We study the effects of physical distancing measures for the spread of COVID-19 in regional areas within British Columbia, using the reported cases of the five provincial Health Authorities. Building on the Bayesian epidemiological model of Anderson et al. [
Citation: Geoffrey McGregor, Jennifer Tippett, Andy T.S. Wan, Mengxiao Wang, Samuel W.K. Wong. Comparing regional and provincial-wide COVID-19 models with physical distancing in British Columbia[J]. AIMS Mathematics, 2022, 7(4): 6743-6778. doi: 10.3934/math.2022376
[1] | Fengxia Zhang, Ying Li, Jianli Zhao . The semi-tensor product method for special least squares solutions of the complex generalized Sylvester matrix equation. AIMS Mathematics, 2023, 8(3): 5200-5215. doi: 10.3934/math.2023261 |
[2] | Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation AXB=C. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766 |
[3] | Anli Wei, Ying Li, Wenxv Ding, Jianli Zhao . Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS Mathematics, 2022, 7(4): 5029-5048. doi: 10.3934/math.2022280 |
[4] | Wenxv Ding, Ying Li, Anli Wei, Zhihong Liu . Solving reduced biquaternion matrices equation k∑i=1AiXBi=C with special structure based on semi-tensor product of matrices. AIMS Mathematics, 2022, 7(3): 3258-3276. doi: 10.3934/math.2022181 |
[5] | Fengxia Zhang, Ying Li, Jianli Zhao . A real representation method for special least squares solutions of the quaternion matrix equation (AXB,DXE)=(C,F). AIMS Mathematics, 2022, 7(8): 14595-14613. doi: 10.3934/math.2022803 |
[6] | Jin Zhong, Yilin Zhang . Dual group inverses of dual matrices and their applications in solving systems of linear dual equations. AIMS Mathematics, 2022, 7(5): 7606-7624. doi: 10.3934/math.2022427 |
[7] | Vladislav N. Kovalnogov, Ruslan V. Fedorov, Igor I. Shepelev, Vyacheslav V. Sherkunov, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . A novel quaternion linear matrix equation solver through zeroing neural networks with applications to acoustic source tracking. AIMS Mathematics, 2023, 8(11): 25966-25989. doi: 10.3934/math.20231323 |
[8] | Mahmoud S. Mehany, Faizah D. Alanazi . An η-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352 |
[9] | Abdur Rehman, Ivan Kyrchei, Muhammad Zia Ur Rahman, Víctor Leiva, Cecilia Castro . Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications. AIMS Mathematics, 2024, 9(8): 19967-19996. doi: 10.3934/math.2024974 |
[10] | Hongjie Jiang, Xiaoji Liu, Caijing Jiang . On the general strong fuzzy solutions of general fuzzy matrix equation involving the Core-EP inverse. AIMS Mathematics, 2022, 7(2): 3221-3238. doi: 10.3934/math.2022178 |
We study the effects of physical distancing measures for the spread of COVID-19 in regional areas within British Columbia, using the reported cases of the five provincial Health Authorities. Building on the Bayesian epidemiological model of Anderson et al. [
Let H(U) be the class of analytic functions in the open unit disc U={z∈C:|z|<1} and let H[a,υ] be the subclass of H(U) including form-specific functions
f(z)=a+aυzυ+aυ+1zυ+1+…(a∈C), |
we denote by H=H[1,1].
Also, A(p) should denote the class of multivalent analytic functions in U, with the power series expansion of the type:
f(z)=zp+∞∑υ=p+1aυzυ(p∈N={1,2,3,..}). | (1.1) |
Upon differentiating j-times for each one of the (1.1) we obtain:
f(j)(z)=δ(p,j)zp−j+∞∑υ=p+1δ(υ,j)aυzυ−jz∈U,δ(p,j)=p!(p−j)! (p∈N, j∈N0=N∪{0}, p≥j). | (1.2) |
Numerous mathematicians, for instance, have looked at higher order derivatives of multivalent functions (see [1,3,6,9,16,27,28,31]).
For f,ℏ∈H, the function f is subordinate to ℏ or the function ℏ is said to be superordinate to f in U and we write f(z)≺ℏ(z), if there exists a Schwarz function ω in U with ω(0)=0 and |ω(z)|<1, such that f(z)=ℏ(ω(z)), z∈U. If ℏ is univalent in U, then f(z)≺ℏ(z) iff f(0)=ℏ(0) and f(U)⊂ℏ(U). (see [7,21]).
In the concepts and common uses of fractional calculus (see, for example, [14,15] see also [2]; the Riemann-Liouville fractional integral operator of order α∈C (ℜ(α)>0) is one of the most widely used operators (see [29]) given by:
(Iα0+f)(x)=1Γ(α)∫x0(x−μ)α−1f(μ)dμ(x>0;ℜ(α)>0) | (1.3) |
applying the well-known (Euler's) Gamma function Γ(α). The Erd élyi-Kober fractional integral operator of order α∈C(ℜ(α)>0) is an interesting alternative to the Riemann-Liouville operator Iα0+, defined by:
(Iα0+;σ,ηf)(x)=σx−σ(α+η)Γ(α)∫x0μσ(η+1)−1(xσ−μσ)α−1f(μ)dμ | (1.4) |
(x>0;ℜ(α)>0), |
which corresponds essentially to (1.3) when σ−1=η=0, since
(Iα0+;1,0f)(x)=x−α(Iα0+f)(x)(x>0;ℜ(α)>0). |
Mainly motivated by the special case of the definition (1.4) when x=σ=1, η=ν−1 and α=ρ−ν, here, we take a look at the integral operator ℑp(ν,ρ,μ) with f∈A(p) by (see [11])
ℑp(ν,ρ;ℓ)f(z)=Γ(ρ+ℓp)Γ(ν+ℓp)Γ(ρ−ν)∫10μν−1(1−μ)ρ−ν−1f(zμℓ)dμ |
(ℓ>0;ν,ρ∈R;ρ>ν>−ℓp;p∈N). |
Evaluating (Euler's) Gamma function by using the Eulerian Beta-function integral as following:
B(α,β):={∫10μα−1(1−μ)β−1dμ(min{ℜ(α),ℜ(β)}>0)Γ(α)Γ(β)Γ(α+β)(α,β∈C∖Z′0), |
we readily find that
ℑp(ν,ρ;ℓ)f(z)={zp+Γ(ρ+pℓ)Γ(ν+pℓ)∞∑υ=p+1Γ(ν+υℓ)Γ(ρ+υℓ)aυzυ(ρ>ν)f(z)(ρ=ν). | (1.5) |
It is readily to obtain from (1.5) that
z(ℑp(ν,ρ;ℓ)f(z))′=(νℓ+p)(ℑp(ν+1,ρ;ℓ)f(z))−νℓ(ℑp(ν,ρ;ℓ)f(z)). | (1.6) |
The integral operator ℑp(ν,ρ;ℓ)f(z) should be noted as a generalization of several other integral operators previously discussed for example,
(ⅰ) If we set p=1, we get ˜I(ν,ρ;ℓ)f(z) defined by Ŕaina and Sharma ([22] with m=0);
(ⅱ) If we set ν=β,ρ=β+1 and ℓ=1, we obtain ℑβpf(z)(β>−p) it was presented by Saitoh et al.[24];
(ⅲ) If we set ν=β,ρ=α+β−δ+1, ℓ=1, we obtain ℜα,δβ,pf(z)(δ>0; α≥δ−1; β>−p) it was presented by Aouf et al. [4];
(ⅳ) If we put ν=β,ρ=α+β, ℓ=1, we get Qαβ,pf(z)(α≥0;β>−p) it was investigated by Liu and Owa [18];
(ⅴ) If we put p=1, ν=β,ρ=α+β, ℓ=1, we obtain ℜαβf(z)(α≥0;β>−1) it was introduced by Jung et al. [13];
(ⅵ) If we put p=1, ν=α−1, ρ=β−1, ℓ=1, we obtain L(α,β)f(z)(α,β∈C∖Z0,Z0={0,−1,−2,...}) which was defined by Carlson and Shaffer [8];
(ⅶ) If we put p=1, ν=ν−1, ρ=j, ℓ=1 we obtain Iν,jf(z)(ν>0;j≥−1) it was investigated by Choi et al. [10];
(ⅷ) If we put p=1, ν=α,ρ=0, ℓ=1, we obtain Dαf(z)(α>−1) which was defined by Ruscheweyh [23];
(ⅸ) If we put p=1, ν=1, ρ=m, ℓ=1, we obtain Imf(z)(m∈N0) which was introduced by Noor [21];
(ⅹ) If we set p=1, ν=β,ρ=β+1, ℓ=1 we obtain ℑβf(z) which was studied by Bernadi [5];
(ⅹⅰ) If we set p=1, ν=1, ρ=2, ℓ=1 we get ℑf(z) which was defined by Libera [17].
We state various definition and lemmas which are essential to obtain our results.
Definition 1. ([20], Definition 2, p.817) We denote by Q the set of the functions f that are holomorphic and univalent on ¯U∖E(f), where
E(f)={ζ:ζ∈∂U and limz→ζf(z)=∞}, |
and satisfy f′(ζ)≠0 for ζ∈∂U∖E(f).
Lemma 1. ([12]; see also ([19], Theorem 3.1.6, p.71)) Assume that h(z) is convex (univalent) function in U with h(0)=1, and let φ(z)∈H, is analytic in U. If
φ(z)+1γzφ′(z)≺h(z)(z∈U), |
where γ≠0 and Re(γ)≥0. Then
φ(z)≺Ψ(z)=γzγz∫0tγ−1h(t)dt≺h(z)(z∈U), |
and Ψ(z) is the best dominant.
Lemma 2. ([26]; Lemma 2.2, p.3) Suppose that q is convex function in U and let ψ∈C with ϰ∈C∗=C∖{0} with
Re(1+zq′′(z)q′(z))>max{0;−Reψϰ},z∈U. |
If λ(z) is analytic in U, and
ψλ(z)+ϰzλ′(z)≺ψq(z)+ϰzq′(z), |
therefore λ(z)≺q(z), and q is the best dominant.
Lemma 3. ([20]; Theorem 8, p.822) Assume that q is convex univalent in U and suppose δ∈C, with Re(δ)>0. If λ∈H[q(0),1]∩Q and λ(z)+δzλ′(z) is univalent in U, then
q(z)+δzq′(z)≺λ(z)+δzλ′(z), |
implies
q(z)≺λ(z) (z∈U) |
and q is the best subordinant.
For a,ϱ,c and c(c∉Z−0) real or complex number the Gaussian hypergeometric function is given by
2F1(a,ϱ;c;z)=1+aϱc.z1!+a(a+1)ϱ(ϱ+1)c(c+1).z22!+.... |
The previous series totally converges for z∈U to a function analytical in U (see, for details, ([30], Chapter 14)) see also [19].
Lemma 4. For a,ϱ and c (c∉Z−0), real or complex parameters,
1∫0tϱ−1(1−t)c−ϱ−1(1−zt)−xdt=Γ(ϱ)Γ(c−a)Γ(c)2F1(a,ϱ;c;z)(Re(c)>Re(ϱ)>0); | (2.1) |
2F1(a,ϱ;c;z)=2F1(ϱ,a;c;z); | (2.2) |
2F1(a,ϱ;c;z)=(1−z)−a2F1(a,c−ϱ;c;zz−1); | (2.3) |
2F1(1,1;2;azaz+1)=(1+az)ln(1+az)az; | (2.4) |
2F1(1,1;3;azaz+1)=2(1+az)az(1−ln(1+az)az). | (2.5) |
Throughout the sequel, we assume unless otherwise indicated −1≤D<C≤1, δ>0, ℓ>0, ν,ρ∈R, ν>−ℓp, p∈N and (ρ−j)≥0. We shall now prove the subordination results stated below:
Theorem 1. Let 0≤j<p, 0<r≤1 and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, | (3.1) |
whenever δ∈(0,+∞)∖N. Let define the function Φj by
Φj(z)=(1−α)((ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ+α(ℑp(ν+1,ρ;ℓ)f(z))(j)zp−j((ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ−1, |
such that the powers are all the principal ones, i.e., log1 = 0. Whether
Φj(z)≺[p!(p−j)!]δ(1+Cz1+Dz )r, | (3.2) |
then
((ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺[p!(p−j)!]δp(z), | (3.3) |
where
p(z)={(CD)r∑i≥0(−r)ii!(C−DC)i(1+Dz)−i 2F1(i,1;1+δ(ν+ℓp)αℓ;Dz1+Dz)(D≠0);2F1(−r,δ(ν+ℓp)αℓ;1+δ(ν+ℓp)αℓ;−Cz) (D=0), |
and [p!(p−j)!]δp(z) is the best dominant of (3.3). Moreover, there are
ℜ((ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ>[p!(p−j)!]δζ, z∈U, | (3.4) |
where ζ is given by:
ζ={(CD)r∑i≥0(−r)ii!(C−DC)i(1−D)−i 2F1(i,1;1+δ(ν+ℓp)αℓ;DD−1)(D≠0);2F1(−r,δ(ν+ℓp)αℓ;1+δ(ν+ℓp)αℓ;C) (D=0), |
then (3.4) is the best possible.
Proof. Let
ϕ(z)=((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ, (z∈U). | (3.5) |
It is observed that the function ϕ(z)∈H, which is analytic in U and ϕ(0)=1. Differentiating (3.5) with respect to z, applying the given equation, the hypothesis (3.2), and the knowing that
z(ℑp(ν,ρ;ℓ)f(z))(j+1)=(νℓ+p)(ℑp(ν+1,ρ;ℓ)f(z))(j)−(νℓ+j)(ℑp(ν,ρ;ℓ)f(z))(j) (0≤j<p), | (3.6) |
we get
ϕ(z)+zϕ′(z)δ(ν+ℓp)αℓ≺(1+Cz1+Dz )r=q(z) (z∈U). |
We can verify that the above equation q(z) is analytic and convex in U as following
Re(1+zq′′(z)q′(z))=−1+(1−r)ℜ(11+Cz)+(1+r)ℜ(11+Dz)>−1+1−r1+|C|+1+r1+|D|≥0 (z∈U). |
Using Lemma 1, there will be
ϕ(z)≺p(z)=δ(ν+ℓp)αℓz−δ(ν+ℓp)αℓz∫0tδ(ν+ℓp)αℓ−1(1+Ct1+Dt)rdt. |
In order to calculate the integral, we define the integrand in the type
tδ(ν+ℓp)αℓ−1(1+Ct1+Dt)r=tδ(ν+ℓp)αℓ−1(CD)r(1−C−DC+CDt)r, |
using Lemma 4 we obtain
p(z)=(CD)r∑i≥0(−r)ii!(C−DC)i(1+Dz)−i 2F1(i,1;1+δ(ν+ℓp)αℓ;Dz1+Dz)(D≠0). |
On the other hand if D=0 we have
p(z)=2F1(−r,δ(ν+ℓp)αℓ;1+δ(ν+ℓp)αℓ;−Cz), |
where the identities (2.1)–(2.3), were used after changing the variable, respectively. This proof the inequality (3.3).
Now, we'll verify it
inf{ℜp(z):|z|<1}=p(−1). | (3.7) |
Indeed, we have
ℜ(1+Cz1+Dz )r≥(1−Cσ1−Dσ)r (|z|<σ<1). |
Setting
ℏ(s,z)=(1+Csz1+Dsz)r (0≤s≤1; z∈U) |
and
dv(s)=δ(ν+ℓp)αℓsδ(ν+ℓp)αℓ−1ds |
where dv(s) is a positive measure on the closed interval [0, 1], we get that
p(z)=1∫0ℏ(s,z)dv(s), |
so that
ℜp(z)≥1∫0(1−Csσ1−Dsσ)rdv(s)=p(−σ) (|z|<σ<1). |
Now, taking σ→1− we get the result (3.7). The inequality (3.4) is the best possible since [p!(p−j)!]δp(z) is the best dominant of (3.3).
If we choose j=1 and α=δ=1 in Theorem 1, we get:
Corollary 1. Let 0<r≤1. If
(ℑp(ν+1,ρ;ℓ)f(z))′zp−1≺p(1+Cz1+Dz )r, |
then
ℜ((ℑp(ν,ρ;ℓ)f(z))′zp−1)>pζ1, z∈U, | (3.8) |
where ζ1 is given by:
ζ1={(CD)r∑i≥0(−r)ii!(C−DC)i(1−D)−i 2F1(i,1;1+(ν+ℓp)ℓ;DD−1)(D≠0);2F1(−r,(ν+ℓp)ℓ;1+(ν+ℓp)ℓ;C) (D=0), |
then (3.8) is the best possible.
If we choose ν=ρ=0 and ℓ=1 in Theorem 1, we get:
Corollary 2. Let 0≤j<p, 0<r≤1 and as f∈A(p) assume that
f(j)(z)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Let define the function Φj by
Φj(z)=[1−α(1−jp)](f(j)(z)zp−j)δ+α(zf(j+1)(z)pf(j)(z))(f(j)(z)zp−j)δ, | (3.9) |
such that the powers are all the principal ones, i.e., log1 = 0. If
Φj(z)≺[p!(p−j)!]δ(1+Cz1+Dz )r, |
then
(f(j)(z)zp−j)δ≺[p!(p−j)!]δp1(z), | (3.10) |
where
p1(z)={(CD)r∑i≥0(−r)ii!(C−DC)i(1+Dz)−i 2F1(i,1;1+δpα;Dz1+Dz)(D≠0);2F1(−r,δpα;1+δpα;−Cz) (D=0), |
and [p!(p−j)!]δp1(z) is the best dominant of (3.10). Morover, there are
ℜ(f(j)(z)zp−j)δ>[p!(p−j)!]δζ2, z∈U, | (3.11) |
where ζ2 is given by
ζ2={(CD)r∑i≥0(−r)ii!(C−DC)i(1−D)−i 2F1(i,1;1+δpα;DD−1)(D≠0);2F1(−r,δpα;1+δpα;C) (D=0), |
then (3.11) is the best possible.
If we put δ=1 and r=1 in Corollary 2, we get:
Corollary 3. Let 0≤j<p, and for f∈A(p) say it
f(j)(z)zp−j≠0, z∈U. |
Let define the function Φj by
Φj(z)=[(1−α(1−jp)]f(j)(z)zp−j+αf(j+1)(z)pzp−j−1. |
If
Φj(z)≺p!(p−j)!1+Cz1+Dz, |
then
f(j)(z)zp−j≺p!(p−j)!p2(z), | (3.12) |
where
p2(z)={CD+(1−CD)(1+Dz)−1 2F1(1,1;1+pα;Dz1+Dz)(D≠0);1+pp+αCz, (D=0), |
and p!(p−j)!p2(z) is the best dominant of (3.12). Morover there will be
ℜ(f(j)(z)zp−j)>p!(p−j)!ζ3, z∈U, | (3.13) |
where ζ3 is given by:
ζ3={CD+(1−CD)(1−D)−1 2F1(1,1;1+pα;DD−1)(D≠0);1−pp+αC, (D=0), |
then (3.13) is the best possible.
For C=1,D=−1 and j=1 Corollary 3, leads to the next example:
Example 1. (i) For f∈A(p) suppose that
f′(z)zp−1≠0, z∈U. |
Let define the function Φj by
Φj(z)=[1−(α−αp)]f′(z)zp−1+αf′′(z)pzp−2≺p1+z1−z, |
then
f′(z)zp−1≺p1+z1−z, | (3.14) |
and
ℜ(f′(z)zp−1)>pζ4, z∈U, | (3.15) |
where ζ4 is given by:
ζ4=−1+ 2F1(1,1;p+αα;12), |
then (3.15) is the best possible.
(ii) For p=α=1, (i) leads to:
For f∈A suppose that
f′(z)≠0, z∈U. |
Let define the function Φj by
Φj(z)=f′(z)+zf′′(z)≺1+z1−z, |
then
ℜ(f′(z))>−1+2ln2, z∈U. |
So the estimate is best possible.
Theorem 2. Let 0≤j<p, 0<r≤1 as for f∈A(p). Assume that Fα is defined by
Fα(z)=α(νℓ+p)(ℑp(ν+1,ρ;ℓ)f(z))+(1−α−α(νℓ))(ℑp(ν,ρ;ℓ)f(z)). | (3.16) |
If
F(j)α(z)zp−j≺(1−α+αp)p!(p−j)!(1+Cz1+Dz )r, | (3.17) |
then
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≺p!(p−j)!p(z), | (3.18) |
where
p(z)={(CD)r∑i≥0(−r)ii!(C−DC)i(1+Dz)−i 2F1(i,1;1+(1−α+αp)α;Dz1+Dz)(D≠0);2F1(−r,(1−α+αp)α;1+(1−α+αp)α;−Cz) (D=0), |
and p!(p−j)!p(z) is the best dominant of (3.18). Moreover, there will be
ℜ((ℑp(ν,ρ;ℓ)f(z))(j)zp−j)>p!(p−j)!η, z∈U, | (3.19) |
where η is given by:
η={(CD)r∑i≥0(−r)ii!(C−DC)i(1+D)−i 2F1(i,1;1+(1−α+αp)α;DD−1)(D≠0);2F1(−r,(1−α+αp)α;1+(1−α+αp)α;C) (D=0), |
then (3.19) is the best possible.
Proof. By using the definition (3.16) and the inequality (3.6), we have
F(j)α(z)=αz(ℑp(ν,ρ;ℓ)f(z))(j+1)+(1−α+αj)(ℑp(ν,ρ;ℓ)f(z))(j), | (3.20) |
for 0≤j<p. Putting
ϕ(z)=(p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j, (z∈U), | (3.21) |
we have that ϕ∈H. Differentiating (3.21), and using (3.17), (3.20), we get
ϕ(z)+zϕ′(z)(1−α+αp)α≺(1+Cz1+Dz )r (z∈U). |
Following the techniques of Theorem 1, we can obtain the remaining part of the proof.
If we choose j=1 and r=1 in Theorem 2, we get:
Corollary 4. For f∈A(p) let the function Fα define by 3.16. If
F′α(z)zp−1≺p(1−α+αp)1+Cz1+Dz , |
then
ℜ((ℑp(ν,ρ;ℓ)f(z))′zp−1)>pη1, z∈U, | (3.22) |
where η1 is given by:
η1={CD+(1−CD)(1−D)−1 2F1(1,1;1+1−α+αpα;DD−1)(D≠0);1−1−α+αp1+αpC (D=0), |
then (3.22) is the best possible.
Example 2. If we choose p=C=α=1 and D=−1 in Corollary 4, we obtain:
For
F(z)=(νℓ+1)(ℑ(ν+1,ρ;ℓ)f(z))−(νℓ)(ℑ(ν,ρ;ℓ)f(z)). |
If
F′(z)≺1+z1−z, |
then
ℜ((ℑ(ν,ρ;ℓ)f(z))′)>−1+2ln2, z∈U, |
the result is the best possible.
Theorem 3. Let 0≤j<p, 0<r≤1 as for θ>−p assume that Jp,θ:A(p)→A(p) defined by
Jp,θ(f)(z)=p+θzθz∫0tθ−1f(t)dt, z∈U. | (3.23) |
If
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≺p!(p−j)!(1+Cz1+Dz )r, | (3.24) |
then
(ℑp(ν,ρ;ℓ)Jp,θ(f)(z))(j)zp−j≺p!(p−j)!p(z), | (3.25) |
where
p(z)={(CD)r∑i≥0(−r)ii!(C−DC)i(1+Dz)−i 2F1(i,1;1+θ+p;Dz1+Dz)(D≠0);2F1(−r,θ+p;1+θ+p;Cz) (D=0), |
and p!(p−j)!p(z) is the best dominant of (3.25). Moreover, there will be
ℜ((ℑp(ν,ρ;ℓ)Jp,θ(f)(z))(j)zp−j)>p!(p−j)!β, z∈U, | (3.26) |
where β is given by:
β={(CD)r∑i≥0(−r)ii!(C−DC)i(1+D)−i 2F1(i,1;1+θ+p;DD−1)(D≠0);2F1(−r,θ+p;1+θ+p;−C) (D=0), |
then (3.26) is the best possible.
Proof. Suppose
ϕ(z)=(p−j)!p!(ℑp(ν,ρ;ℓ)Jp,θ(f)(z))(j)zp−j, (z∈U), |
we have that ϕ∈H. Differentiating the above definition, by using (3.24) and
z(ℑp(ν,ρ;ℓ)Jp,θ(f)(z))(j+1)=(θ+p)(ℑp(ν,ρ;ℓ)f(z))(j)−(θ+j)(ℑp(ν,ρ;ℓ)Jp,θ(f)(z))(j) (0≤j<p), |
we get
ϕ(z)+zϕ′(z)θ+p≺(1+Cz1+Dz )r. |
Now, we obtain (3.25) and the inequality (3.26) follow by using the same techniques in Theorem 1.
If we set j=1 and r=1 in Theorem 3, we get:
Corollary 5. For θ>−p, let the operator Jp,θ:A(p)→A(p) defined by (3.25). If
(ℑp(ν,ρ;ℓ)f(z))′zp−1≺p1+Cz1+Dz , |
then
ℜ((ℑp(ν,ρ;ℓ)Jp,θ(f)(z))′zp−1)>pβ1, z∈U, | (3.27) |
where β1 is given by:
β1={CD+(1−CD)(1−D)−1 2F1(1,1;1+θ+p;DD−1)(D≠0);1−θ+p1+θ+pC (D=0), |
then (3.27) is the best possible.
Example 3. If we choose p=C=θ=1 and D=−1 in Corollary 5, we get:
If
(ℑ(ν,ρ;ℓ)f(z))′≺1+z1−z, |
then
ℜ((ℑ(ν,ρ;ℓ)J1,1(f)(z))′)>−1+4(1−ln2), |
the result is the best possible.
Theorem 4. Let q is univalent function in U, such that q satisfies
Re(1+zq′′(z)q′(z))>max{0;−δ(ν+ℓp)αℓ}, z∈U. | (3.28) |
Let 0≤j<p, 0<r≤1 and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Let the function Φj defined by (3.1), and assume that it satisfies:
[(p−j)!p!]δΦj(z)≺q(z)+αℓδ(ν+ℓp)zq′(z). | (3.29) |
Then,
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺q(z), | (3.30) |
and q(z) is the best dominant of (3.30).
Proof. Let ϕ(z) is defined by (3.5), from Theorem 1 we get
[(p−j)!p!]δΦj(z)=ϕ(z)+αℓδ(ν+ℓp)zϕ′(z). | (3.31) |
Combining (3.29) and (3.31) we find that
ϕ(z)+αℓδ(ν+ℓp)zϕ′(z)≺q(z)+αℓδ(ν+ℓp)zq′(z). | (3.32) |
The proof of Theorem 4 follows by using Lemma 2 and (3.32).
Taking q(z)=(1+Cz1+Dz)r in Theorem 4, we obtain:
Corollary 6. Suppose that
Re(1−Dz1+Dz+(r−1)(C−D)z(1+Dz)(1+Cz))>max{0;−δ(ν+ℓp)αℓ}, z∈U. |
Let 0≤j<p, 0<r≤1 and for f∈A(p) satisfies
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Let the function Φj defined by (3.1), satisfies:
[(p−j)!p!]δΦj(z)≺(1+Cz1+Dz )r+αℓδ(ν+ℓp)(1+Cz1+Dz )rr(C−D)z(1+Dz)(1+Cz). |
Then,
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺(1+Cz1+Dz )r, | (3.33) |
so (1+Cz1+Dz)r is the best dominant of (3.33).
Taking q(z)=1+Cz1+Dz in Theorem 4, we get:
Corollary 7. Suppose that
Re(1−Dz1+Dz)>max{0;−δ(ν+ℓp)αℓ}, z∈U. |
Let 0≤j<p, 0<r≤1 and for f∈A(p) satisfies
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Let the function Φj defined by (3.1), satisfies:
[(p−j)!p!]δΦj(z)≺1+Cz1+Dz +αℓδ(ν+ℓp)(C−D)z(1+Dz)2. |
Then,
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺1+Cz1+Dz , | (3.34) |
so 1+Cz1+Dz is the best dominant of (3.34).
If we put ν=ρ=0 and ℓ=1 in Theorem 4, we get:
Corollary 8. Let q is univalent function in U, such that q satisfies
Re(1+zq′′(z)q′(z))>max{0;−δpα}, z∈U. |
For f∈A(p) satisfies
f(j)(z)zp−j≠0, z∈U. |
Let the function Φj defined by (3.9), satisfies:
[(p−j)!p!]δΦj(z)≺q(z)+αδpzq′(z). | (3.35) |
Then,
((p−j)!p!f(j)(z)zp−j)δ≺q(z), | (3.36) |
so q(z) is the best dominant of (3.36).
Taking C=1 and D=−1 in Corollaries 6 and 7 we get:
Example 4. (i) For f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U. |
Let the function Φj defined by (3.1), and assume that it satisfies:
[(p−j)!p!]δΦj(z)≺(1+z1−z)r+αℓδ(ν+ℓp)(1+z1−z)r2rz1−z2. |
Then,
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺(1+z1−z)r, | (3.37) |
so (1+z1−z)r is the best dominant of (3.37).
(ii) For f∈A(p) say it
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U. |
Let the function Φj defined by (3.1), and assume that it satisfies:
[(p−j)!p!]δΦj(z)≺1+z1−z+αℓδ(ν+ℓp)2z1−z2. |
Then,
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺1+z1−z, | (3.38) |
so 1+z1−z is the best dominant of (3.38).
If we put p=C=α=δ=1, D=−1 and j=0 in Corollary 8 we get:
Example 5. For f∈A suppose that
f(z)z≠0, z∈U, |
and
f′(z)≺(1+z1−z)r+(1+z1−z)r2rz1−z2. |
Then,
f(z)z≺(1+z1−z)r, | (3.39) |
and (1+z1−z)r is the best dominant of (3.39).
Remark 1. For ν=ρ=0, ℓ=p=r=1 and j=0 in Theorem 4, we get the results investigated by Shanmugam et al. ([25], Theorem 3.1).
Theorem 5. Let 0≤j<p, and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Suppose that
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ∈H∩Q |
such that [(p−j)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If q is convex (univalent) function in U, and
q(z)+αℓδ(ν+ℓp)zq′(z)≺[(p−j)!p!]δΦj(z), |
then
q(z)≺((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ, | (3.40) |
so q(z) is the best subordinate of (3.40).
Proof. Let ϕ is defined by (3.5), from (3.31) we get
q(z)+αℓδ(ν+ℓp)zq′(z)≺[(p−j)!p!]δΦj(z)=ϕ(z)+αℓδ(ν+ℓp)zϕ′(z). |
The proof of Theorem 5 followes by an application of Lemma 3.
Taking q(z)=(1+Cz1+Dz)r in Theorem 5, we get:
Corollary 9. Let 0≤j<p, 0<r≤1 and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U. |
Suppose that
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ∈H∩Q |
such that [(p−j)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If
(1+Cz1+Dz )r+αℓδ(ν+ℓp)(1+Cz1+Dz )rr(C−D)z(1+Dz)(1+Cz)≺[(p−j)!p!]δΦj(z), |
then
(1+Cz1+Dz )r≺((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ, | (3.41) |
so (1+Cz1+Dz)r is the best dominant of (3.41).
Taking q(z)=1+Cz1+Dz and r=1 in Theorem 5, we get:
Corollary 10. Let 0≤j<p, and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U, |
whenever δ∈(0,+∞)∖N. Assume that
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ∈H∩Q |
such that [(p−j)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If
1+Cz1+Dz +αℓδ(ν+ℓp)(C−D)z(1+Dz)2≺[(p−j)!p!]δΦj(z), |
then
1+Cz1+Dz ≺((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ, | (3.42) |
so 1+Cz1+Dz is the best dominant of (3.42).
Combining results of Theorems 4 and 5, we have
Theorem 6. Let 0≤j<p, and for f∈A(p) assume that
(ℑp(ν,ρ;ℓ)f(z))(j)zp−j≠0, z∈U. |
Suppose that
((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ∈H[q(0),1]∩Q |
such that [(p−j)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). Let q1 is convex (univalent) function in U, and assume that q2 is convex in U, that q2 satisfies (3.28). If
q1(z)+αℓδ(ν+ℓp)zq′1(z)≺[(p−j)!p!]δΦj(z)≺q2(z)+αℓδ(ν+ℓp)zq′2(z), |
then
q1(z)≺((p−j)!p!(ℑp(ν,ρ;ℓ)f(z))(j)zp−j)δ≺q2(z) |
and q1(z) and q2(z) are respectively the best subordinate and best dominant of the above subordination.
We used the application of higher order derivatives to obtained a number of interesting results concerning differential subordination and superordination relations for the operator ℑp(ν,ρ;ℓ)f(z) of multivalent functions analytic in U, the differential subordination outcomes are followed by some special cases and counters examples. Differential sandwich-type results have been obtained. Our results we obtained are new and could help the mathematicians in the field of Geometric Function Theory to solve other special results in this field.
This research has been funded by Deputy for Research & innovation, Ministry of Education through initiative of institutional funding at university of Ha'il, Saudi Arabia through project number IFP-22155.
The authors declare no conflict of interest.
[1] |
S. C. Anderson, A. M. Edwards, M. Yerlanov, N. Mulberry, J. E. Stockdale, S. A. Iyaniwura, et al., Quantifying the impact of COVID-19 control measures using a Bayesian model of physical distancing, PLOS Comput. Biol., 16 (2020), 1–15. https://doi.org/10.1371/journal.pcbi.1008274 doi: 10.1371/journal.pcbi.1008274
![]() |
[2] | M. G. Baker, N. Wilson, T. Blakely, Elimination could be the optimal response strategy for COVID-19 and other emerging pandemic diseases, BMJ, 371 (2020). https://doi.org/10.1136/bmj.m4907 |
[3] |
A. Bakhta, T. Boiveau, Y. Maday, O. Mula, Epidemiological Forecasting with Model Reduction of Compartmental Models. Application to the COVID-19 Pandemic, Biology, 10 (2021), 22. https://doi.org/10.3390/biology10010022 doi: 10.3390/biology10010022
![]() |
[4] | BC Centre for Disease Control, BC Centre for Disease Control: COVID-19 Variants, 2021. Available from: http://www.bccdc.ca/health-info/diseases-conditions/covid-19/about-covid-19/variants. |
[5] | BC Centre for Disease Control, BC COVID-19 Data, 2021. Available from: http://www.bccdc.ca/health-info/diseases-conditions/covid-19/data. |
[6] | BC Centre for Disease Control, British Columbia (BC) COVID-19 Situation Report Week 13: March 28–April 3, 2021. Available from: http://www.bccdc.ca/Health-Info-Site/Documents/COVID_sitrep/Week_13_2021_BC_COVID-19_Situation_Report.pdf. |
[7] | BC Centre for Disease Control, COVID-19: One Year of the Pandemic in BC, 2021. Available from: http://www.bccdc.ca/Health-Info-Site/Documents/CovidBriefing_20210311.pdf. |
[8] |
B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, et al., Stan: A probabilistic programming language, J. Stat. Softw., 76 (2017), 1–32. https://doi.org/10.18637/jss.v076.i01 doi: 10.18637/jss.v076.i01
![]() |
[9] |
S. Chang, E. Pierson, P. W. Koh, J. Gerardin, B. Redbird, D. Grusky, et al., Mobility network models of COVID-19 explain inequities and inform reopening, Nature, 589 (2021), 82–87. https://doi.org/10.1038/s41586-020-2923-3 doi: 10.1038/s41586-020-2923-3
![]() |
[10] |
X. Chen, H. Chen, Differences in Preventive Behaviors of COVID-19 between Urban and Rural Residents: Lessons Learned from A Cross-Sectional Study in China, Int. J. Env. Res. Pub. He., 17 (2020), 4437. https://doi.org/10.3390/ijerph17124437 doi: 10.3390/ijerph17124437
![]() |
[11] |
Y.-C. Chen, P.-E. Lu, C.-S. Chang, T.-H. Liu, A Time-Dependent SIR Model for COVID-19 With Undetectable Infected Persons, IEEE T. Netw. Sci. Eng., 7 (2020), 3279–3294. https://doi.org/10.1109/TNSE.2020.3024723 doi: 10.1109/TNSE.2020.3024723
![]() |
[12] |
P. L. Delamater, E. J. Street, T. F. Leslie, Y. Yang, K. H. Jacobsen, Complexity of the Basic Reproduction Number (R0), Emerg. Infect. Dis., 25 (2019), 1–4. https://doi.org/10.3201/eid2501.171901 doi: 10.3201/eid2501.171901
![]() |
[13] |
O. Diekmann, J. Heesterbeek, J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
![]() |
[14] | S. Garasia, G. Dobbs, Socioeconomic determinants of health and access to health care in rural Canada, Univ. Tor. Med. J., 96 (2019), 44–46. |
[15] | M. Ghoussoub, B.C. puts new rules on restaurants, bars, nightclubs amid rising COVID-19 numbers, 2020. Available from: https://www.cbc.ca/news/canada/british-columbia/update-covid-19-bc-july-22-1.5656611. |
[16] | Government of Canada, Coronavirus disease (COVID-19): Outbreak update, 2021. Available from: https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection.html#a. |
[17] | Health Canada, Social determinants of health and health inequalities, 2018. Available from: https://www.canada.ca/en/public-health/services/health-promotion/population-health/what-determines-health.html. |
[18] |
Z. Hu, Y. Wu, M. Su, L. Xie, A. Zhang, X. Lin, et al., Population migration, spread of COVID-19, and epidemic prevention and control: empirical evidence from China, BMC Public Health, 21 (2021), 1–12. https://doi.org/10.1186/s12889-021-10605-2 doi: 10.1186/s12889-021-10605-2
![]() |
[19] | Interior Health, Health Authority Profile 2020, 2020. Available from: https://www.interiorhealth.ca/AboutUs/QuickFacts/PopulationLocalAreaProfiles/Documents/Interior%20Health%20Authority%20Profile.pdf. |
[20] |
V. A. Karatayev, M. Anand, C. T. Bauch, Local lockdowns outperform global lockdown on the far side of the COVID-19 epidemic curve, Proceedings of the National Academy of Sciences, 117 (2020), 24575–24580. https://doi.org/10.1073/pnas.2014385117 doi: 10.1073/pnas.2014385117
![]() |
[21] | N. Martins, CityNews: COVID-19 variant arrives in B.C., 2021. Available from: https://www.citynews1130.com/2020/12/27/covid-19-variant-bc/. |
[22] | MIDAS Network, 2019 Novel Coronavirus Repository, 2021. Available from: https://github.com/midas-network/COVID-19. |
[23] | A. Migdal, CBCNews: 64-year-old residential care aide is 1st person in B.C. to receive COVID-19 vaccine, 2020. Available from: https://www.cbc.ca/news/canada/british-columbia/first-covid-19-vaccine-in-bc-1.5842455. |
[24] |
L. A. Shafer, M. Nesca, R. Balshaw, Relaxation of social distancing restrictions: Model estimated impact on COVID-19 epidemic in Manitoba, Canada, PLOS ONE, 16 (2021), 1–15. https://doi.org/10.1371/journal.pone.0244537 doi: 10.1371/journal.pone.0244537
![]() |
[25] |
I. Sirkeci, M. M. Yucesahin, Coronavirus and migration: analysis of human mobility and the spread of Covid-19, Migr. Lett., 17 (2020), 379–398. https://doi.org/10.33182/ml.v17i2.935 doi: 10.33182/ml.v17i2.935
![]() |
[26] | Stan development team, Prior Choice Recommendations, 2020. Available from: https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations. |
[27] | Statistics Canada, Few Canadians had antibodies against SARS-CoV-2 in early 2021, 2021. Available from: https://www150.statcan.gc.ca/n1/daily-quotidien/210706/dq210706a-eng.htm. |
[28] |
P. J. Turk, S.-H. Chou, M. A. Kowalkowski, P. P. Palmer, J. S. Priem, M. D. Spencer, et al., Modeling COVID-19 Latent Prevalence to Assess a Public Health Intervention at a State and Regional Scale: Retrospective Cohort Study, JMIR Public Health Sur., 6 (2020), 19353. https://doi.org/10.2196/19353 doi: 10.2196/19353
![]() |
[29] |
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[30] |
C. Zhan, C. K. Tse, Z. Lai, X. Chen, M. Mo, General Model for COVID-19 Spreading With Consideration of Intercity Migration, Insufficient Testing, and Active Intervention: Modeling Study of Pandemic Progression in Japan and the United States, JMIR public health sur., 6 (2020), e18880. https://doi.org/10.2196/18880 doi: 10.2196/18880
![]() |
1. | Jian Sun, Xin Liu, Yang Zhang, Quaternion Tensor Completion via QR Decomposition and Nuclear Norm Minimization, 2024, 1070-5325, 10.1002/nla.2608 |