### AIMS Mathematics

2022, Issue 4: 6711-6742. doi: 10.3934/math.2022375
Research article

# The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions

• This work is part of the author's Ph.D. thesis, prepared at the University of Connecticut, CT, USA, 2016
• Received: 19 July 2021 Revised: 21 December 2021 Accepted: 12 January 2022 Published: 25 January 2022
• MSC : 33F05, 65K10, 65M99, 65N30, 65N99

• In this paper, we consider the symmetric interior penalty Galerkin (SIPG) method which is one of Discontinuous Galerkin Methods for the Dirichlet optimal control problems governed by linear advection-diffusion-reaction equation on a convex polygonal domain and the difficulties which we faced while solving this problem numerically. Since standard Galerkin methods have failed when the boundary layers have occurred and advection diffusion has dominated, these difficulties can occur in the cases of higher order elements and non smooth Dirichlet data in using standard finite elements. We find the most convenient natural setting of Dirichlet boundary control problem for the Laplacian and the advection diffusion reaction equations.After converting the continuous problem to an optimization problem, we solve it by "discretize-then-optimize" approach. In final, we estimate the optimal priori error estimates in suitable norms of the solutions and then support the result and the features of the method with numerical examples on the different kinds of domain.

Citation: Cagnur Corekli. The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions[J]. AIMS Mathematics, 2022, 7(4): 6711-6742. doi: 10.3934/math.2022375

### Related Papers:

• In this paper, we consider the symmetric interior penalty Galerkin (SIPG) method which is one of Discontinuous Galerkin Methods for the Dirichlet optimal control problems governed by linear advection-diffusion-reaction equation on a convex polygonal domain and the difficulties which we faced while solving this problem numerically. Since standard Galerkin methods have failed when the boundary layers have occurred and advection diffusion has dominated, these difficulties can occur in the cases of higher order elements and non smooth Dirichlet data in using standard finite elements. We find the most convenient natural setting of Dirichlet boundary control problem for the Laplacian and the advection diffusion reaction equations.After converting the continuous problem to an optimization problem, we solve it by "discretize-then-optimize" approach. In final, we estimate the optimal priori error estimates in suitable norms of the solutions and then support the result and the features of the method with numerical examples on the different kinds of domain.

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

1.8 3.4

Article outline

## Figures and Tables

Figures(10)  /  Tables(11)

• On This Site