Citation: Guohong Xin, Xiaoci Cao, Wujie Zhao, Pintian Lv, Gang Qiu, Yaxing Li, Bin Wang, Baoshuan Fang, Yitao Jia. MicroRNA expression profile and TNM staging system predict survival in patients with lung adenocarcinoma[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 8074-8083. doi: 10.3934/mbe.2020409
[1] | Muhammad Farman, Ali Akgül, J. Alberto Conejero, Aamir Shehzad, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Analytical study of a Hepatitis B epidemic model using a discrete generalized nonsingular kernel. AIMS Mathematics, 2024, 9(7): 16966-16997. doi: 10.3934/math.2024824 |
[2] | Weam G. Alharbi, Abdullah F. Shater, Abdelhalim Ebaid, Carlo Cattani, Mounirah Areshi, Mohammed M. Jalal, Mohammed K. Alharbi . Communicable disease model in view of fractional calculus. AIMS Mathematics, 2023, 8(5): 10033-10048. doi: 10.3934/math.2023508 |
[3] | Ashish Awasthi, Riyasudheen TK . An accurate solution for the generalized Black-Scholes equations governing option pricing. AIMS Mathematics, 2020, 5(3): 2226-2243. doi: 10.3934/math.2020147 |
[4] | Hui Han, Chaoyu Yang, Xianya Geng . Research on the impact of green finance on the high quality development of the sports industry based on statistical models. AIMS Mathematics, 2023, 8(11): 27589-27604. doi: 10.3934/math.20231411 |
[5] | Badr Aloraini, Abdulaziz S. Alghamdi, Mohammad Zaid Alaskar, Maryam Ibrahim Habadi . Development of a new statistical distribution with insights into mathematical properties and applications in industrial data in KSA. AIMS Mathematics, 2025, 10(3): 7463-7488. doi: 10.3934/math.2025343 |
[6] | Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki . Industry 4.0 project prioritization by using q-spherical fuzzy rough analytic hierarchy process. AIMS Mathematics, 2023, 8(8): 18809-18832. doi: 10.3934/math.2023957 |
[7] | Maryam Amin, Muhammad Farman, Ali Akgül, Mohammad Partohaghighi, Fahd Jarad . Computational analysis of COVID-19 model outbreak with singular and nonlocal operator. AIMS Mathematics, 2022, 7(9): 16741-16759. doi: 10.3934/math.2022919 |
[8] | Mohamed S. Elhadidy, Waleed S. Abdalla, Alaa A. Abdelrahman, S. Elnaggar, Mostafa Elhosseini . Assessing the accuracy and efficiency of kinematic analysis tools for six-DOF industrial manipulators: The KUKA robot case study. AIMS Mathematics, 2024, 9(6): 13944-13979. doi: 10.3934/math.2024678 |
[9] | Geoffrey McGregor, Jennifer Tippett, Andy T.S. Wan, Mengxiao Wang, Samuel W.K. Wong . Comparing regional and provincial-wide COVID-19 models with physical distancing in British Columbia. AIMS Mathematics, 2022, 7(4): 6743-6778. doi: 10.3934/math.2022376 |
[10] | Massoumeh Nazari, Mahmoud Dehghan Nayeri, Kiamars Fathi Hafshjani . Developing mathematical models and intelligent sustainable supply chains by uncertain parameters and algorithms. AIMS Mathematics, 2024, 9(3): 5204-5233. doi: 10.3934/math.2024252 |
Since its initiation in 1979, the Canadian Applied and Industrial Mathematics Society — Société Canadienne de Mathématiques Appliquées et Industrielles (CAIMS–SCMAI) has gained a growing presence in industrial, mathematical, scientific, and technological circles within and outside of Canada. Its members contribute to state-of-the-art research in industry, natural sciences, medicine and health, finance, physics, engineering, and more. The annual meetings are a highlight of the year. CAIMS–SCMAI is an active member society of the International Council for Industrial and Applied Mathematics, which hosts the prestigious ICIAM Congresses every four years.
Canadian Applied and Industrial Mathematics is at the forefront of scientific and technological development. We use advanced mathematics to tackle real-world problems in science and industry and develop new theories to analyse structures that arise from the modelling of real-world problems.
Applied Mathematics has evolved from traditional applications in areas such as fluids, mechanics, and physics, to modern topics such as medicine, health, biology, data science, finance, nano-tech, etc. Its growing importance in all aspects of life, health, and management increases the need for publication venues for high-level applied and industrial mathematics. Hence CAIMS–SCMAI decided to start a scientific journal called Mathematics in Science and Industry (MSI) to add value to the discussion of applied and industrial mathematics worldwide.
Submissions to MSI in all areas of applied and industrial mathematics are welcome (https://caims.ca/mathematics_in_science_and_industry/). We offer a timely and high-quality review process, and papers are published online as open access, with the publication fee being covered by CAIMS for the first five years.
MSI is honored that leading experts in industrial and applied mathematics have offered their support as editors:
Editors in Chief:
● Thomas Hillen (University of Alberta, thillen@ualberta.ca)
● Ray Spiteri (University of Saskatchewan, spiteri@cs.usask.ca)
Associate Editors:
● Lia Bronsard (McMaster University)
● Richard Craster (Imperial College of London, UK)
● David Earn (McMaster University)
● Ronald Haynes (Memorial University)
● Jane Heffernan (York University)
● Nicholas Kevlahan (McMaster University)
● Yong-Jung Kim (KAIST, Korea)
● Mark Lewis (University of Alberta)
● Kevin J. Painter (Heriot-Watt University, UK)
● Vakhtang Putkaradze (ATCO)
● Katrin Rohlf (Ryerson University)
● John Stockie (Simon Fraser University)
● Jie Sun (Huawei, Hong Kong)
● Justin Wan (University of Waterloo)
● Michael Ward (University of British Columbia)
● Tony Ware (University of Calgary)
● Brian Wetton (University of British Columbia)
The first eight papers of MSI, presented here, are published as special issue in AIMS Mathematics. They showcase a broad representation of applied mathematics that touches the interests of Canadian researchers and our many collaborators around the world. The science that we present here is not exclusively "Canadian", but we hope that through the new journal MSI, we can contribute to scientific dissemination of knowledge and add Canadian values to the scientific discussion.
The next issue of MSI is planned for the fall of 2020 and is expected to appear again as a special issue of AIMS Mathematics.
[1] |
F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, Ca-Cancer J. Clin., 68 (2018), 394-424. doi: 10.3322/caac.21492
![]() |
[2] |
C. Allemani, T. Matsuda, V. Di Carlo, R. Harewood, M. Matz, M. Nikšić, et al., Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries, Lancet, 391 (2018), 1023-1075. doi: 10.1016/S0140-6736(17)33326-3
![]() |
[3] | E. Zlotorynski, Insights into the kinetics of microRNA biogenesis and turnover, Nat. Rev. Mol. Cell. Biol., 20 (2019), 511. |
[4] | N. Treiber, T. Treiber, G. Meister, Regulation of microRNA biogenesis and its crosstalk with other cellular pathways, Nat. Rev. Mol. Cell Biol., 20 (2019), 5-20. |
[5] |
D. P. Bartel, MicroRNAs: Genomics, biogenesis, mechanism, and function, Cell, 116 (2004), 281-297. doi: 10.1016/S0092-8674(04)00045-5
![]() |
[6] |
J. Winter, S. Jung, S. Keller, R. I. Gregory, S. Diederichs, Many roads to maturity: MicroRNA biogenesis pathways and their regulation, Nat. Cell Biol., 11 (2009), 228-234. doi: 10.1038/ncb0309-228
![]() |
[7] |
R. Rupaimoole, F. J. Slack, MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases, Nat. Rev. Drug Discov., 16 (2017), 203-222. doi: 10.1038/nrd.2016.246
![]() |
[8] |
G. A. Calin, C. M. Croce, MicroRNA signatures in human cancers, Nat. Rev. Cancer, 6 (2006), 857-866. doi: 10.1038/nrc1997
![]() |
[9] |
D. A. Clump, C. R. Pickering, H. D. Skinner, Predicting outcome in head and neck cancer: MiRNAs with potentially big effects, Clin. Cancer Res., 25 (2019), 1441-1442. doi: 10.1158/1078-0432.CCR-18-3078
![]() |
[10] |
J. Hess, K. Unger, C. Maihoefer, L. Schuttrumpf, L. Wintergerst, T. Heider, et al., A Five-MicroRNA signature predicts survival and disease control of patients with head and neck cancer negative for HPV infection, Clin. Cancer Res., 25 (2019), 1505-1516. doi: 10.1158/1078-0432.CCR-18-0776
![]() |
[11] |
P. Ulivi, E. Petracci, G. Marisi, S. Baglivo, R. Chiari, M. Billi, et al., Prognostic role of circulating miRNAs in early-stage non-small cell lung cancer, J. Clin. Med., 8 (2019), 131. doi: 10.3390/jcm8020131
![]() |
[12] |
Y. Zhang, J. A. Roth, H. Yu, Y. Ye, K. Xie, H. Zhao, et al., A 5-microRNA signature identified from serum microRNA profiling predicts survival in patients with advanced stage non-small cell lung cancer, Carcinog., 40 (2019), 643-650. doi: 10.1093/carcin/bgy132
![]() |
[13] | H. Yan, S. Xin, J. Ma, H. Wang, H. Zhang, J. Liu, A three microRNA-based prognostic signature for small cell lung cancer overall survival, J. Cell. Biochem., 120 (2018), 8723-8730. |
[14] |
X. Li, Z. An, P. Li, H. Liu, A prognostic model for lung adenocarcinoma patient survival with a focus on four miRNAs, Oncol. Lett., 14 (2017), 2991-2995. doi: 10.3892/ol.2017.6481
![]() |
[15] | Y. Lin, Y. Lv, R. Liang, C. Yuan, J. Zhang, D. He, et al., Four-miRNA signature as a prognostic tool for lung adenocarcinoma, Onco. Targets Ther., 11 (2018), 29-36. |
[16] |
S. S. Yerukala, S. Y. Ho, Identifying the miRNA signature associated with survival time in patients with lung adenocarcinoma using miRNA expression profiles, Sci. Rep., 7 (2017), 7507. doi: 10.1038/s41598-017-07739-y
![]() |
[17] |
M. Raponi, L. Dossey, T. Jatkoe, X. Wu, G. Chen, H. Fan, et al., MicroRNA classifiers for predicting prognosis of squamous cell lung cancer, Cancer Res., 69 (2009), 5776-5783. doi: 10.1158/0008-5472.CAN-09-0587
![]() |
[18] | R. Bajaj, D. Doval, R. Tripathi, T. Sridhar, A. Korlimarla, K. D. Choudhury, et al., Prognostic role of microRNA 182 and microRNA 18a in locally advanced triple negative breast cancer, Ann. Oncol., 30 (2019), 19. |
[19] |
H. Li, J. Liu, J. Chen, H. Wang, L. Yang, F. Chen, et al., A serum microRNA signature predicts trastuzumab benefit in HER2-positive metastatic breast cancer patients, Nat. Commun., 9 (2018), 1614. doi: 10.1038/s41467-018-03537-w
![]() |
[20] |
S. Di Cosimo, V. Appierto, S. Pizzamiglio, P. Tiberio, M. V. Iorio, F. Hilbers, et al., Plasma miRNA levels for predicting therapeutic response to neoadjuvant treatment in HER2-positive breast cancer: Results from the NeoALTTO trial, Clin. Cancer Res., 25 (2019), 3887-3895. doi: 10.1158/1078-0432.CCR-18-2507
![]() |
[21] |
S. Shiino, J. Matsuzaki, A. Shimomura, J. Kawauchi, S. Takizawa, H. Sakamoto, et al., Serum miRNA-based prediction of axillary lymph node metastasis in breast cancer, Clin. Cancer Res., 25 (2019), 1817-1827. doi: 10.1158/1078-0432.CCR-18-1414
![]() |
[22] |
L. Yu, D. Wu, H. Gao, J. J. Balic, A. Tsykin, T. S. Han, et al., Clinical utility of a STAT3-Regulated miRNA-200 family signature with prognostic potential in early gastric cancer, Clin. Cancer Res., 24 (2018), 1459-1472. doi: 10.1158/1078-0432.CCR-17-2485
![]() |
[23] |
P. Wang, W. Li, B. Zhai, X. Jiang, H. Jiang, C. Zhang, et al., Integrating high-throughput microRNA and mRNA expression data to identify risk mRNA signature for pancreatic cancer prognosis, J. Cell. Biochem., 121 (2020), 3090-3098. doi: 10.1002/jcb.29576
![]() |
[24] |
X. Zhang, H. Zhang, B. Shen, X. F. Sun, Novel MicroRNA biomarkers for colorectal cancer early diagnosis and 5-Fluorouracil chemotherapy resistance but not prognosis: A study from databases to AI-Assisted verifications, Cancers (Basel), 12 (2020), 341. doi: 10.3390/cancers12020341
![]() |
[25] |
R. Kandimalla, F. Gao, T. Matsuyama, T. Ishikawa, H. Uetake, N. Takahashi, et al., Genome-wide discovery and identification of a novel miRNA signature for recurrence prediction in stage II and III colorectal cancer, Clin. Cancer Res., 24 (2018), 3867-3877. doi: 10.1158/1078-0432.CCR-17-3236
![]() |
[26] |
L. Schmidt, J. Fredsoe, H. Kristensen, S. H. Strand, A. Rasmussen, S. Hoyer, et al., Training and validation of a novel 4-miRNA ratio model (MiCaP) for prediction of postoperative outcome in prostate cancer patients, Ann. Oncol., 29 (2018), 2003-2009. doi: 10.1093/annonc/mdy243
![]() |
[27] |
J. S. Nahand, S. Taghizadeh-Boroujeni, M. Karimzadeh, S. Borran, M. H. Pourhanifeh, M. Moghoofei, et al., MicroRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer, J. Cell. Physiol., 234 (2019), 17064-17099. doi: 10.1002/jcp.28457
![]() |
[28] |
B. Liang, Y. Li, T. Wang, A three miRNAs signature predicts survival in cervical cancer using bioinformatics analysis, Sci. Rep., 7 (2017), 5624. doi: 10.1038/s41598-017-18338-2
![]() |
[29] |
X. H. Yin, Y. H. Jin, Y. Cao, Y. Wong, H. Weng, C. Sun, et al., Development of a 21-miRNA signature associated with the prognosis of patients with bladder cancer, Front. Oncol., 9 (2019), 729. doi: 10.3389/fonc.2019.00729
![]() |
[30] |
M. E. Ritchie, B. Phipson, Di Wu, Y. Hu, C. W. Law, W. Shi, et al., {Limma} powers differential expression analyses for {RNA}-sequencing and microarray studies, Nucleic. Acids. Res., 43 (2015), 47. doi: 10.1093/nar/gkv007
![]() |
[31] | R Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria, 2020. |
[32] |
G. Yang, Y. Zhang, J. Yang, A Five-microRNA signature as prognostic biomarker in colorectal cancer by bioinformatics analysis, Front. Oncol., 9 (2019), 1207. doi: 10.3389/fonc.2019.01207
![]() |
[33] |
Y. Luo, C. Zhang, F. Tang, J. Zhao, C. Shen, C. Wang, et al., Bioinformatics identification of potentially involved microRNAs in Tibetan with gastric cancer based on microRNA profiling, Cancer Cell Int., 15 (2015), 115. doi: 10.1186/s12935-015-0266-1
![]() |
[34] | Y. Lv, J. Duanmu, X. Fu, T. Li, Q. Jiang, Identifying a new microRNA signature as a prognostic biomarker in colon cancer, PLoS. One, 15 (2020), 228575. |
[35] | Therneau, M. Terry, A Package for Survival Analysis in R, 2020. |
[36] | A. Kassambara, M. Kosinski, P. Biecek, Survminer: Drawing Survival Curves using 'ggplot2', 2019. |
[37] | F. E. H. Jr, Rms: Regression Modeling Strategies, 2019. |
![]() |
![]() |