Research article Special Issues

Morrey spaces on weighted homogeneous trees

  • Published: 01 April 2025
  • MSC : 42B25, 42B35, 05C05

  • In this paper, the authors construct the Morrey spaces $ \mathcal{M}^{\lambda}_{p}(\mathcal{V}) $ on the metric measure spaces $ (\mathcal{V}, d, \mu) $ and explore their associated properties. Here, $ (\mathcal{V}, d, \mu) $ refers to metric measure spaces composed of infinite homogeneous trees $ T $ equipped with the standard graph metric $ d $ and a weighted measure $ \mu $. As applications, the boundedness of the maximal operator and the fractional maximal operator related to admissible trapezoids on the Morrey spaces $\mathcal{M}^\lambda_p(\mathcal{V})$ is established.

    Citation: Xiaoyu Qian, Jiang Zhou. Morrey spaces on weighted homogeneous trees[J]. AIMS Mathematics, 2025, 10(4): 7664-7683. doi: 10.3934/math.2025351

    Related Papers:

  • In this paper, the authors construct the Morrey spaces $ \mathcal{M}^{\lambda}_{p}(\mathcal{V}) $ on the metric measure spaces $ (\mathcal{V}, d, \mu) $ and explore their associated properties. Here, $ (\mathcal{V}, d, \mu) $ refers to metric measure spaces composed of infinite homogeneous trees $ T $ equipped with the standard graph metric $ d $ and a weighted measure $ \mu $. As applications, the boundedness of the maximal operator and the fractional maximal operator related to admissible trapezoids on the Morrey spaces $\mathcal{M}^\lambda_p(\mathcal{V})$ is established.



    加载中


    [1] L. Euler, Solutio problematis ad geometriam situs pertinentis, Comm. Acad. Sci. Petrop., 8 (1741), 128–140.
    [2] A. Cayley, On the theory of the analytical forms called trees, Coll. Math. Pap., 3 (1890), 242–246. https://doi.org/10.1017/CBO9780511703690.046 doi: 10.1017/CBO9780511703690.046
    [3] A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Math. Ann., 69 (1910), 331–371. https://doi.org/10.1007/BF01456326 doi: 10.1007/BF01456326
    [4] L. R. Foulds, Graph theory applications, New York: Springer, 1992. https://doi.org/10.1007/978-1-4612-0933-1
    [5] A. Korányi, M. A. Picardello, Boundary behaviour of eigenfunctions of the Laplace operator on trees, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1986), 389–399.
    [6] A. V. Sobolev, M. Z. Solomyak, Schrödinger operators on homogeneous metric trees: Spectrum in gaps, Rev. Math. Phys., 14 (2002), 421–467. https://doi.org/10.1142/S0129055X02001235 doi: 10.1142/S0129055X02001235
    [7] W. Hebisch, T. Steger, Multipliers and singular integrals on exponential growth groups, Math. Z., 245 (2003), 37–61. https://doi.org/10.1007/s00209-003-0510-6 doi: 10.1007/s00209-003-0510-6
    [8] L. Arditti, A. Tabacco, M. Vallarino, Hardy spaces on weighted homogeneous trees, Advances in microlocal and time-frequency analysis, Cham: Birkhäuser., 2020. https://doi.org/10.1007/978-3-030-36138-9_2
    [9] L. Arditti, A. Tabacco, M. Vallarino, BMO spaces on weighted homogeneous trees, J. Geom. Anal., 31 (2021), 8832–8849. https://doi.org/10.1007/s12220-020-00435-w doi: 10.1007/s12220-020-00435-w
    [10] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166.
    [11] F. M. Chiarenza, M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., 7 (1987), 273–279.
    [12] J. Tao, D. C. Yang, W. Yuan, A bridge connecting Lebesgue and Morrey spaces via Riesz norms, Banach J. Math. Anal., 15 (2021), 1–29. https://doi.org/10.1007/s43037-020-00106-6 doi: 10.1007/s43037-020-00106-6
    [13] M. Q. Wei, Extrapolation for weighted product Morrey spaces and some applications, Potential Anal., 60 (2024), 445–472. https://doi.org/10.1007/s11118-022-10056-3 doi: 10.1007/s11118-022-10056-3
    [14] H. Arai, T. Mizuhara, Morrey spaces on spaces of homogeneous type and estimates for $\square_b$ and the Cauchy-Szegő projection, Math. Nachr., 185 (1997), 5–20. https://doi.org/10.1002/mana.3211850102 doi: 10.1002/mana.3211850102
    [15] Y. Sawano, H. Tanaka, Predual spaces of Morrey spaces with non-doubling measures, Tokyo J. Math., 32 (2009), 471–486. https://doi.org/10.3836/tjm/1264170244 doi: 10.3836/tjm/1264170244
    [16] G. H. Lu, S. P. Tao, Generalized Morrey spaces over nonhomogeneous metric measure spaces, J. Aust. Math. Soc., 103 (2017), 268–278. https://doi.org/10.1017/S1446788716000483 doi: 10.1017/S1446788716000483
    [17] Y. H. Cao, J. Zhou, Morrey spaces for nonhomogeneous metric measure spaces, Abstr. Appl. Anal., 2013 (2013), 1–8. https://doi.org/10.1155/2013/196459 doi: 10.1155/2013/196459
    [18] L. Liu, Y. Sawano, D. C. Yang, Morrey-type spaces on Gauss measure spaces and boundedness of singular integrals, J. Geom. Anal., 24 (2014), 1007–1051. https://doi.org/10.1007/s12220-012-9362-9 doi: 10.1007/s12220-012-9362-9
    [19] H. Gunawan, C. M. Schwanke, The Hardy-Littlewood maximal operator on discrete Morrey spaces, Mediterr. J. Math., 16 (2019), 1–12. https://doi.org/10.1007/s00009-018-1277-7 doi: 10.1007/s00009-018-1277-7
    [20] X. Zhang, F. Liu, H. Zhang, Mapping properties of maximal operators on infinite connected graphs, J. Math. Inequal., 15 (2021), 1613–1636. https://doi.org/10.7153/jmi-2021-15-111 doi: 10.7153/jmi-2021-15-111
    [21] L. Arditti, Analysis on weighted homogeneous trees, Master's thesis, 2018.
    [22] L. Grafakos, Classical Fourier analysis, 3 Eds., New York: Springer, 2024.10. https://doi.org/10.1007/978-1-4939-1194-3
    [23] Y. Zhang, J. Zhou, Variable Lebesgue space over weighted homogeneous tree, Symmetry, 16 (2024), 1–15. https://doi.org/10.3390/sym16101283 doi: 10.3390/sym16101283
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(938) PDF downloads(110) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog