2007.2.529
    [10] Mustapha El Jarroudi, Youness Filali, Aadil Lahrouz, Mustapha Er-Riani, Adel Settati . Asymptotic analysis of an elastic material reinforced with thin fractal strips. Networks and Heterogeneous Media, 2022, 17(1): 47-72. doi: 10.3934/nhm.2021023
  • This manuscript proposes a fast and efficient multiplicity adjustment that strictly controls the type I error for a family of high-dimensional chi-square distributed endpoints. The method is flexible and may be efficiently applied to chi-square distributed endpoints with any positive definite correlation structure. Controlling the family-wise error rate ensures that the results have a high standard of credulity due to the strict limitation of type I errors. Numerical results confirm that this procedure is effective at controlling familywise error, is far more powerful than utilizing a Bonferroni adjustment, is more computationally feasible in high-dimensional settings than existing methods, and, except for highly correlated data, performs similarly to less accessible simulation-based methods. Additionally, since this method controls the family-wise error rate, it provides protection against reproducibility issues. An application illustrates the use of the proposed multiplicity adjustment to a large scale testing example.





    [1] R Core Team, R: A language and environment for statistical computing, R Found Stat. Comput., Vienna, Austria, 2019. http://www.R-project.org/.
    [2] K. S. Pollard, S. Dudoit, M. J. {van der Laan}, Multiple testing procedures: R multtest package and applications to Genomics, Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Springer, 2005.
    [3] T. Hothorn, F. Bretz, P. Westfall, Simultaneous inference in general parametric models, Biomet. J., 50 (2008), 346-363. doi: 10.1002/bimj.200810425
    [4] C. C. Bartenschlager, J. O. Brunner, A new user specific multiple testing method for business applications: The SiMaFlex procedure, J. Stat. Plan Infer., 2021, Online.
    [5] Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. Royal Stat. Soc. B., 57 (1995), 289-300.
    [6] Y. Benjamini, D. Yekutieli, The control of the false discovery rate in multiple testing under dependency, Ann. Stat., 29 (2001), 1165-1188.
    [7] D. Hunter, An upper bound for the probability of a union, J. Appl. Probab., 13 (1976), 597-603. doi: 10.2307/3212481
    [8] M. McCann, D. Edwards, A path length inequality for the multivariate-t distribution, with applications to multiple comparisons, J. Am. Stat. Assoc., 91 (1996), 211-216.
    [9] D. Q. Naiman, Simultaneous confidence bounds in multiple regression using predictor variable constraints, J. Am. Stat. Assoc., 82 (1987), 214-219. doi: 10.1080/01621459.1987.10478422
    [10] J. Sun, C. R. Loader, Simultaneous confidence bands for linear regression and smoothing, Ann. Stat., (1994), 1328-1345.
    [11] K. J. Worsley, An improved Bonferroni inequality and applications, Biometrika, 69 (1982), 297-302. doi: 10.1093/biomet/69.2.297
    [12] M. Heo, A. C. Leon, Comparison of statistical methods for analysis of clustered binary observations, Stat. Med., 24 (2005), 911-923. doi: 10.1002/sim.1958
    [13] R. B. Arani, J. J. Chen, A power study of a sequential method of p-value adjustment for correlated continuous endpoints, J. Biopharm. Stat., 8 (1998), 585-598. doi: 10.1080/10543409808835262
    [14] S. James, The approximate multinormal probabilities applied to correlated multiple endpoints in clinical trials, Stat. Med., 10 (1991), 1123-1135. doi: 10.1002/sim.4780100712
    [15] S. J. Pocock, N. L. Geller, A. A. Tsiatis, The analysis of multiple endpoints in clinical trials, Biometrics, (1987), 487-498.
    [16] P. C. O'Brien, Procedures for comparing samples with multiple endpoints, Biometrics, (1984), 1079-1087.
    [17] R. E. Tarone, A modified Bonferroni method for discrete data, Biometrics, (1990), 515-522.
    [18] P. H. Westfall, R. D. Tobias, Multiple testing of general contrasts, J. Am. Stat. Assoc., 92 (2007), 299-306.
    [19] P. H. Westfall, J. F. Troendle, Multiple testing with minimal assumptions, Biomet. J., 50 (2008), 745-755. doi: 10.1002/bimj.200710456
    [20] W. Pan, Asymptotic tests of association with multiple SNPs in linkage disequilibrium, Genet. Epidemiol., 33 (2009), 497-507. doi: 10.1002/gepi.20402
    [21] J. Stange, N. Loginova, T. Dickhaus, Computing and approximating multivariate chi-square probabilities, J. Stat. Comput. Sim., 86 (2016), 1233-1247. doi: 10.1080/00949655.2015.1058798
    [22] S. Dudoit, M. J. van der Laan, Multiple tests of association with biological annotation metadata, in Multiple Testing Procedures with Applications to Genomics, Springer Series in Statistics, Springer, (2008), 413-476.
    [23] K. Wright, W. J. Kennedy, Self-validated Computations for the Probabilities of the Central Bivariate Chi-square Distribution and a Bivariate F Distribution, J. Stat. Comput. Sim., 72 (2002), 63-75. doi: 10.1080/00949650211422
    [24] P. R. Krishnaiah (Ed.), Handbook of statistics, Motilal Banarsidass Publisher, (1980).
    [25] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Am. Math. Soc., 7 (1956), 48-50. doi: 10.1090/S0002-9939-1956-0078686-7
    [26] A. K. Bera, Y. Bilias, Rao's score, Neyman's C() and Silvey's LM tests: An essay on historical developments and some new results, J. Stat. Plan Infer., 97 (2001), 9-44. doi: 10.1016/S0378-3758(00)00343-8
    [27] F. Guinot, M. Szafranski, C. Ambroise, F. Samson, Learning the optimal scale for GWAS through hierarchical SNP aggregation, BMC Bioinform., 19 (2018), 1-14. doi: 10.1186/s12859-017-2006-0
    [28] G. Lovison, On Rao score and Pearson χ2 statistics in generalized linear models, Stat. Papers, 46 (2005), 555-574. doi: 10.1007/BF02763005
    [29] D. Pregibon, Score tests in GLIM with applications, In GLIM82: Proceedings of the International Conference on Generalized Linear Models, R Gilchrist (ed.), Lec. Notes Stat., 14, Springer, New York, (1982), 87-97.
    [30] G. K. Smyth, Pearson's goodness of fit statistic as a score test statistic, Science and Statistics: A Festschrift for Terry Speed, D. R. Goldstein (ed.), IMS Lec Notes., 40, Institute of Mathematical Statistics, Beachwood, Ohio, (2003), 115-126. http://www.statsci.org/smyth/pubs/goodness.pdf.
  • This article has been cited by:

    1. Renata Bunoiu, Claudia Timofte, Upscaling of a double porosity problem with jumps in thin porous media, 2022, 101, 0003-6811, 3497, 10.1080/00036811.2020.1854232
    2. M. Amar, D. Andreucci, R. Gianni, C. Timofte, Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace–Beltrami operator, 2020, 59, 0944-2669, 10.1007/s00526-020-01749-x
    3. Ekeoma Rowland Ijioma, Hirofumi Izuhara, Masayasu Mimura, Traveling Waves in a Reaction-Diffusion System Describing Smoldering Combustion, 2017, 77, 0036-1399, 614, 10.1137/16M1089915
    4. Ekeoma R. Ijioma, Hirofumi Izuhara, Masayasu Mimura, Toshiyuki Ogawa, Homogenization and fingering instability of a microgravity smoldering combustion problem with radiative heat transfer, 2015, 162, 00102180, 4046, 10.1016/j.combustflame.2015.07.044
    5. M. Amar, D. Andreucci, C. Timofte, Asymptotic analysis for non-local problems in composites with different imperfect contact conditions, 2022, 0003-6811, 1, 10.1080/00036811.2022.2120867
    6. A. Chakib, A. Hadri, A. Nachaoui, M. Nachaoui, Homogenization of parabolic problem with nonlinear transmission condition, 2017, 37, 14681218, 433, 10.1016/j.nonrwa.2017.03.004
    7. Iuliu Sorin Pop, Jeroen Bogers, Kundan Kumar, Analysis and Upscaling of a Reactive Transport Model in Fractured Porous Media with Nonlinear Transmission Condition, 2017, 45, 2305-221X, 77, 10.1007/s10013-016-0198-7
    8. Emilio N. M. Cirillo, Ida de Bonis, Adrian Muntean, Omar Richardson, Upscaling the interplay between diffusion and polynomial drifts through a composite thin strip with periodic microstructure, 2020, 55, 0025-6455, 2159, 10.1007/s11012-020-01253-8
    9. Vishnu Raveendran, Emilio Cirillo, Ida de Bonis, Adrian Muntean, Scaling effects on the periodic homogenization of a reaction-diffusion-convection problem posed in homogeneous domains connected by a thin composite layer, 2021, 80, 0033-569X, 157, 10.1090/qam/1607
    10. Renata Bunoiu, Karim Karim, Claudia Timofte, T-coercivity for the asymptotic analysis of scalar problems with sign-changing coefficients in thin periodic domains, 2021, 2021, 1072-6691, 59, 10.58997/ejde.2021.59
    11. Renata Bunoiu, Claudia Timofte, Upscaling of a diffusion problem with flux jump in high contrast composites, 2024, 103, 0003-6811, 2269, 10.1080/00036811.2023.2291810
    12. Matteo Colangeli, Manh Hong Duong, Adrian Muntean, Model reduction of Brownian oscillators: quantification of errors and long-time behavior, 2023, 56, 1751-8113, 345003, 10.1088/1751-8121/ace948
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3762) PDF downloads(82) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog