This paper presents an optimization model for assigning a set of arrival and departure flights to multiple runways and determining their actual times with consideration of incursions. Due to the lack of data, fuzzy incursion time is used to describe the uncertainty with the help of artificial experience. Moreover, the multiple-goal priority considerations of air traffic controllers are also fully considered in this model. The two objectives are to simultaneously minimize delays in arrival and departure flights. Since this problem is NP-hard, a novel polynomial algorithm based on queuing theory is also proposed to obtain acceptable solutions efficiently. Finally, a real-world example is provided to analyze the effect of different times and places of incursion events on the scheduling scheme, which can verify the correctness of the model. Results show that higher runway incursion times lead to longer queue lengths for take-off and landing flights, resulting in more flight delays.
Citation: Bo Sun, Ming Wei, Binbin Jing. Optimal model for the aircraft arrival and departure scheduling problem with fuzzy runway incursion time[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 6724-6738. doi: 10.3934/mbe.2021334
[1] | Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024 |
[2] | Churni Gupta, Necibe Tuncer, Maia Martcheva . A network immuno-epidemiological model of HIV and opioid epidemics. Mathematical Biosciences and Engineering, 2023, 20(2): 4040-4068. doi: 10.3934/mbe.2023189 |
[3] | Nawei Chen, Shenglong Chen, Xiaoyu Li, Zhiming Li . Modelling and analysis of the HIV/AIDS epidemic with fast and slow asymptomatic infections in China from 2008 to 2021. Mathematical Biosciences and Engineering, 2023, 20(12): 20770-20794. doi: 10.3934/mbe.2023919 |
[4] | Yilong Li, Shigui Ruan, Dongmei Xiao . The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences and Engineering, 2011, 8(4): 999-1018. doi: 10.3934/mbe.2011.8.999 |
[5] | Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675 |
[6] | Pride Duve, Samuel Charles, Justin Munyakazi, Renke Lühken, Peter Witbooi . A mathematical model for malaria disease dynamics with vaccination and infected immigrants. Mathematical Biosciences and Engineering, 2024, 21(1): 1082-1109. doi: 10.3934/mbe.2024045 |
[7] | Lih-Ing W. Roeger, Z. Feng, Carlos Castillo-Chávez . Modeling TB and HIV co-infections. Mathematical Biosciences and Engineering, 2009, 6(4): 815-837. doi: 10.3934/mbe.2009.6.815 |
[8] | Qian Ding, Jian Liu, Zhiming Guo . Dynamics of a malaria infection model with time delay. Mathematical Biosciences and Engineering, 2019, 16(5): 4885-4907. doi: 10.3934/mbe.2019246 |
[9] | Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song . Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences and Engineering, 2008, 5(1): 145-174. doi: 10.3934/mbe.2008.5.145 |
[10] | Churni Gupta, Necibe Tuncer, Maia Martcheva . Immuno-epidemiological co-affection model of HIV infection and opioid addiction. Mathematical Biosciences and Engineering, 2022, 19(4): 3636-3672. doi: 10.3934/mbe.2022168 |
This paper presents an optimization model for assigning a set of arrival and departure flights to multiple runways and determining their actual times with consideration of incursions. Due to the lack of data, fuzzy incursion time is used to describe the uncertainty with the help of artificial experience. Moreover, the multiple-goal priority considerations of air traffic controllers are also fully considered in this model. The two objectives are to simultaneously minimize delays in arrival and departure flights. Since this problem is NP-hard, a novel polynomial algorithm based on queuing theory is also proposed to obtain acceptable solutions efficiently. Finally, a real-world example is provided to analyze the effect of different times and places of incursion events on the scheduling scheme, which can verify the correctness of the model. Results show that higher runway incursion times lead to longer queue lengths for take-off and landing flights, resulting in more flight delays.
[1] | X. M. Dai, J. F. Zhang, P. L. Zhao, Study on multi-objective optimization of aircraft departure sequencing, J. Harbin Uni. Com. (Nat. Sci. Ed.), 35 (2019), 241-245. |
[2] |
K. K. H. Ng, C. K. M. Lee, F. T. S. Chan, Y. Qin, Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach, Transp. Res. Part E: Logist. Transp. Rev., 106 (2017), 115-136. doi: 10.1016/j.tre.2017.08.006
![]() |
[3] |
B. Sun, M. Wei, W. Wu, B. B. Jing, A novel group decision making method for airport operational risk management, Math. Biosci. Eng. 17 (2020), 2402-2417. doi: 10.3934/mbe.2020130
![]() |
[4] | J. T. Zhang, W. J. Yang, The optimization based on priority for a mixed arrival-departure aircraft sequencing problem, Oper. Res. Manage. Sci., 27 (2018), 115-122. |
[5] | G. Q. Yuan, M. Q. Meng, C. P. Li, Transportation chance constrained model with fuzzy parameters, Appl. Mech. Mater., 135 (2012), 1193-1200. |
[6] | Y. F. Zhou, M. H. Hu, Y. Zhang, M. Y. Gao, An uncertainty analysis of arrival aircraft schedule based on Monte-Carlo simulation, J. Transp. Inf. Saf., 34 (2016), 22-28. |
[7] | M. Ahmed, S. Alam, M. Barlow, A cooperative co-evolutionary optimisation model for best-fit aircraft sequence and feasible runway configuration in a multi-runway airport, Aerospace, 5 (2018), 345-353. |
[8] |
A. Faye, Solving the aircraft landing problem with time discretization approach, Eur. J. Oper. Res., 242 (2015), 1028-1038. doi: 10.1016/j.ejor.2014.10.064
![]() |
[9] |
F. Farhadi, A. Ghoniem, M. Al-Salem, Runway capacity management-an empiricalstudy with application to Doha international airport, Transp. Res. Part E: Logist. Transp. Rev., 68 (2014), 53-63. doi: 10.1016/j.tre.2014.05.004
![]() |
[10] |
H. Nazini, T Sasikala, Simulating aircraft landing and takeoff scheduling in distributed framework environment using Hadoop file system, Cluster Comput., 22 (2019), 13463-13471. doi: 10.1007/s10586-018-1980-y
![]() |
[11] | L. Bianco, P. Dell'Olmo, S. Giordani, Scheduling models for air traffic control in terminal areas, J. Sched., 9 (2006), 180-197. |
[12] |
D. Briskorn, R. Stolletz, A dynamic programming approach for the aircraft landing problem with aircraft classes, Eur. J. Oper. Res., 243 (2015), 61-69. doi: 10.1016/j.ejor.2014.11.027
![]() |
[13] | R. G. Dear, The dynamic scheduling of aircraft in the near terminal area, Flight Transportation Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., 1976. |
[14] |
H. N. Psaraftis, A dynamic programming approach for sequencing identical groups of jobs, Oper. Res., 28 (1980), 1347-1359. doi: 10.1287/opre.28.6.1347
![]() |
[15] |
J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, D. Abramson, Scheduling aircraft landings-The static case, Transpor. Sci., 34 (2000), 180-197. doi: 10.1287/trsc.34.2.180.12302
![]() |
[16] |
V. J. Hansen, Genetic search methods in air traffic control, Comput. Oper. Res., 31 (2004), 445-459. doi: 10.1016/S0305-0548(02)00228-9
![]() |
[17] |
Y. H. Liu, A genetic local search algorithm with a threshold accepting mechanism for solving the runway dependent aircraft landing problem, Optim. Lett., 5 (2011), 229-245. doi: 10.1007/s11590-010-0203-0
![]() |
[18] |
A. Salehipour, M. Modarres, L. M. Naeni, An efficient hybrid meta-heuristic for aircraft landing problem, Comput. Oper. Res., 40 (2013), 207-213. doi: 10.1016/j.cor.2012.06.004
![]() |
[19] | G. Bencheikh, J. Boukachour, A. E. H. Alaoui, Improved ant colony algorithm to solve the aircraft landing problem, Int. J. Comput. Theory Eng., 3 (2011), 224-233. |
[20] | X. Meng, Z. Ping, L. Chunjin, Sliding window algorithm for aircraft landing problem, CCDC, (2011), 874-879. |
[21] |
M. Wei, B. Sun, W. Wu, B. B. Jing, A multiple objective optimization model for aircraft arrival and departure scheduling on multiple runway, Math. Biosci. Eng., 17 (2020), 5545-5560. doi: 10.3934/mbe.2020298
![]() |
[22] |
M. Samà, A. D'Ariano, F. Corman, D. Pacciarelli, Coordination of scheduling decisions in the management of airport airspace and taxiway operations, Transport. Res. Proc., 23 (2017), 246-262. doi: 10.1016/j.trpro.2017.05.015
![]() |
[23] |
G. SöLVELING, J. P. CLARKE, Scheduling of airport runway operations using stochastic branch and bound methods, Transp. Res. Part C: Emerg. Technol., 45 (2014), 119-137. doi: 10.1016/j.trc.2014.02.021
![]() |
[24] |
C. S. Venkatakrishnan, A. Barnett, A. M. Odoni, Landings at Logan airport: describing and increasing airport capacity, Transport. Sci., 27 (1993), 211-227. doi: 10.1287/trsc.27.3.211
![]() |
[25] | Z. N. Zhang, K. X. Liu, Arrival sequencing method based on the alternative routes, Math. Pract. Theory, 49 (2019), 191-198. |
[26] |
A. Ghoniem, F. Farhadi, M. Reihaneh, An accelerated branch-and-price algorithm for multiple-runway aircraft sequencing problems, Eur. J. Oper. Res., 246 (2015), 34-43. doi: 10.1016/j.ejor.2015.04.019
![]() |
[27] |
A. Ghoniem, F. Farhadi, A column generation approach for aircraft sequencing problems: a computational study, J. Oper. Res. Soc., 66 (2015), 1717-1729. doi: 10.1057/jors.2014.131
![]() |
[28] |
H. Balakrishnan, B. Chandran, Algorithms for scheduling runway operations under constrained position shifting, Oper. Res., 58 (2010), 1650-1665. doi: 10.1287/opre.1100.0869
![]() |
[29] |
Y. Ding, J. Valasek, Aircraft landing scheduling optimization for single runway noncontrolled airports: Static Case, J. Guid. Control Dyn., 30 (2007), 252-255. doi: 10.2514/1.20264
![]() |
[30] | F. Furini, M. P. Kidd, C. A. Persiani, P. Toth, State space reduced dynamic programming for the aircraft sequencing problem with constrained position shifting, ISCO, (2014), 267-279. |
[31] |
D. Harikiopoulo, N. Neogi, Polynomial-time feasibility condition for multiclass aircraft sequencing on a single-runway airport, IEEE Trans. Intell. Transp. Syst., 12 (2011), 2-14. doi: 10.1109/TITS.2010.2055856
![]() |
[32] |
A. Lieder, R. Stolletz, Scheduling aircraft take-offs and landings on interdependent and heterogeneous runways, Transp. Res. Part E: Logist. Transp. Rev., 88 (2016), 167-188. doi: 10.1016/j.tre.2016.01.015
![]() |
[33] |
M. A. Dulebenets, A novel memetic algorithm with a deterministic parameter control for efficient berth scheduling at marine container terminals, Marit. Bus. Rev., 2 (2017), 302-330. doi: 10.1108/MABR-04-2017-0012
![]() |
[34] |
Z. Z. Liu, Y. Wang, P. Q. Huang, AnD: A many-objective evolutionary algorithm with angle-based selection and shift-based density estimation, Inf. Sci., 509 (2020), 400-419. doi: 10.1016/j.ins.2018.06.063
![]() |
[35] |
J. Pasha, M. A. Dulebenets, M. Kavoosi, O. F. Abioye, H. Wang, W. Guo, An optimization model and solution algorithms for the vehicle routing problem with a "factory-in-a-box", IEEE Access, 8 (2020), 134743-134763. doi: 10.1109/ACCESS.2020.3010176
![]() |
[36] |
G. D'Angelo, R. Pilla, C. Tascini, S. Rampone, A proposal for distinguishing between bacterial and viral meningitis using genetic programming and decision trees, Soft Comput., 23 (2019), 11775-11791. doi: 10.1007/s00500-018-03729-y
![]() |
1. | K.O. Okosun, O.D. Makinde, A co-infection model of malaria and cholera diseases with optimal control, 2014, 258, 00255564, 19, 10.1016/j.mbs.2014.09.008 | |
2. | Temesgen Awoke, Semu Kassa, Optimal Control Strategy for TB-HIV/AIDS Co-Infection Model in the Presence of Behaviour Modification, 2018, 6, 2227-9717, 48, 10.3390/pr6050048 | |
3. | Farai Nyabadza, Senelani D. Hove-Musekwa, From heroin epidemics to methamphetamine epidemics: Modelling substance abuse in a South African province, 2010, 225, 00255564, 132, 10.1016/j.mbs.2010.03.002 | |
4. | S. Bowong, J. Kurths, Modelling Tuberculosis and Hepatitis B Co-infections, 2010, 5, 0973-5348, 196, 10.1051/mmnp/20105610 | |
5. | Samia Ghersheen, Vladimir Kozlov, Vladimir G. Tkachev, Uno Wennergren, Dynamical behaviour of SIR model with coinfection: The case of finite carrying capacity, 2019, 42, 0170-4214, 5805, 10.1002/mma.5671 | |
6. | A. Omame, D. Okuonghae, R.A. Umana, S.C. Inyama, Analysis of a co-infection model for HPV-TB, 2020, 77, 0307904X, 881, 10.1016/j.apm.2019.08.012 | |
7. | Xiulei Jin, Shuwan Jin, Daozhou Gao, Mathematical Analysis of the Ross–Macdonald Model with Quarantine, 2020, 82, 0092-8240, 10.1007/s11538-020-00723-0 | |
8. | Ibrahim M. ELmojtaba, J.Y.T. Mugisha, Mohsin H.A. Hashim, Mathematical analysis of the dynamics of visceral leishmaniasis in the Sudan, 2010, 217, 00963003, 2567, 10.1016/j.amc.2010.07.069 | |
9. | O.D. Makinde, K.O. Okosun, Impact of Chemo-therapy on Optimal Control of Malaria Disease with Infected Immigrants, 2011, 104, 03032647, 32, 10.1016/j.biosystems.2010.12.010 | |
10. | Peter Mpasho Mwamtobe, Simphiwe Mpumelelo Simelane, Shirley Abelman, Jean Michel Tchuenche, Optimal control of intervention strategies in malaria–tuberculosis co-infection with relapse, 2018, 11, 1793-5245, 1850017, 10.1142/S1793524518500171 | |
11. | E. Bonyah, M.A. Khan, K.O. Okosun, J.F. Gómez‐Aguilar, On the co‐infection of dengue fever and Zika virus, 2019, 40, 0143-2087, 394, 10.1002/oca.2483 | |
12. | Pierre Magal, Ousmane Seydi, Glenn Webb, Final Size of an Epidemic for a Two-Group SIR Model, 2016, 76, 0036-1399, 2042, 10.1137/16M1065392 | |
13. | N. Hussaini, J. M-S Lubuma, K. Barley, A.B. Gumel, Mathematical analysis of a model for AVL–HIV co-endemicity, 2016, 271, 00255564, 80, 10.1016/j.mbs.2015.10.008 | |
14. | Ayinla Ally Yeketi, Wan Ainun Mior Othman, M. A. Omar Awang, The role of vaccination in curbing tuberculosis epidemic, 2019, 5, 2363-6203, 1689, 10.1007/s40808-019-00623-w | |
15. | Kazeem O. Okosun, Ouifki Rachid, Nizar Marcus, Optimal control strategies and cost-effectiveness analysis of a malaria model, 2013, 111, 03032647, 83, 10.1016/j.biosystems.2012.09.008 | |
16. | Juan Wang, Xue-Zhi Li, Souvik Bhattacharya, The backward bifurcation of a model for malaria infection, 2018, 11, 1793-5245, 1850018, 10.1142/S1793524518500183 | |
17. | Daozhou Gao, Travis C. Porco, Shigui Ruan, Coinfection dynamics of two diseases in a single host population, 2016, 442, 0022247X, 171, 10.1016/j.jmaa.2016.04.039 | |
18. | KAZEEM OARE OKOSUN, ON THE DYNAMICS MALARIA-DYSENTERY CO-INFECTION MODEL, 2020, 28, 0218-3390, 453, 10.1142/S0218339020400082 | |
19. | Abdon Atangana, Sania Qureshi, 2020, 9781119654223, 225, 10.1002/9781119654223.ch9 | |
20. | Sanaa Moussa Salman, A nonstandard finite difference scheme and optimal control for an HIV model with Beddington–DeAngelis incidence and cure rate, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00839-1 | |
21. | K.O. Okosun, Rachid Ouifki, Nizar Marcus, Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity, 2011, 106, 03032647, 136, 10.1016/j.biosystems.2011.07.006 | |
22. | Afshin Babaei, Hossein Jafari, Atena Liya, Mathematical models of HIV/AIDS and drug addiction in prisons, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00400-0 | |
23. | K. U. Egeonu, A. Omame, S. C. Inyama, A co-infection model for two-strain Malaria and Cholera with optimal control, 2021, 2195-268X, 10.1007/s40435-020-00748-2 | |
24. | Winston Garira, 2013, Chapter 35, 978-1-4614-4997-3, 595, 10.1007/978-1-4614-4998-0_35 | |
25. | Daozhou Gao, Thomas M. Lietman, Travis C. Porco, Antibiotic resistance as collateral damage: The tragedy of the commons in a two-disease setting, 2015, 263, 00255564, 121, 10.1016/j.mbs.2015.02.007 | |
26. | Lathifah Hanif, Application of optimal control strategies to HIV-malaria co-infection dynamics, 2018, 974, 1742-6588, 012057, 10.1088/1742-6596/974/1/012057 | |
27. | Ana Carvalho, Carla M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, 2017, 5, 2195-268X, 168, 10.1007/s40435-016-0224-3 | |
28. | Sara Elsheikh, Rachid Ouifki, Kailash C. Patidar, A non-standard finite difference method to solve a model of HIV–Malaria co-infection, 2014, 20, 1023-6198, 354, 10.1080/10236198.2013.821116 | |
29. | Hossein Kheiri, Mohsen Jafari, Optimal control of a fractional-order model for the HIV/AIDS epidemic, 2018, 11, 1793-5245, 1850086, 10.1142/S1793524518500869 | |
30. | C.P. Bhunu, Mathematical analysis of a three-strain tuberculosis transmission model, 2011, 35, 0307904X, 4647, 10.1016/j.apm.2011.03.037 | |
31. | Jemal Mohammed-Awel, Eric Numfor, Optimal insecticide-treated bed-net coverage and malaria treatment in a malaria-HIV co-infection model, 2017, 11, 1751-3758, 160, 10.1080/17513758.2016.1192228 | |
32. | K.O. Okosun, O.D. Makinde, I. Takaidza, Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives, 2013, 37, 0307904X, 3802, 10.1016/j.apm.2012.08.004 | |
33. | A. A. M. Arafa, M. Khalil, A. Sayed, A Non-Integer Variable Order Mathematical Model of Human Immunodeficiency Virus and Malaria Coinfection with Time Delay, 2019, 2019, 1076-2787, 1, 10.1155/2019/4291017 | |
34. | Samia Ghersheen, Vladimir Kozlov, Vladimir Tkachev, Uno Wennergren, Mathematical analysis of complex SIR model with coinfection and density dependence, 2019, 1, 2577-7408, 10.1002/cmm4.1042 | |
35. | H. Kheiri, M. Jafari, Fractional optimal control of an HIV/AIDS epidemic model with random testing and contact tracing, 2019, 60, 1598-5865, 387, 10.1007/s12190-018-01219-w | |
36. | Xiaoming Li, Xianghui Xu, Jie Wang, Jing Li, Sheng Qin, Juxiang Yuan, Study on Prediction Model of HIV Incidence Based on GRU Neural Network Optimized by MHPSO, 2020, 8, 2169-3536, 49574, 10.1109/ACCESS.2020.2979859 | |
37. | ANTTI SOLONEN, HEIKKI HAARIO, JEAN MICHEL TCHUENCHE, HERIETH RWEZAURA, STUDYING THE IDENTIFIABILITY OF EPIDEMIOLOGICAL MODELS USING MCMC, 2013, 06, 1793-5245, 1350008, 10.1142/S1793524513500083 | |
38. | Robert Smith, Kazeem Oare Okosun, Optimal control analysis of malaria–schistosomiasis co-infection dynamics, 2016, 13, 1551-0018, 2, 10.3934/mbe.2017024 | |
39. | Ibrahim M. ELmojtaba, Mathematical model for the dynamics of visceral leishmaniasis-malaria co-infection, 2016, 39, 01704214, 4334, 10.1002/mma.3864 | |
40. | F. Nyabadza, B. T. Bekele, M. A. Rúa, D. M. Malonza, N. Chiduku, M. Kgosimore, The Implications of HIV Treatment on the HIV-Malaria Coinfection Dynamics: A Modeling Perspective, 2015, 2015, 2314-6133, 1, 10.1155/2015/659651 | |
41. | A. Mhlanga, A theoretical model for the transmission dynamics of HIV/HSV-2 co-infection in the presence of poor HSV-2 treatment adherence, 2018, 3, 2444-8656, 603, 10.2478/AMNS.2018.2.00047 | |
42. | Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng, Stability analysis on an economic epidemiological model with vaccination, 2017, 14, 1551-0018, 975, 10.3934/mbe.2017051 | |
43. | Carla Pinto, Diana Rocha, 2012, A new mathematical model for co-infection of malaria and HIV, 978-1-4673-2703-9, 33, 10.1109/NSC.2012.6304760 | |
44. | Bashir Abdullahi Baba, Bulent Bilgehan, Optimal control of a fractional order model for the COVID – 19 pandemic, 2021, 144, 09600779, 110678, 10.1016/j.chaos.2021.110678 | |
45. | Purity M. Ngina, Rachel Waema Mbogo, Livingstone S. Luboobi, Mathematical Modelling of In-Vivo Dynamics of HIV Subject to the Influence of the CD8+ T-Cells, 2017, 08, 2152-7385, 1153, 10.4236/am.2017.88087 | |
46. | Sandeep Sharma, Nitu Kumari, 2018, Chapter 51, 978-981-10-5328-3, 673, 10.1007/978-981-10-5329-0_51 | |
47. | K. O. Okosun, M. A. Khan, E. Bonyah, S. T. Ogunlade, On the dynamics of HIV-AIDS and cryptosporidiosis, 2017, 132, 2190-5444, 10.1140/epjp/i2017-11625-3 | |
48. | Peter M. Mwamtobe, Shirley Abelman, J. Michel Tchuenche, Ansley Kasambara, Optimal (Control of) Intervention Strategies for Malaria Epidemic in Karonga District, Malawi, 2014, 2014, 1085-3375, 1, 10.1155/2014/594256 | |
49. | Baba Seidu, Oluwole D. Makinde, Ibrahim Y. Seini, Mathematical Analysis of the Effects of HIV-Malaria Co-infection on Workplace Productivity, 2015, 63, 0001-5342, 151, 10.1007/s10441-015-9255-y | |
50. | E. Lungu, T. J. Massaro, E. Ndelwa, N. Ainea, S. Chibaya, N. J. Malunguza, Mathematical Modeling of the HIV/Kaposi’s Sarcoma Coinfection Dynamics in Areas of High HIV Prevalence, 2013, 2013, 1748-670X, 1, 10.1155/2013/753424 | |
51. | S. Mushayabasa, J.M. Tchuenche, C.P. Bhunu, E. Ngarakana-Gwasira, Modeling gonorrhea and HIV co-interaction, 2011, 103, 03032647, 27, 10.1016/j.biosystems.2010.09.008 | |
52. | Oluwatayo M. Ogunmiloro, Local and global asymptotic behavior of malaria-filariasis coinfections in compliant and noncompliant susceptible pregnant women to antenatal medical program in the tropics, 2019, 2019, 2544-9990, 31, 10.2478/ejaam-2019-0003 | |
53. | Oluwatayo M. Ogunmiloro, Mathematical Modeling of the Coinfection Dynamics of Malaria-Toxoplasmosis in the Tropics, 2019, 56, 1896-3811, 139, 10.2478/bile-2019-0013 | |
54. | M.S. Goudiaby, L.D. Gning, M.L. Diagne, Ben M. Dia, H. Rwezaura, J.M. Tchuenche, Optimal control analysis of a COVID-19 and tuberculosis co-dynamics model, 2022, 28, 23529148, 100849, 10.1016/j.imu.2022.100849 | |
55. | Anwarud Din, Saida Amine, Amina Allali, A stochastically perturbed co-infection epidemic model for COVID-19 and hepatitis B virus, 2023, 111, 0924-090X, 1921, 10.1007/s11071-022-07899-1 | |
56. | Zinabu Teka Melese, Haileyesus Tessema Alemneh, Enhancing reservoir control in the co-dynamics of HIV-VL: from mathematical modeling perspective, 2021, 2021, 1687-1847, 10.1186/s13662-021-03584-6 | |
57. | Hilda Fahlena, Rudy Kusdiantara, Nuning Nuraini, Edy Soewono, Dynamical analysis of two-pathogen coinfection in influenza and other respiratory diseases, 2022, 155, 09600779, 111727, 10.1016/j.chaos.2021.111727 | |
58. | Solomon Kadaleka, Shirley Abelman, Jean M. Tchuenche, A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding, 2021, 69, 0001-5342, 511, 10.1007/s10441-021-09416-0 | |
59. | A. Omame, H. Rwezaura, M. L. Diagne, S. C. Inyama, J. M. Tchuenche, COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02030-6 | |
60. | M.L. Diagne, H. Rwezaura, S.A. Pedro, J.M. Tchuenche, Theoretical analysis of a measles model with nonlinear incidence functions, 2023, 117, 10075704, 106911, 10.1016/j.cnsns.2022.106911 | |
61. | HUSSAM ALRABAIAH, MATI UR RAHMAN, IBRAHIM MAHARIQ, SAMIA BUSHNAQ, MUHAMMAD ARFAN, FRACTIONAL ORDER ANALYSIS OF HBV AND HCV CO-INFECTION UNDER ABC DERIVATIVE, 2022, 30, 0218-348X, 10.1142/S0218348X22400369 | |
62. | Scott Greenhalgh, Carly Rozins, A generalized differential equation compartmental model of infectious disease transmission, 2021, 6, 24680427, 1073, 10.1016/j.idm.2021.08.007 | |
63. | M. L. Diagne, H. Rwezaura, S. Y. Tchoumi, J. M. Tchuenche, Jan Rychtar, A Mathematical Model of COVID-19 with Vaccination and Treatment, 2021, 2021, 1748-6718, 1, 10.1155/2021/1250129 | |
64. | S.Y. Tchoumi, E.Z. Dongmo, J.C. Kamgang, J.M. Tchuenche, Dynamics of a two-group structured malaria transmission model, 2022, 29, 23529148, 100897, 10.1016/j.imu.2022.100897 | |
65. | Wei-Yun Shen, Yu-Ming Chu, Mati ur Rahman, Ibrahim Mahariq, Anwar Zeb, Mathematical analysis of HBV and HCV co-infection model under nonsingular fractional order derivative, 2021, 28, 22113797, 104582, 10.1016/j.rinp.2021.104582 | |
66. | S.Y. Tchoumi, H. Rwezaura, J.M. Tchuenche, Dynamic of a two-strain COVID-19 model with vaccination, 2022, 39, 22113797, 105777, 10.1016/j.rinp.2022.105777 | |
67. | Bevina D. Handari, Rossi A. Ramadhani, Chidozie W. Chukwu, Sarbaz H. A. Khoshnaw, Dipo Aldila, An Optimal Control Model to Understand the Potential Impact of the New Vaccine and Transmission-Blocking Drugs for Malaria: A Case Study in Papua and West Papua, Indonesia, 2022, 10, 2076-393X, 1174, 10.3390/vaccines10081174 | |
68. | S.Y. Tchoumi, M.L. Diagne, H. Rwezaura, J.M. Tchuenche, Malaria and COVID-19 co-dynamics: A mathematical model and optimal control, 2021, 99, 0307904X, 294, 10.1016/j.apm.2021.06.016 | |
69. | N. Ringa, M.L. Diagne, H. Rwezaura, A. Omame, S.Y. Tchoumi, J.M. Tchuenche, HIV and COVID-19 co-infection: A mathematical model and optimal control, 2022, 31, 23529148, 100978, 10.1016/j.imu.2022.100978 | |
70. | Solomon Kadaleka, Shirley Abelman, Jean M. Tchuenche, A Mathematical Model of the Transmission Dynamics of Bovine Schistosomiasis with Contaminated Environment, 2022, 70, 0001-5342, 10.1007/s10441-021-09434-y | |
71. | Baba Seidu, Oluwole Daniel Makinde, Ibrahim Yakubu Seini, Andrew Pickering, On the Optimal Control of HIV-TB Co-Infection and Improvement of Workplace Productivity, 2023, 2023, 1607-887X, 1, 10.1155/2023/3716235 | |
72. | Mamadou Lamine Diagne, Herieth Rwezaura, S.A. Pedro, Jean Michel Tchuenche, Theoretical Analysis of a Measles Model with Nonlinear Incidence Functions, 2022, 1556-5068, 10.2139/ssrn.4160579 | |
73. | Sanaa Moussa Salman, Strong Resonance Bifurcations in a Discrete-Time In-Host Model With a Saturating Infection Rate, 2023, 18, 1555-1415, 10.1115/1.4062390 | |
74. | Dereje Gutema Edossa, Alemu Geleta Wedajo, Purnachandra Rao Koya, Andrei Korobeinikov, Optimal Combinations of Control Strategies and Cost-Effectiveness Analysis of Dynamics of Endemic Malaria Transmission Model, 2023, 2023, 1748-6718, 1, 10.1155/2023/7677951 | |
75. | I. Ratti, P. Kalra, Study of Disease Dynamics of Co-infection of Rotavirus and Malaria with Control Strategies, 2023, 17, 1823-8343, 151, 10.47836/mjms.17.2.05 | |
76. | Abou Bakari Diabaté, Boureima Sangaré, Ousmane Koutou, Optimal control analysis of a COVID-19 and Tuberculosis (TB) co-infection model with an imperfect vaccine for COVID-19, 2023, 2254-3902, 10.1007/s40324-023-00330-8 | |
77. | Adesoye Idowu Abioye, Olumuyiwa James Peter, Hammed Abiodun Ogunseye, Festus Abiodun Oguntolu, Tawakalt Abosede Ayoola, Asimiyu Olalekan Oladapo, A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics, 2023, 27724425, 100210, 10.1016/j.health.2023.100210 | |
78. | Zhenfeng Shi, Daqing Jiang, A viral co-infection model with general infection rate in deterministic and stochastic environments, 2023, 10075704, 107436, 10.1016/j.cnsns.2023.107436 | |
79. | Zenebe Shiferaw Kifle, Legesse Lemecha Obsu, Mathematical modeling and analysis of COVID-19 and TB co-dynamics, 2023, 9, 24058440, e18726, 10.1016/j.heliyon.2023.e18726 | |
80. | Alina Glaubitz, Feng Fu, Population heterogeneity in vaccine coverage impacts epidemic thresholds and bifurcation dynamics, 2023, 24058440, e19094, 10.1016/j.heliyon.2023.e19094 | |
81. | Simeon Adeyemo, Adekunle Sangotola, Olga Korosteleva, Modeling Transmission Dynamics of Tuberculosis–HIV Co-Infection in South Africa, 2023, 4, 2673-3986, 408, 10.3390/epidemiologia4040036 | |
82. | Sonu Chugh, Joydip Dhar, Rangan K. Guha, Stability and optimal control of two products innovation diffusion system, 2023, 26667207, 100344, 10.1016/j.rico.2023.100344 | |
83. | Folashade B. Agusto, Ramsès Djidjou-Demasse, Ousmane Seydi, Mathematical model of Ehrlichia chaffeensis transmission dynamics in dogs , 2023, 17, 1751-3758, 10.1080/17513758.2023.2287082 | |
84. | Shaima Al-Shanfari, Ibrahim M. Elmojtaba, Nasser Al-Salti, Fatima Al-Shandari, Mathematical analysis and optimal control of cholera-malaria co-infection model, 2024, 26667207, 100393, 10.1016/j.rico.2024.100393 | |
85. | C.W. Chukwu, S.Y. Tchoumi, M.L. Diagne, A simulation study to assess the epidemiological impact of pneumonia transmission dynamics in high-risk populations, 2024, 10, 27726622, 100423, 10.1016/j.dajour.2024.100423 | |
86. | Naresh Kumar Jothi, A. Lakshmi, 2024, Chapter 43, 978-981-99-8645-3, 551, 10.1007/978-981-99-8646-0_43 | |
87. | Oluwatayo Michael Ogunmiloro, Amos Sesan Idowu, Dynamic insights into malaria–onchocerciasis co-disease transmission: mathematical modeling, basic reproduction number and sensitivity analysis, 2024, 30, 1405-213X, 10.1007/s40590-024-00601-y | |
88. | Rasha Majeed Yaseen, Hassan Fadhil Al-Husseiny, 2024, 3061, 0094-243X, 040040, 10.1063/5.0196252 | |
89. | Afonso Dimas Martins, Mick Roberts, Quirine ten Bosch, Hans Heesterbeek, Indirect interaction between an endemic and an invading pathogen: A case study of Plasmodium and Usutu virus dynamics in a shared bird host population, 2024, 157, 00405809, 118, 10.1016/j.tpb.2024.04.002 | |
90. | J. O. Akanni, S. Ajao, S. F. Abimbade, , Dynamical analysis of COVID-19 and tuberculosis co-infection using mathematical modelling approach, 2024, 4, 2767-8946, 208, 10.3934/mmc.2024018 | |
91. | Michael Byamukama, Damian Kajunguri, Martin Karuhanga, Optimal control analysis of pneumonia and HIV/AIDS co-infection model, 2024, 03, 2811-0072, 10.1142/S2811007224500068 | |
92. | M.G. Roberts, Infection thresholds for two interacting pathogens in a wild animal population, 2024, 375, 00255564, 109258, 10.1016/j.mbs.2024.109258 | |
93. | Akeem Olarewaju Yunus, Morufu Oyedunsi Olayiwola, Mathematical modeling of malaria epidemic dynamics with enlightenment and therapy intervention using the Laplace-Adomian decomposition method and Caputo fractional order, 2024, 8, 27731863, 100147, 10.1016/j.fraope.2024.100147 | |
94. | Yaxin Ren, Yakui Xue, Modeling and optimal control of COVID-19 and malaria co-infection based on vaccination, 2024, 4, 2767-8946, 316, 10.3934/mmc.2024026 | |
95. | Philip N. A. Akuka, Baba Seidu, Eric Okyere, Stephen Abagna, Mohamed Abdelsalam, Fractional‐Order Epidemic Model for Measles Infection, 2024, 2024, 2090-908X, 10.1155/2024/8997302 | |
96. | Nouar Chorfi, Samir Bendoukha, Salem Abdelmalek, The optimal control of an HIV/AIDS reaction-diffusion epidemic model, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024193 | |
97. | Kshama Jain, Anuradha Bhattacharjee, Srikumar Krishnamurhty, Mathematical analysis of COVID-19 and TB co-infection dynamics with optimal control, 2025, 11, 2363-6203, 10.1007/s40808-024-02197-8 | |
98. | Jamal Shah, Hameed Khan, Emad A. A. Ismail, Fuad A. Awaad, Abhinav Kumar, Modeling scabies transmission dynamics: a stochastic approach with spectral collocation and neural network insights, 2025, 140, 2190-5444, 10.1140/epjp/s13360-025-06025-5 | |
99. | Michael Byamukama, Martin Karuhanga, Damian Kajunguri, Nian-Sheng Tang, Mathematical Analysis of the Role of Treatment and Vaccination in the Management of the HIV/AIDS and Pneumococcal Pneumonia Co‐Infection, 2025, 2025, 2314-4629, 10.1155/jom/5879698 | |
100. | Anum Aish Buhader, Mujahid Abbas, Mudassar Imran, Andrew Omame, Existence and stability results in a fractional optimal control model for dengue and two-strains of salmonella typhi, 2025, 13, 26668181, 101075, 10.1016/j.padiff.2025.101075 | |
101. |
Purnendu Sardar, Santosh Biswas, Krishna Pada Das, Saroj Kumar Sahani, Vikas Gupta,
Stability, sensitivity, and bifurcation analysis of a fractional-order HIV model of CD T cells with memory and external virus transmission from macrophages,
2025,
140,
2190-5444,
10.1140/epjp/s13360-025-06081-x
|
|
102. | Shikha Saha, Amit Kumar Saha, Chandra Nath Podder, Dynamics of COVID-malaria co-infection with optimal control and cost-effectiveness analysis, 2025, 14, 26668181, 101217, 10.1016/j.padiff.2025.101217 |