Research article

A new extension of the Rayleigh distribution: Properties, different methods of estimation, and an application to medical data

  • Published: 01 April 2025
  • MSC : 60E05, 62F10

  • Statistical distributions play a crucial role in modeling and analyzing real data with complex behavior. Modifying or extending traditional distributions to better capture the complex pattern of a real-world phenomenon have attracted researchers' attention. In this paper, we propose a distribution adaptable to different types of medical data: the exponentiated generalized Weibull–Rayleigh (EGWR) distribution. Its hazard function exhibits different shapes, demonstrating high flexibility in modeling different patterns. For the proposed distribution, some statistical properties, such as moments, Rényi entropy, and order statistics, are discussed. Different methods of estimation—maximum likelihood, least squares, maximum product of spacing, and Cramér–von Mises—were employed to estimate the distribution parameters. The efficiency of these methods in estimating the distribution parameters was compared in three simulation studies and three medical datasets. Furthermore, the goodness of the proposed distribution in fitting real data was examined, and the results demonstrated the efficiency and flexibility of the EGWR distribution in modeling medical data compared to other distributions.

    Citation: Dawlah Alsulami. A new extension of the Rayleigh distribution: Properties, different methods of estimation, and an application to medical data[J]. AIMS Mathematics, 2025, 10(4): 7636-7663. doi: 10.3934/math.2025350

    Related Papers:

  • Statistical distributions play a crucial role in modeling and analyzing real data with complex behavior. Modifying or extending traditional distributions to better capture the complex pattern of a real-world phenomenon have attracted researchers' attention. In this paper, we propose a distribution adaptable to different types of medical data: the exponentiated generalized Weibull–Rayleigh (EGWR) distribution. Its hazard function exhibits different shapes, demonstrating high flexibility in modeling different patterns. For the proposed distribution, some statistical properties, such as moments, Rényi entropy, and order statistics, are discussed. Different methods of estimation—maximum likelihood, least squares, maximum product of spacing, and Cramér–von Mises—were employed to estimate the distribution parameters. The efficiency of these methods in estimating the distribution parameters was compared in three simulation studies and three medical datasets. Furthermore, the goodness of the proposed distribution in fitting real data was examined, and the results demonstrated the efficiency and flexibility of the EGWR distribution in modeling medical data compared to other distributions.



    加载中


    [1] R. Gupta, P. Gupta, R. Gupta, Modeling failure time data by Lehman alternatives, Commun. Stat. Theory Methods, 27 (1998), 887–904. https://doi.org/10.1080/03610929808832134 doi: 10.1080/03610929808832134
    [2] G. Cordeiro, E. Ortega, D. da Cunha, The exponentiated generalized class of distributions, J. Data Sci., 11 (2013), 1–27. https://doi.org/10.6339/JDS.2013.11(1).1086 doi: 10.6339/JDS.2013.11(1).1086
    [3] M. El-Morshedy, A. El-Faheem, A. Al-Bossly, M. El-Dawoody, Exponentiated generalized inverted Gompertz distribution: Properties and estimation methods with applications to symmetric and asymmetric data, Symmetry, 13 (2021), 1868. https://doi.org/10.3390/sym13101868 doi: 10.3390/sym13101868
    [4] L. Telee, M. Karki, V. Kumar, Exponentiated generalized exponential geometric distribution: Model, properties and applications, Interdisc. J. Manag. Soc. Sci., 3 (2022), 37–60. https://doi.org/10.3126/ijmss.v3i2.50261 doi: 10.3126/ijmss.v3i2.50261
    [5] M. El-Morshedy, M. Eliwa, A. El-Gohary, E. Almetwally, R. El-Desokey, Exponentiated generalized inverse flexible Weibull distribution: Bayesian and non-Bayesian estimation under complete and type Ⅱ censored samples with applications, Commun. Math. Stat., 10 (2002), 413–434. https://doi.org/10.1007/s40304-020-00225-4 doi: 10.1007/s40304-020-00225-4
    [6] M. Kilai, G. Waititu, W. Kibira, M. Abd El-Raouf, T. Abushal, A new versatile modification of the Rayleigh distribution for modeling COVID-19 mortality rates, Results Phys., 35 (2002), 105260. https://doi.org/10.1016/j.rinp.2022.105260 doi: 10.1016/j.rinp.2022.105260
    [7] H. Klakattawi, A. Khormi, L. Baharith, The new generalized exponentiated Fréchet–Weibull distribution: Properties, applications, and regression model, Complexity, 2003 (2003), 2196572. https://doi.org/10.1155/2023/2196572 doi: 10.1155/2023/2196572
    [8] S. Hussain, M. Ul Hassan, M. Rashid, R. Ahmed, Families of extended exponentiated generalized distributions and applications of medical data using Burr Ⅲ extended exponentiated Weibull distribution, Mathematics, 11 (2003), 3090. https://doi.org/10.3390/math11143090 doi: 10.3390/math11143090
    [9] N. Temraz, Inference on the stress strength reliability with exponentiated generalized Marshall Olkin-G distribution, PLOS One, 18 (2023), e0280183. https://doi.org/10.1371/journal.pone.0280183 doi: 10.1371/journal.pone.0280183
    [10] T. Sindhu, A. Shafiq, Z. Huassian, Generalized exponentiated unit Gompertz distribution for modeling arthritic pain relief times data: Classical approach to statistical inference, J. Biopharm. Stat., 34 (2024), 323–348. https://doi.org/10.1080/10543406.2023.2210681 doi: 10.1080/10543406.2023.2210681
    [11] G. Lekono, B. Oluyede, L. Gabaitiri, A new heavy-tailed exponentiated generalised-G family of distributions: Properties and applications, Int. J. Math. Oper. Res., 27 (2024), 1–34. https://doi.org/10.1504/IJMOR.2024.136860 doi: 10.1504/IJMOR.2024.136860
    [12] A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, Metron, 71 (2013), 63–79. https://doi.org/10.1007/s40300-013-0007-y doi: 10.1007/s40300-013-0007-y
    [13] P. Koleoso, A. Chukwu, A Weibull-Gompertz Makeham distribution with properties and application to cancer data, J. Adv. Math. Comput. Sci., 34 (2019), 1–17. https://doi.org/10.9734/jamcs/2019/v34i530223 doi: 10.9734/jamcs/2019/v34i530223
    [14] P. Marthin, G. Rao, Generalized Weibull–Lindley (GWL) distribution in modeling lifetime data, J. Math., 2020 (2020), 2049501. https://doi.org/10.1155/2020/2049501 doi: 10.1155/2020/2049501
    [15] E. Hussein, H. Aljohani, A. Afify, The extended Weibull–Fréchet distribution: Properties, inference, and applications in medicine and engineering, AIMS Mathematics, 7 (2022), 225–246. https://doi.org/10.3934/math.2022014 doi: 10.3934/math.2022014
    [16] E. Moradi, Z. S. Ghazani, A novel Weibull Marshall–Olkin power Lomax distribution: Properties and applications to medicine and engineering, J. Appl. Math. Inform., 41 (2023), 1275–1301. https://doi.org/10.14317/jami.2023.1275 doi: 10.14317/jami.2023.1275
    [17] G. Cordeiro, E. Biazatti, L. de Santana, A new extended Weibull distribution with application to influenza and hepatitis data, Stats, 6 (2023), 657–673. https://doi.org/10.3390/stats6020042 doi: 10.3390/stats6020042
    [18] L. Baharith, New generalized Weibull inverse Gompertz distribution: Properties and applications, Symmetry, 16 (2024), 197. https://doi.org/10.3390/sym16020197 doi: 10.3390/sym16020197
    [19] A. Ahmad, N. Alsadat, A. Rather, M. Meraou, M. Mohie El-Din, A novel statistical approach to COVID-19 variability using the Weibull-inverse Nadarajah Haghighi distribution, Alex. Eng. J., 107 (2024), 950–962. https://doi.org/10.1016/j.aej.2024.08.008 doi: 10.1016/j.aej.2024.08.008
    [20] X. Chen, Z. Shi, Y. Xie, Z. Zhang, A. Cohen, S. Pu, Advancing continuous distribution generation: An exponentiated odds ratio generator approach, Entropy, 26 (2024), 1006. https://doi.org/10.3390/e26121006 doi: 10.3390/e26121006
    [21] G. Kass, A. Mood, F. Graybill, D. Boes, Introduction to the theory of statistics, 3 Eds., J. Am. Stat. Assoc., 69 (1974), 1050–1051. https://doi.org/10.2307/2286195
    [22] J. Patel, C. Kapadia, D. Owen, Handbook of statistical distributions, New York: Marcel Dekker, 1976.
    [23] W. Feller, An introduction to probability theory and its applications, Wiley, 1991.
    [24] A. Rényi, On measures of entropy and information, In: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, 1961,547–561.
    [25] H. David, H. Nagaraja, Order statistics, Wiley, 2004.
    [26] R. Fisher, On the mathematical foundations of theoretical statistics, In: Philosophical transactions of the Royal Society of London: Series A, containing papers of a mathematical or physical character, 222 (1922), 309–368. https://doi.org/10.1098/rsta.1922.0009
    [27] H. Wang, W. Chen, B. Li, Large sample properties of maximum likelihood estimator using moving extremes ranked set sampling, J. Korean Stat. Soc., 53 (2024), 398–415. https://doi.org/10.1007/s42952-023-00251-2 doi: 10.1007/s42952-023-00251-2
    [28] J. Swain, S. Venkatraman, J. Wilson, Least-squares estimation of distribution functions in Johnson's translation system, J. Stat. Comput. Simul., 29 (1988), 271–297. https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
    [29] R. Cheng, N. Amin, Maximum product of spacings estimation with application to the lognormal distribution, Cardiff: University of Wales Institute of Science and Technology, 1979.
    [30] K. Choi, W. Bulgren, An estimation procedure for mixtures of distributions, J. R. Stat. Soc. B, 30 (1968), 444–460. https://doi.org/10.1111/j.2517-6161.1968.tb00743.x doi: 10.1111/j.2517-6161.1968.tb00743.x
    [31] Z. Al-Saiary, R. Bakoban, The Topp-Leone generalized inverted exponential distribution with real data applications, Entropy, 22 (2020), 1144. https://doi.org/10.3390/e22101144 doi: 10.3390/e22101144
    [32] R. Hibatullah, Y. Widyaningsih, S. Abdullah, Marshall–Olkin extended power Lindley distribution with application, JRAM, 2 (2018), 84–92. https://doi.org/10.26740/jram.v2n2.p84-92 doi: 10.26740/jram.v2n2.p84-92
    [33] A. Gross, V. Clark, Survival distributions: Reliability applications in the biomedical sciences, Wiley, 1975.
    [34] A. Ahmad, S. Ahmad, A. Ahmed, Characterization and estimation of Weibull–Rayleigh distribution with applications to life time data, Appl. Math. Inf. Sci. Lett., 5 (2017), 71–79. https://doi.org/10.18576/amisl/050206 doi: 10.18576/amisl/050206
    [35] H. Klakattawi, D. Alsulami, M. Elaal, S. Dey, L. Baharith, A new generalized family of distributions based on combining Marshal–Olkin transformation with T-X family, PLOS One, 17 (2022), e0263673. https://doi.org/10.1371/journal.pone.0263673 doi: 10.1371/journal.pone.0263673
    [36] N. Rashwan, A note on Kumaraswamy exponentiated Rayleigh distribution, J. Stat. Theory Appl., 15 (2016), 286–295. http://doi.org/10.2991/jsta.2016.15.3.8 doi: 10.2991/jsta.2016.15.3.8
    [37] E. Almetwally, A. Afify, G. Hamedani, Marshall–Olkin alpha power Rayleigh distribution: Properties, characterizations, estimation and engineering applications, Pak. J. Stat. Oper. Res., 17 (2021), 745–760. http://dx.doi.org/10.18187/pjsor.v17i3.3473 doi: 10.18187/pjsor.v17i3.3473
    [38] J. Surles, W. Padgett, Inference for reliability and stress-strength for a scaled Burr type X distribution, Lifetime Data Anal., 7 (2001), 187–200. http://doi.org/10.1023/a:1011352923990 doi: 10.1023/a:1011352923990
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1023) PDF downloads(103) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog