Research article Topical Sections

The $ L_p $-Petty projection inequality for $ s $-concave functions

  • Published: 01 April 2025
  • MSC : 26D10, 52A40

  • We study the "functionalization" of the $ L_p $-projection body and two related important inequalities in geometry. On the class of $ s $-concave functions, a general function counterpart of the $ L_p $-projection body is introduced. In addition, the $ L_p $-Petty projection inequality and the $ L_p $ isoperimetric inequality are established on this class. Finally, we show that the $ L_p $-Petty projection inequality strengthens the $ L_p $ isoperimetric inequality on the same class.

    Citation: Tian Gao, Dan Ma. The $ L_p $-Petty projection inequality for $ s $-concave functions[J]. AIMS Mathematics, 2025, 10(4): 7706-7716. doi: 10.3934/math.2025353

    Related Papers:

  • We study the "functionalization" of the $ L_p $-projection body and two related important inequalities in geometry. On the class of $ s $-concave functions, a general function counterpart of the $ L_p $-projection body is introduced. In addition, the $ L_p $-Petty projection inequality and the $ L_p $ isoperimetric inequality are established on this class. Finally, we show that the $ L_p $-Petty projection inequality strengthens the $ L_p $ isoperimetric inequality on the same class.



    加载中


    [1] S. Artstein-Avidan, B. Klartag, V. Milman, The Santaló point of a function, and a functional form of the Santaló inequality, Mathematika, 51 (2004), 33–48. https://doi.org/10.1112/S0025579300015497 doi: 10.1112/S0025579300015497
    [2] S. Artstein-Avidan, B. Klartag, C. Schütt, E. Werner, Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality, J. Funct. Anal., 262 (2012), 4181–4204. https://doi.org/10.1016/j.jfa.2012.02.014 doi: 10.1016/j.jfa.2012.02.014
    [3] S. Artstein-Avidan, V. Milman, The concept of duality for measure projections of convex bodies, J. Funct. Anal., 254 (2008), 2648–2666. https://doi.org/10.1016/j.jfa.2007.11.008 doi: 10.1016/j.jfa.2007.11.008
    [4] U. Caglar, M. Fradelizi, O. Guédon, J. Lehec, C. Schütt, E. Werner, Functional versions of $L_p$-affine surface area and entropy inequalities, Int. Math. Res. Notices, 2016 (2016), 1223–1250. https://doi.org/10.1093/imrn/rnv151 doi: 10.1093/imrn/rnv151
    [5] U. Caglar, E. M. Werner, Divergence for $s$-concave and log concave functions, Adv. Math., 257 (2014), 219–247. https://doi.org/10.1016/j.aim.2014.02.013 doi: 10.1016/j.aim.2014.02.013
    [6] U. Caglar, D. Ye, Affine isoperimetric inequalities in the functional Orlicz-Brunn-Minkowski theory, Adv. Appl. Math., 81 (2016), 78–114. https://doi.org/10.1016/j.aam.2016.06.007 doi: 10.1016/j.aam.2016.06.007
    [7] I. Chavel, Isoperimetric inequalities: Differential geometric and analytic perspectives, In: Cambridge tracts in mathematics, Cambridge: Cambridge University Press, 2001.
    [8] N. Fang, J. Zhou, LYZ ellipsoid and Petty projection body for log-concave functions, Adv. Math., 340 (2018), 914–959. https://doi.org/10.1016/j.aim.2018.10.029 doi: 10.1016/j.aim.2018.10.029
    [9] N. Fang, J. Zhou, Projection body and isoperimetric inequalities for $s$-concave functions, Chin. Ann. Math. Ser. B, 44 (2023), 465–480. https://doi.org/10.1007/s11401-023-0025-x doi: 10.1007/s11401-023-0025-x
    [10] G. Ivanov, E. Werner, Geometric representation of classes of concave functions and duality, J. Geom. Anal., 34 (2024), 260. https://doi.org/10.1007/s12220-024-01703-9 doi: 10.1007/s12220-024-01703-9
    [11] E. Lutwak, A general isepiphanic inequality, Proc. Amer. Math. Soc., 90 (1984), 415–421.
    [12] E. Lutwak, D. Yang, G. Zhang, $L_p$ affine isoperimetric inequalities, J. Differ. Geom., 56 (2000), 111–132.
    [13] E. Lutwak, D. Yang, G. Zhang, On the $L_p$-Minkowski problem, Trans. Amer. Math. Soc., 356 (2004), 4359–4370.
    [14] V. Milman, L. Rotem, Mixed integrals and related inequalities, J. Funct. Anal., 264 (2013), 570–604. https://doi.org/10.1016/j.jfa.2012.10.019 doi: 10.1016/j.jfa.2012.10.019
    [15] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc., 84 (1978), 1182–1238.
    [16] A. Rojo, A. Bloch, The principle of least action: History and physics, Cambridge: Cambridge University Press, 2018. https://doi.org/10.1017/9781139021029
    [17] M. Roysdon, S. Xing, On $L_p$-Brunn-Minkowski type and $L_p$-isoperimetric type inequalities for measures, Trans. Amer. Math. Soc., 374 (2021), 5003–5036.
    [18] R. Schneider, Convex bodies: The Brunn-Minkowski theory, 2 Eds., Cambridge: Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139003858
    [19] T. Wang, The affine Sobolev-Zhang inequality on ${\rm{BV}}(\Bbb R^n)$, Adv. Math., 230 (2012), 2457–2473. https://doi.org/10.1016/j.aim.2012.04.022 doi: 10.1016/j.aim.2012.04.022
    [20] G. Zhang, Restricted chord projection and affine inequalities, Geom. Dedicata, 39 (1991), 213–222. https://doi.org/10.1007/BF00182294 doi: 10.1007/BF00182294
    [21] G. Zhang, The affine Sobolev inequality, J. Differential Geom., 53 (1999), 183–202. https://doi.org/10.4310/jdg/1214425451 doi: 10.4310/jdg/1214425451
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1021) PDF downloads(87) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog