This study investigated $ {\eta} $-Hermitian solutions to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. We employed solvability conditions to identify the general solution for this system. This method deduces the Moore-Penrose inverse, and the rank equalities for the system's coefficients. We utilized these strategies to develop an algorithm that can compute general solutions. We also used these algorithms in numerical instances to verify the theoretical results.
Citation: Mahmoud S. Mehany, Faizah D. Alanazi. An $ \eta $-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions[J]. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352
This study investigated $ {\eta} $-Hermitian solutions to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. We employed solvability conditions to identify the general solution for this system. This method deduces the Moore-Penrose inverse, and the rank equalities for the system's coefficients. We utilized these strategies to develop an algorithm that can compute general solutions. We also used these algorithms in numerical instances to verify the theoretical results.
| [1] |
T. Jiang, Z. Guo, D. Zhang, V. I. Vasilev, A fast algorithm for the Schrödinger equation in quaternionic quantum mechanics, Appl. Math. Lett., 150 (2024), 108975. https://doi.org/10.1016/j.aml.2023.108975 doi: 10.1016/j.aml.2023.108975
|
| [2] |
Z. Guo, T. Jiang, G. Wang, V. I. Vasilev, An efficient algorithm for the eigenvalue problem of a Hermitian quaternion matrix in quantum chemistry, J. Comput. Appl. Math., 463 (2025), 116516. https://doi.org/10.1016/j.cam.2025.116516 doi: 10.1016/j.cam.2025.116516
|
| [3] |
T. Jiang, Z. Jiang, Z. Zhang, Two novel algebraic techniques for quaternion least squares problems in quaternionic quantum mechanics, Adv. Appl. Clifford Algebr., 26 (2016), 169–182. https://doi.org/10.1007/s00006-015-0581-6 doi: 10.1007/s00006-015-0581-6
|
| [4] | L. Rodman, Topics in quaternion linear algebra, Princeton University Press, 2014. |
| [5] |
C. C. Took, D. P. Mandic, F. Zhang, On the unitary diagonalisation of a special class of quaternion matrices, Appl. Math. Lett., 24 (2011), 1806–1809. https://doi.org/10.1016/j.aml.2011.04.038 doi: 10.1016/j.aml.2011.04.038
|
| [6] |
C. C. Took, D. P. Mandic, Quaternion-valued stochastic gradient-based adaptive IIR filtering, IEEE Trans. Signal Process., 58 (2010), 3895–3901. https://doi.org/10.1109/TSP.2010.2047719 doi: 10.1109/TSP.2010.2047719
|
| [7] |
C. C. Took, D. P. Mandic, Augmented second-order statistics of quaternion random signals, Signal Process., 91 (2011), 214–224. https://doi.org/10.1016/j.sigpro.2010.06.024 doi: 10.1016/j.sigpro.2010.06.024
|
| [8] |
C. C. Took, D. P. Mandic, The quaternion LMS algorithm for adaptive filtering of hypercomplex processes, IEEE Trans. Signal Process., 57 (2009), 1316–1327. https://doi.org/10.1109/TSP.2008.2010600 doi: 10.1109/TSP.2008.2010600
|
| [9] |
W. R. Hamilton, Ⅱ. On quaternions; or on a new system of imaginaries in algebra, Lond Edinb. Dublin Philos. Mag. J. Sci., 25 (1844), 10–13. https://doi.org/10.1080/14786444408644923 doi: 10.1080/14786444408644923
|
| [10] | J. H. Conway, D. A. Smith, On quaternions and octonions: Their geometry, arithmetic, and symmetry, 1st Eds., New York: A K Peters/CRC Press, 2003. https://doi.org/10.1201/9781439864180 |
| [11] | G. Kamberov, P. Norman, F. Pedit, U. Pinkall, Quaternions, spinors, and surfaces, American Mathematical Society, 299 (2002). |
| [12] | G. Nebe, Finite quaternionic matrix groups, Represent. Theory, 2 (1998), 106–223. |
| [13] | J. P. Ward, Quaternions and Cayley numbers: Algebra and applications, Dordrecht: Kluwer Academic Publishers, 1997. |
| [14] |
A. Dmytryshyn, B. Kågström, Coupled Sylvester-type matrix equations and block diagonalization, SIAM J. Matrix Anal. Appl., 36 (2015), 580–593. https://doi.org/10.1137/151005907 doi: 10.1137/151005907
|
| [15] |
V. L. Syrmos, F. L. Lewis, Output feedback eigenstructure assignment using two Sylvester equations, IEEE Trans. Automat. Control, 38 (1993), 495–499. https://doi.org/10.1109/9.210155 doi: 10.1109/9.210155
|
| [16] |
Y. Zhang, D. Jiang, J. Wang, A recurrent neural network for solving Sylvester equation with time-varying coefficients, IEEE Trans. Neural Netw., 13 (2002), 1053–1063. https://doi.org/10.1109/TNN.2002.1031938 doi: 10.1109/TNN.2002.1031938
|
| [17] | A. Varga, Robust pole assignment via Sylvester equation based state feedback parametrization, In: IEEE International symposium on computer-aided control system design (Cat. No.00TH8537), Anchorage: IEEE, 2002. https://doi.org/10.1109/CACSD.2000.900179 |
| [18] |
J. K. Baksalary, R. Kala, The matrix equation $AXB+CYD = E$, Linear Algebra Appl., 30 (1980), 141–147. https://doi.org/10.1016/0024-3795(80)90189-5 doi: 10.1016/0024-3795(80)90189-5
|
| [19] |
A. B. Özgüler, The equation $AXB+CYD = E$ over a principal ideal Domain, SIAM J. Matrix Anal. Appl., 12 (1991), 581–591. https://doi.org/10.1137/0612044 doi: 10.1137/0612044
|
| [20] |
Y. Tian, The solvability of two linear matrix equations, Linear Multilinear Algebra, 48 (2000), 123–147. https://doi.org/10.1080/03081080008818664 doi: 10.1080/03081080008818664
|
| [21] |
Q. W. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra Appl., 384 (2004), 43–54. https://doi.org/10.1016/j.laa.2003.12.039 doi: 10.1016/j.laa.2003.12.039
|
| [22] |
Z. H. He, A system of Coupled quaternion matrix equations with seven unknowns and its applications, Adv. Appl. Clifford Algebras, 29 (2019), 38. https://doi.org/10.1007/s00006-019-0955-2 doi: 10.1007/s00006-019-0955-2
|
| [23] | J. J. Sylvester, Sur léquation en matrices px = xq, CR Acad. Sci. Paris, 99 (1884), 67–71. |
| [24] | M. S. Mehany, An analysis to some systems of matrix equations with ${\phi} $-Hermitian solutions for some nonstandard involution ${\phi}$ over the real quaternion algebra, Iran. J. Sci., 2025. https://doi.org/10.1007/s40995-024-01758-x |
| [25] |
M. S. Mehany, Q. W. Wang, L. S. Liu, A system of Sylvester-like quaternion tensor equations with an application, Front. Math., 19 (2024), 749–768. https://doi.org/10.1007/s11464-021-0389-8 doi: 10.1007/s11464-021-0389-8
|
| [26] |
M. S. Mehany, Q. W. Wang, Three symmetrical systems of coupled Sylvester-like quaternion matrix equations, Symmetry, 14 (2022), 550. https://doi.org/10.3390/sym14030550 doi: 10.3390/sym14030550
|
| [27] |
M. Y. Xie, Q. W. Wang, Z. H. He, M. M. Saad, A system of Sylvester-type quaternion matrix equations with ten variables, Acta. Math. Sin. English Ser., 38 (2022), 1399–1420. https://doi.org/10.1007/s10114-022-9040-1 doi: 10.1007/s10114-022-9040-1
|
| [28] |
L. S. Liu, Q. W. Wang, M. S. Mehany, A Sylvester-type matrix equation over the Hamilton quaternions with an application, Mathematics, 10 (2022), 1758. https://doi.org/10.3390/math10101758 doi: 10.3390/math10101758
|
| [29] |
L. S. Liu, S. Zhang, H. X. Chang, Four symmetric systems of the matrix equations with an application over the Hamilton quaternions, AIMS Mathematics, 9 (2024), 33662–33691. https://doi.org/10.3934/math.20241607 doi: 10.3934/math.20241607
|
| [30] |
X. L. Xu, Q. W. Wang, The consistency and the general common solution to some quaternion matrix equations, Ann. Funct. Anal., 14 (2023), 53. https://doi.org/10.1007/s43034-023-00276-y doi: 10.1007/s43034-023-00276-y
|
| [31] |
Z. H. He, J. Liu, T. Y. Tam, The general $\phi$-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations, Electron. J. Linear Algebra, 32 (2017), 475–499. https://doi.org/10.13001/1081-3810.3606 doi: 10.13001/1081-3810.3606
|
| [32] |
Z. H. He, Some new results on a system of Sylvester-type quaternion matrix equations, Linear Multilinear Algebra, 69 (2021), 3069–3091. https://doi.org/10.1080/03081087.2019.1704213 doi: 10.1080/03081087.2019.1704213
|
| [33] |
I. I. Kyrchei, Determinantal representations of general and (Skew-)Hermitian solutions to the generalized Sylvester-type quaternion matrix equation, Abstr. Appl. Anal., 2019 (2019), 5926832. https://doi.org/10.1155/2019/5926832 doi: 10.1155/2019/5926832
|
| [34] |
I. Kyrchei, Cramer's Rules of $\eta$-(skew-)Hermitian solutions to the quaternion Sylvester-type matrix equations, Adv. Appl. Clifford Algebras, 29 (2019), 56. https://doi.org/10.1007/s00006-019-0972-1 doi: 10.1007/s00006-019-0972-1
|
| [35] |
A. Rehman, I. Kyrchei, M. Z. U. Rahman, V. Leiva, C. Castro, Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications, AIMS Mathematics, 9 (2024), 19967–19996. http://dx.doi.org/10.3934/math.2024974 doi: 10.3934/math.2024974
|
| [36] |
A. M. E. Bayoumi, A shift-splitting Jacobi-gradient iterative algorithm for solving the matrix equation $AV-\overline{V}B = C$, Opti. Contr. Appl. Met., 45 (2024), 1593–1602. https://doi.org/10.1002/oca.3112 doi: 10.1002/oca.3112
|
| [37] |
S. K. Mitra, A pair of simultaneous linear matrix equations $A_{1}XB_{1} = C_{1}$, $A_{2}XB_{2} = C_{2}$ and a matrix programming problem, Linear Algebra Appl., 131 (1990), 107–123. https://doi.org/10.1016/0024-3795(90)90377-O doi: 10.1016/0024-3795(90)90377-O
|
| [38] |
G. Matsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra, 2 (1974), 269–292. https://doi.org/10.1080/03081087408817070 doi: 10.1080/03081087408817070
|
| [39] |
Q. W. Wang, Z. H. He, Some matrix equations with applications, Linear Multilinear Algebra, 60 (2012), 1327–1353. https://doi.org/10.1080/03081087.2011.648635 doi: 10.1080/03081087.2011.648635
|