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Abstract: This manuscript proposes a fast and efficient multiplicity adjustment that strictly controls
the type I error for a family of high-dimensional chi-square distributed endpoints. The method is
flexible and may be efficiently applied to chi-square distributed endpoints with any positive definite
correlation structure. Controlling the family-wise error rate ensures that the results have a high standard
of credulity due to the strict limitation of type I errors. Numerical results confirm that this procedure is
effective at controlling familywise error, is far more powerful than utilizing a Bonferroni adjustment,
is more computationally feasible in high-dimensional settings than existing methods, and, except for
highly correlated data, performs similarly to less accessible simulation-based methods. Additionally,
since this method controls the family-wise error rate, it provides protection against reproducibility
issues. An application illustrates the use of the proposed multiplicity adjustment to a large scale testing
example.
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1. Introduction

Familywise error rate (FWER) control is necessary when a set of multiple inferences are simultane-
ously evaluated and investigators want to obtain a small set of results that warrant further examination.
When the test endpoints are correlated, it is preferable to use a procedure that takes into account the
dependency structure in order to improve power. This can be done easily for multivariate normal out-
comes, but an accessible and powerful method is not available for multiple chi-square endpoints even
though this is a common set of test endpoints encountered in biomedical research contexts. For ex-
ample, generalized linear models may be used to model mortality using a large predictor variable set.
Additionally, multiple gene mutations may be simultaneously assessed for association with a particular
disease outcome. Both of these common research contexts would warrant use of a multiplicity control
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that can account for dependency in an efficient and effective manner. In particular, in high-dimensional
data settings, use of multiple chi-square tests is quite common, but the use of, and need for, multiplicity
adjustments may be unclear to many practitioners. However, either misusing or omitting multiplicity
adjustments in these settings affects the reproducibility of research results, and can easily lead to spu-
rious statistical significance declarations.

The purpose of this manuscript is to present a flexible, closed-form method for controlling the
family-wise error rate for high-dimensional chi-square endpoints utilized in simultaneous testing or in-
tervals. This is a critical setting for strict multiplicity control of type I error since false positives among
large sets of associations can easily produce research results that are ultimately non-reproducible. Ad-
ditionally, this procedure is adaptive to any positive definite correlation structure, thus is flexible to
most any correlation structure encountered in practice. The method may be used to construct simulta-
neous intervals that control type I error and provides information about the practical significance of the
test results. Note that the Bonferroni adjustment is currently the only easily accessible method for this
general case. The proposed procedure, however, is theoretically and empirically shown to be less con-
servative than Bonferroni and easily attains FWER control even with complex correlation structures
among the test endpoints. This proposed method may be used to complement data reduction methods
to achieve reliable, reproducible and powerful research results when many chi-square test endpoints
are simultaneously evaluated. The application in the conclusion of this manuscript illustrates one such
use. Additionally, the proposed method is fast, simple, and completely general. Thus, it may be uti-
lized for settings where the chi-square endpoints are correlated or uncorrelated for both high and low
dimensions.

While resampling or simulation-based methods are a viable alternative for some scenarios, these
methods can be difficult to implement in practice. This is particularly true for high-dimensional settings
where resampling or simulation-based methods can be time consuming. The strength of resampling
and simulation-based methods is that they provide a joint, rather than margin-based, solution. Two
accessible options for implementing resampling-based multiplicity control in R [?] are the multtest [?],
multcomp [?], and SiMaFlex [?] packages. Using a resampling or simulation-based approach is a gold
standard, but may not be practical in every setting or circumstance.

Our goal is to provide a method that is simple to implement, even for practitioners with little sta-
tistical programming experience, but that still provides close to optimal family-wise error rate control
for most settings. (We note that in some of these areas multiplicity adjustments of any kind, although
warranted, are often omitted, so a method that is simple to utilize may be easier to promote.) Ad-
ditionally, many data-intensive applications could require computation of a large number of critical
points, justifying the need for a more efficient approach. This would be warranted if multiple inde-
pendent subsets of test endpoints are selected for separate analysis. As the simulations demonstrate,
the proposed critical values are often close to the resampling or simulation-based critical values when
the correlations between endpoints is moderate to low. Thus, we recommend the proposed method for
settings when a fast or simple method is warranted. However, resampling or simulation-based methods
may be preferred for other scenarios.

In review, the purpose of this manuscript is to propose an easily implemented approach for con-
trolling the familywise error rate for many chi-square distributed test endpoints. The remainder of
the manuscript is organized as follows: in Section 2 we provide a review of probability-based multi-
plicity adjustments, in Section 3 we describe the proposed methodology, in Section 4 we present the
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simulation results, and in Section 5 we discuss implications for research and practice.

2. Background

When conducting multiple tests of association, there are many approaches a practitioner may take.
First, control of the familywise type I error rate (FWER) or the false discovery rate (FDR) are both
reasonable approaches. Generally, the choice of which error rate to control depends on the nature of the
study. Confirmatory studies that require overall conclusions involving multiple parameters generally
utilize FWER control, while exploratory studies with many possible signals more often utilize FDR
control. Control of the FDR, as first proposed by [?], is widely used for studies involving a large
number of association tests. The FDR methodology is flexible as it is applicable to cases where the test
statistics are dependent [?]. When there are a large number of test statistics and results are exploratory,
rather than confirmatory, in nature, controlling the FDR for tests of association is very reasonable
and effective. Many have worked on improving the performance of the FDR method with a focus on
association tests.

In addition to the type of error control of interest, practitioners must consider whether the data
warrants marginal or joint multiplicity control. Marginal control implies that the test statistics are
assumed independent and, thus, the rejection regions are selected based only on the marginal test
statistics. In contrast, joint control methods incorporate a dependency structure into the multiplicity
control and the rejection region is defined based on a joint distribution with a particular dependency
structure. In cases where the dependencies among the test statistics are substantial, a joint procedure
is usually preferred. A related issue for consideration is also whether the multiplicity control uses a
single-step or stepwise approach. A single-step approach provides a rejection region that is independent
of the full set of test statistics while, in contrast, a stepwise approach takes into account the result of
other test statistics in the family of inference. For stepwise approaches, testing the null hypothesis
while taking into account the outcomes of related tests informs the null distribution used to define the
rejection region and can lead to more powerful results.

While FDR control is advantageous in many settings, for a small set of inferences, controlling type
I error provides a confirmatory set of inferences. Strict type I error control can often be achieved
with reasonable power and minimal assumptions by utilizing the Bonferroni procedure. However,
when the set of comparisons is large, this procedure quickly becomes too conservative, warranting
more powerful bounds. When a multivariate normal distribution is an appropriate assumption, there
are many methods that utilize arbitrary correlation structures to provide increased power. Some have
made use of a minimal spanning tree approach ([?]; [?]) and others use tube approximation algorithms
to achieve increased power ([?]; [?]; [?]). Additionally, many authors have considered alternatives for
non-normal correlated endpoints, such as binary outcomes ([?]), non-normal continuous endpoints([?];
[?]), a combination of test endpoints ([?]; [?]), or generally discrete outcomes ([?]). When the distribu-
tion is specifically multivariate chi-square, however, the options are more limited. Resampling-based
methods provide one alternative. Westfall & Tobias [?] and Westfall & Troendle [?] provide some
resampling-based options. However, although these resampling-based procedures deliver strong so-
lutions in almost any setting, they can be computationally demanding ([?], p.3) and computation of
interval-based inferences is not always supported.

Simulation of critical values is also a reasonable approach, but implementation is often far from
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direct, and can again be computationally intensive when considering large sets of inference. Stange
et al. [?] provides another alternative that is closely related to the proposed procedure. This approach
can be applied to multiple test endpoints with a multivariate chi-square distribution for situations with
a low factorial correlation structure (defined in Stange et al.). This method requires a three-step pro-
cess: 1) evaluation of the correlation matrix to ensure it is m-factorial, 2) numerical integration of
often high-dimensional chi-square probability functions, and 3) approximation of a series to complete
the multivariate probability calculations. For simple, one-factorial correlation matrices, this proposed
method is efficient and highly accurate. However, the Stange method is computationally demanding
and can exhibit significant approximation errors for moderately to highly complex correlation struc-
tures, is not applicable to all correlation structures, and is only available in MATLAB environments.
In contrast, the proposed method may be implemented in R [?], applies to all correlation structures, is
more computationally efficient than resampling or simulation-based procedures, Stange et al., or direct
simulation, and is often just as accurate, although there are situations where it can behave conserva-
tively.

A comprehensive overview and framework of approaches for error control in association testing
is presented in [?]. While all of the above described considerations needs to be well thought out for
each family of inference, we focus just on one particular type of multiplicity control. In particular, for
this paper, we present a joint single-step quantile-based procedure that will control type I error and is
flexible to any positive definite correlation structure derived from the test statistics.

3. Methodology

Recall that our goal is to provide a fast and simple probability point that allows evaluation of si-
multaneous tests or calculation of simultaneous intervals for a group of m test endpoints that follow
a multivariate chi-square distribution with ν degrees of freedom and any set of off-diagonal bivariate
correlations, Corr(Yi,Y j) = ρi j. A conservative solution to this probability can be achieved by utilizing
the probability inequality that provides the rationale for the Hunter-Worsley method for multivariate
normal or multivariate-t distributional settings. Suppose that we wish to perform m simultaneous tests
based on test statistics, Yi, i=1, . . . ,m, where the joint distribution is the multivariate chi-square dis-
tribution, and where large values of Yi, i=1, . . . ,m are in favor of the alternatives. For this purpose,
we denote the set of null hypotheses by {H1,H2, . . . ,Hm} where each Hi is a true null hypothesis test
for a test statistic Yi using critical point c and spanning 1, . . . ,m. Then one solution to the multiplicity
problem of interest would involve finding a probability point c where for Ai = {|Yi| > c}, P(∪m

i=1Ai) ≤ α
and α is the desired type I error rate. (Adjustments for other common situations are easily made.)
Thus, if we find a point c where the right-hand side of Equation (??) is equal to α, then we have a
conservative solution to the problem. This is accomplished by finding an upper (or exact) bound for
P(∪m

i=1Ai) where Ai = {|Yi| > c} denotes that an error has occurred with the results of the ith hypothesis
test or confidence interval under the null. In order to bound this probability, the following inequality is
useful,

P(
m⋃

i=1

Ai) ≤
k∑

i=1

P(Ai) −
∑

(i, j)∈τ

P(Ai

⋂
A j). (3.1)

Here τ is a non-cyclical tree or subgraph of G, a family of graphs formed from the set of nodes Ai with
branches given by the intersections AiA j. While this upper bound is applicable for any tree, utilizing the
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minimal spanning tree will yield the lowest upper bound with regards to the tree. Details on applying
this tree to the multivariate chi-square setting are provided below.

Note that application of the above bound is computationally efficient since it only requires cal-
culation of univariate and bivariate probabilities. Moreover, the proposed algorithm is guaranteed to
improve upon the Bonferroni bound in all cases except when the events are mutually exclusive, where
it is equivalent to the Bonferroni bound. We note that using this procedure requires a covariance matrix
with a stable estimator. In contrast to Strange et al, users will not need to evaluate whether the covari-
ance estimate is m-factorial. Instead, for any application with a large sample size, users only need to
obtain a consistent estimator for the covariance matrix. For the bivariate chi-square distribution used in
the proposed method, the bivariate probability functions are increasing in ρi j for all i, j = 1, . . . ,m with
i , j. Thus, for these distributions, the bound given in Equation (??) allows for a single evaluation of
the optimal τ that will maximize the second term in the left-hand side of Equation (??) for all possible
c values. This is a significant savings in computational intensity, as evaluating the left-hand side for
various values of c does not require determining a new τ. However, evaluation of the right-hand side of
Equation (??) will require calculation of bivariate chi-square probabilities. With regards to calculation,
the algorithm utilized for approximating the quantiles from the bivariate chi-square distribution will
produce reliable estimates to within five decimal places until the magnitude of the pairwise correlation
exceeds 0.95 [?]. Results for the estimation of the bivariate chi-square quantiles were evaluated prior
to application of the spanning tree algorithm to the above probability distribution functions. A more
detailed description of the bivariate distribution function and an algorithm to find the minimal spanning
tree for this situation are provided below.

3.1. Bivariate chi-square distributions

Consider two ν-dimensional multivariate standard normal random vectors, Zi = (Zi1 , . . . ,Ziν) for
i = 1, 2 with ν non-zero canonical correlations between Z1 j and Z2 j . Then Yi =

∑ν
( j=1) Z2

i j, i = 1, 2, are
distributed as canonically correlated chi-square random variables with ν degrees of freedom. Krish-
naiah (1980) derived the joint chi-square density function for (Y1,Y2). Using this density, the (1 − α)
quantile c, i.e., P(Y1 ≤ c,Y2 ≤ c) = 1 − α, may be calculated using numerical integration. We will
utilize the cumulative distribution function given by the following, where we assume that c1=c2=c,
gamma is the incomplete gamma function, c∗ = c

(2(1−ρ2
12)) for i=1, 2, and Corr(Y1,Y2) = ρ12.

P(Y1 ≤ c1,Y2 ≤ c) = (1 − ρ2
12)(−ν/2)

∞∑
( j=0)

1
Γ(ν/2 + j)Γ( j + 1)

ρ
2 j
12γ(ν/2 + i, c∗)γ(ν/2 + i, c∗) (3.2)

When the Yi do not have the same degrees of freedom, an alternative version of the distribution
function is available [?]. For the purposes of the proposed Hunter-Worsley approximation, the above
density and algorithm for numerically approximating the quantiles were coded in R [?]. In the code, the
sum in Equation (??) was truncated after 150 terms and the secant method was used to find the desired
quantile of the bivariate distribution function. All calculations in R matched the quantiles given in [?]
to within five decimal places, hence reasonable accuracy and precision was achieved.

It is important to note that, for the chi-square distribution function given in [?], P(Y1 ≤ c1,Y2 ≤ c2)
depends on i and j only through ρi j and is non-decreasing in |ρi j|. This can be proven analytically by
taking the partial derivative of Equation (??) with respect to ρi j. Given these properties, the distribution
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in Equation (??) may be utilized to approximate any set of intersection probabilities in the same manner
utilized by both [?] and [?] for the t and normal distributions, i.e., the spanning tree need only be
obtained once.

3.2. Minimal spanning tree algorithm applied to chi-square endpoints

By utilizing Equation (??), a conservative multiplicity-adjusted critical value appropriate in chi-
square settings may be obtained. As discussed previously, the branches of τ may be solved by utilizing
the maximal spanning tree algorithm of [?] where the edge weights are the branches ρi j. The correla-
tion, ρi j, is the appropriate edge weight when utilizing the maximal spanning tree algorithm since the
P(Y1 ≤ c,Y2 ≤ c) is nondecreasing in ρi j. In particular, this set of branches will maximize the right-
hand side of Equation (??) for any positive value c. Using the adjusted critical value c often results
in considerable gains in computational efficiency, particularly since simulation or resampling-based
approaches would require a non-efficient recalculation of the critical point for each set of comparisons.
The algorithm for obtaining τ is as follows:

1. Choose any Ai from the set of unconnected nodes
2. Find the largest ρi j so that Ai is an unconnected node and A j is a connected node and join these

nodes
3. Repeat steps 1) and 2) until no node is unconnected and there are no cycles.

Ultimately, a root-finding algorithm (e.g., secant method) can be utilized to obtain a constant c
such that the right hand side of Equation (??) is approximately α. For the secant method, the con-
vergence criterion for determining the critical point c was 1x10−5. We note that the CPU time for the
proposed procedure is quite low, even for large sets of comparisons. For example, running R 4.0.0 on a
Windows-based PC for m=10,000 endpoints, the proposed procedure required 7.97 seconds of elapsed
time, while the simulated critical point, using 100,000 simulated data sets to approximate the critical
value, required 149.7 seconds of elapsed time. Clearly, this proposed procedure delivers considerable
computational efficiency when computing even a single critical point. However, when practitioners
identify multiple mutually independent sets of inference, the proposed procedure is even more helpful,
due to its accessibility and greatly decreased computational cost. In addition to advantages with re-
gards to the computational cost, the critical point obtained using this procedure will always be less than
or equal to the Bonferroni adjusted critical value and is almost always nearly identical to the simulated
critical point, thus providing near optimal power for the inferences.

4. Simulations

In order to assess the performance of the derived critical point, the empirical family-wise error rate
(eFWER) and relative efficiencies (RE) are examined for various settings. The REs, the ratio of the
square of the Bonferroni and the Hunter-Worsley chi-square critical points, are reported for various cor-
relation structures and values of m and ν. In order to facilitate comparison of a simulation-based critical
value and the proposed critical point, REs are also computed to compare these values. Following the
RE results, the eFWER is reported for these same settings. Both the Hunter-Worsley and Bonferroni
critical points are always guaranteed to be conservative and are easily accessible options for multiplic-
ity control in this general setting, but also require very little input from the end user. Consequently,
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primary interest focuses on the REs, rather than the eFWERs of the two critical points. However, in or-
der to compare the error rates of the proposed procedure to a simulation-based method and commonly
utilized marginal multiplicity control methods (Holm, Hochberg, and Sidak), the eFWER is reported
for each of these four additional procedures.

For the RE and eFWER evaluations, varied types of covariance structures are considered: an AR(1)
structure, a compound symmetric structure and a block diagonal structure. These structures were con-
sidered due to their explanatory simplicity and relevance to applied settings. For example, a compound
symmetric structure pertains to a case where a latent trait of a condition is determining the presence of
a set of gene mutations. In this case, if any single gene mutation is activated, it increases the probability
of a subset of these gene mutations as well. This may hold only for a subset of mutations, in which
case, a block diagonal correlation structure is appropriate. Finally, an auto-regressive structure applies
to cases where the latent variable decays over time across features. This is also a common scenario
encountered in practice.

Data is generated for these specific correlation structures and, under the assumption of the null
hypothesis, tested to see how many simulated data sets result in at least one type I error. We investigate
sample sizes of n =100, 500, and 1000, test endpoint numbers of m =500 and 1000, for each of the
three correlation structures (compound symmetric, autoregressive, and block diagonal structures). For
each correlation matrix, ρ is set in the following manner: for a compound symmetric structure, ρii = 1
and the off-diagonals are ρi j = ρ, an AR(1) structure, where the diagonal elements are ρii = 1 and
the off-diagonals are ρi j = ρ|i− j|, respectively, for i, j = 1, . . . ,m, i , j, and a block diagonal structure
where subsets of off-diagonal elements are ρ and the diagonal elements are 1. For all settings, the
values ρ= 0, 0.3, 0.5, and 0.7 are considered.

The correlated multivariate chi-square random variables are generated using the following algo-
rithm. First, using a given correlation matrix (V), the eigenvalues (l) and eigenvectors (U) are extracted
from the structure. Then using the eigenvalue diagonal matrix L = diag(l) and eigenvector matrix U,
Y = [U′X]

′

[U′X] is a multivariate set of correlated chi-square random variables provided that X is a
multivariate normal set of centered random variables with correlation structure L. Simulations con-
firm the correlation structure and mean were accurately approximated for each setting investigated to
within an error of 0.001. In all cases, 10,000 replications are performed. This ensures that the eFWER
is estimated accurately to within 0.001. Simulations confirm the correlation structure and mean were
accurately approximated for each setting investigated to within an error of 0.001. In all cases, 1000
replications are performed. This ensures that the eFWER is estimated accurately to within 0.001. All
simulations were performed in R [?].

5. Results

In all of the results presented, line plots are utilized for ease of viewing. However, these plots are
not meant to imply that the statistic is linear between the respective plotting points.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 4971–4986.



4978

5.1. Relative Efficiency Results

5.1.1. Fixed correlation structure REs

For simulating the multivariate chi-square data, the correlation structures are fixed and are also used
as a basis for later random generation. Each of these correlation structures are investigated for m=500,
1000 and for ν=1. Other degrees of freedom (ν = 10 and 30) were also investigated with very similar
results to when ν =1 and are omitted from presentation. Whenever REs compare the proposed point to
the Bonferroni or simulated critical points, the RE is labeled b.h and s.h, respectively.

Figure 1. Mean relative efficiencies (RE) plotted against ρ with m=500 and 1000, sample
sizes n =100, 500 and 1000, and line type indicating correlation structures block diagonal
(BD), compound symmetric (CS), and autoregressive (AR1).

Figure 1 displays the RE values comparing the Hunter-Worsley chi-square critical values to the
Bonferroni and simulation-based critical values. These are plotted against the ρ used to generate the
correlation structure with the line type indicating the correlation structure (compound symmetric (CS),
autoregressive (AR1) or block diagonal (BD)). The plots are stratified by the number of endpoints
(m=500 and 1000) and sample size (n=500 and 1000). In general, as the magnitude of ρ and the number
of comparisons increase, the RE for Bonferroni (b.h) also increases. There is also an increase in the
RE values for Bonferroni as the degrees of freedom increases. The RE for Bonferroni gains ranged
anywhere from 0% to 11% (when ρ = 0.7), with the largest gains in efficiency consistently occurring
when ρ is greater than 0.3 in magnitude. Whenever ρ is very close to zero, the RE for Bonferroni gain
is also close to 0, indicating a negligible gain in using the Hunter-Worsley as opposed to the Bonferroni
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critical point. These general Bonferroni results hold for the AR(1), block diagonal (BD) and compound
symmetric (CS) structures. With regard to the simulated critical point comparisons, there are two
cases where the critical point using simulation has a clear advantage. When there is a block diagonal
(BD) structure at lower levels of dependency (ρ < 0.3), there is a slight improvement with using the
simulation-based critical point. Also, for the compound symmetric structure, the simulation-based
critical point provides far more power than the proposed critical point. However, for the AR(1) and
BD structures, the simulated and proposed critical points have similar values and, hence, the REs are
close to 1.

5.1.2. Random correlation structure REs

In order to better simulate real-world covariance structures, we also use random correlation struc-
tures to see how varying levels of noise in the generation of the correlation structures affects perfor-
mance. In the following, whenever correlation matrices are randomly generated, 100,000 simulated
values are utilized to simulate the correlation matrix. In order to accomplish this for a specific correla-
tion matrix (of types AR(1), BD or CS), a Wishart random variable is generated in R using the rWishart
function [?] with either νW=500 or 1000 degrees of freedom for the Wishart distribution, creating high
and low amounts of noise, respectively, in the correlation matrix. However, in the following, only the
results using 1000 degrees of freedom are presented since the results were almost identical for both
values of νW .

5.2. Random correlation structures

For each iteration of the simulations, a unique randomly generated correlation matrix is produced,
which, correspondingly, results in a unique RE for comparing the proposed critical point to the Bon-
ferroni and simulated critical points (labeled b.h and s.h in the plots) for that specific correlation ma-
trix. Consequently, the RE values presented in Figures 2 and 4 are mean values. We note that the
observed correlation matrices include some negative off-diagonal elements, but were positive definite
and no problems arose randomly generating Wishart random variables based on these. In all the figures
presented in the remaining sections, only the results for the randomly generated Wishart correlation
matrices with a high level of variation are displayed, since these results are very similar to those as-
suming a low amount of variation. Figure 2 shows the mean RE values (b.h and s.h) for the AR(1), CS
and BD structures where Wishart random variables with high noise are used to provide random corre-
lation matrices. In general, these display a very similar pattern to the results when a fixed correlation
structure is employed, as the RE increases with the number of comparisons and ρ, with the exception
of the CS structure when comparing the simulation-based critical point to the proposed critical point.
With the exception of this case, the RE values ranged from 0% to 12%. The results are very similar to
the fixed correlation structure results and demonstrate that the method is stable even in the presence of
high noise.

5.3. eFWER simulation results

In this section, the empirical family-wise error rates (eFWERs) are examined for each of the pre-
viously described data settings. The eFWER is defined to be the proportion of times that at least one
of the Yi, (i=1,. . . ,m) exceeds the critical value. Since it is known that the proposed critical point will
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Figure 2. Mean relative efficiencies (RE) plotted against ρ with m=500 and 1000, sample
sizes n =100, 500 and 1000, and line type indicating random correlation structures block
diagonal (BD), compound symmetric (CS), and autoregressive (AR1).

be conservative, the eFWERs are assessed in order to gauge how conservative the proposed critical
points are in varied settings. In order to evaluate the eFWER, the following procedure is utilized for
generating correlated chi-square distributed endpoints. Data is generated to conform to a particular
fixed correlation structure, degrees of freedom, and number of comparisons of interest. The generated
vector of correlated chi-square responses was then evaluated for significance using the Hunter-Worsley
chi-square critical point as well as the Bonferroni-adjusted, simulation-based, Holm, Hochberg, and
Sidak based critical points.

5.3.1. Fixed correlation structure eFWER results

For 10,000 simulated data sets, we expect a procedure with a 5% FWER to be within 0.004 of
0.05. Figure 3 presents the eFWER for the fixed AR(1), BD and CS correlation structures across
various ρ and m values. The simulations confirm that the Hunter-Worsley eFWER never exceeds a
margin of error of 5%. However, there are instances where the Hunter-Worsley eFWER fell below
the margin of error for 5% FWER, e.g. behaved conservatively. This occurs when ρ > 0.5 and, as
stated, the Bonferroni method always produces an even lower eFWER in each case. In general, higher
correlations result in lower eFWERs. However, as confirmed by the RE results, the largest gain in using
the Hunter-Worsley critical point over the Bonferroni critical point occurs at these higher correlation
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Figure 3. Empirical family-wise error rates (eFWER) plotted against ρ with m=500 and
1000, for fixed correlation matrices (BD, AR(1) and CS), line type indicating method.

settings. We observed the distribution of empirical error rates for the simulations and found that the
proposed Hunter-Worsley method is on average closer to the desired error rate of 5% without becoming
liberal.

At these higher correlation settings, it is also of interest to consider the use of a simulated critical
point. Simulations indicate that the proposed Hunter-Worsley approximation performs similarly to the
simulated critical point at low levels of correlation (ρ < 0.5) and for BD and AR(1) correlation struc-
tures. However, note that the marginal (Holm, Hochberg and Sidak) and simulated procedures maintain
more power for CS structures at higher (ρ > 0.5) correlations. Simulations confirm that the proposed
method is always within the error anticipated for the empirical error rates except for these cases of the
CS structure (Note : We identify empirical error rates as differing from whenever they exceed the ex-
pected sampling error (2 x

√
((0.05 ∗ 0.95)/1000)= 0.014). We note that only 10,000 simulated critical

values were utilized for comparing the simulated critical point to the proposed critical point due to the
computational burden of the evaluation. Moreover, in order to achieve similar results for the simulated
critical value, we had to compute 100,000 distributions from which the maximum is retained to find
the simulated critical point. This is computationally intensive and not a straightforward analysis that
would be accessible to practitioners. In all cases, use of the proposed Hunter-Worsley critical point is
justified since it is computationally less demanding and results in empirical error rates that are within
the expected sampling error limits. Moreover, since this method is available as an R function, it is
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accessible to end users with only an assumed overall error rate, an exact or estimated correlation or
covariance matrix, and a set of planned comparisons. This analysis would fit well within existing com-
puting structures for linear and generalized linear models in R and could easily be streamlined within
a project workflow. Hence, given the evidence from these simulations that our proposed efficient crit-
ical point performs similarly to simulated values for BD and AR(1) structures, we suggest using our
proposed method in place of the simulated point.

5.3.2. Random correlation structure eFWER results

When evaluating the randomly generated CS, BD and AR(1) structures, the eFWERs have a similar
pattern to that observed for the fixed correlation structures. Hence, these results are not provided in a
figure. However, Figure 5 displays the mean eFWERs when using the Hunter-Worsley and Bonferroni
critical points for the three correlation matrices plotted against the degrees of freedom for the chi-
square endpoints. The proposed critical point is always less conservative than the Bonferroni method
and still controls the FWER. However, when comparing the proposed method to a simulation-based
correction, the results are similar except for the higher levels of ρ with a CS dependency structure. In
this case, the simulation-based or a marginal approach (Holm, Hochberg or Sidak) have more power.

Figure 4. Mean empirical family-wise error rates (eFWER) plotted against degrees of free-
dom with randomly generated correlation matrices (CS, BD and AR(1)) and line type indi-
cating method.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 4971–4986.



4983

6. Application

This application uses data from a genome-wide association study with the objective of identify-
ing exonic variants that play a role in a specific form of leukemia. The mode of analysis involves
Fisher exact tests on 1061 variants with 30 total subjects, 20 of which served as controls and 10 with
leukemia. In order to apply an appropriate multiplicity control method, a salient dependence structure
must be well-defined. With this aim in mind, we consider using two possible dependency structures
in order to apply the proposed multiplicity correction: Case 1) the standard covariance matrix esti-
mated using a subset of the full data that focuses on those occurring on a selected list of cancer-related
gene mutations, and Case 2) a dimension-reduced version derived from a hierarchical agglomerative
clustering algorithm. We demonstrate both approaches in order to show how the proposed procedure
could be combined with a dimension-reduction algorithm to further increase the power of the multi-
plicity correction. First, the covariance matrix for the 93 kinome variants is estimated. Second, the
gene mutations were grouped using a hierarchical agglomerative algorithm as described in [?]. This
algorithm identified 8 clusters using the linkage disequilibrium structure of the variants that are related
to this form of leukemia. Following this clustering of the variants, we performed multiple testing on
the aggregated predictors to test associations. Then, the covariance matrix was estimated based on
this dimension-reduced set and utilized with the proposed algorithm. When using Case 1 variants, the
adjusted critical value was c =11.21 and, when using the reduced set of 8 gene variants clusters from
Case 2, the critical value reduced to c =6.51. Using the Case 1 critical point, 13 of the 92 variants were
significant and using the Case 2 critical point, there are 13 significant variants. Note that both of these
critical points are more powerful alternatives than a standard Bonferroni adjusted critical point which,
in this case, would be 11.98. The computational time for obtaining the adjusted critical values was less
than 3 seconds and clearly would not provide a burden to the researcher, even if there were multiple
subsets of variants to assess independently.

We note that use of this proposed methodology extends well beyond the presented genomics ap-
plication. There are multiple contexts that warrant use of a multiplicity adjustment for model or non-
model based chi-square test endpoints being simultaneously evaluated. Just of a few of these include
model re-specification tests for structural equation modeling, general model comparison tests, or any
study involving categorical variables that might be jointly assessed in a log linear association model.
These analytic approaches can occur across a range of disciplinary contexts and might involve smaller
or large scale inference sets. The appeal of this method is that it can be used in most any context and
with little computational load.

7. Conclusion

This manuscript presents a multiplicity correction suitable for many modes of analysis that involves
chi-square distributed endpoints. This method is more efficient than the Bonferroni critical point,
often is as effective as a simulated critical point, and is easy to employ. However, for a compound
symmetric structure with higher correlation, a different marginal method or simulation-based method
would be a better choice. In the above section, this proposed multiplicity correction is applied to a
setting where multiple association tests could be utilized. However, researchers could alternatively
present score tests resulting from an estimated generalized linear model in this setting, such as Rao’s
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score test ([?]; [?]), Pearson’s test ([?]; [?]). The proposed method is applicable to either mode of
analysis. Clearly this multiplicity correction is suitable in a wide variety of settings involving chi-
square distributed endpoints, including multiple association tests, model fit tests, or score-based tests
in generalized linear model (GLM) settings. The multiplicity adjustment may also be utilized to obtain
both multiplicity corrections for test results or to construct simultaneous confidence intervals.

With regards to the proposed critical point itself, it is known that existing methods are either quite
conservative (a.k.a. Bonferroni), difficult to employ, or computationally intensive (a.k.a., simulation or
resampling-based methods). The proposed methodology is easy for practitioners to use, more powerful
than the Bonferroni adjustment, and is also easily accessible via an R function, available upon request
of the first author. The simulations performed indicate that there are many settings where the proposed
Hunter-Worsley chi-square critical point is far more efficient than the Bonferroni adjusted critical point.
It also performs very similarly to the simulated critical point for many settings. First, whenever there
is a significant amount of correlation between the endpoints (e.g., whenever the ρ exceeds 0.3), the
Hunter-Worsley adjusted critical point is more efficient than the Bonferroni critical point, regardless of
correlation structure, number of comparisons, or degrees of freedom. Also, even when there is no cor-
relation between the endpoints, the proposed critical point effectively controls the FWER. In contrast, a
compound symmetric correlation structure with ρ less than 0.7 or an AR(1) correlation structure with ρ
less than 0.9 results in negligible empirical error rate differences when comparing the simulated versus
Hunter-Worsley approaches. Moreover, since the Hunter-Worsley critical point is faster and easier to
implement, we suggest utilizing it in these settings. It is worth noting that for non-statisticians, the
simulation-based critical points are more difficult to employ because they require more background
knowledge and considerable computing power, particularly in high-dimensional settings. In contrast,
the Hunter-Worsley procedure is available to end-users via R code and only requires an exact or esti-
mated correlation matrix for the data, significance level, and degrees of freedom. Consequently, the
proposed critical point is readily accessible, and may be applied to any general setting where a mul-
tiplicity adjustment is warranted and chi-square distributed endpoints are utilized. The simulations
demonstrate that the Hunter-Worsley adjusted critical point is at least as effective as, and often con-
siderably more effective than, other easily accessible multiplicity correction methods except for highly
dependent compound symmetric data where this procedure lacks power. Table 1 provides a summary
of recommendations for practitioners.

The proposed procedure is efficient and controls the type I error rate with more power than a Bonfer-
roni correction. The method is particularly well-suited for, and flexible to, many dependence structures
of the test statistics. Additionally the type I error control of the method provides increased confidence

Table 1. Practical Recommendations for FWER Control.

Low level of dependence High level of dependence
m < 10 Marginal or joint methods: Joint methods:

Bonferroni or similar Resampling/Simulation or proposed
10 ≤ m ≤ 100 Joint methods: Joint methods:

Resampling or proposed Resampling/Simulation or proposed
m > 100 Joint or partially-joint methods: Joint methods:

Proposed
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that research results will be reproducible.
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