This paper presents an investigation into the phenomenon of global mean-squared finite-time synchronization within the context of two distinct schemes: The asymptotic and exponential forms. The subject matter encompasses space-time discrete stochastic fuzzy genetic regulatory networks, wherein Dirichlet controlled boundary values and time delays are taken into account. The findings presented therein pertain to global mean-squared finite-time synchronization for the aforementioned discrete stochastic fuzzy networks, which incorporate the Lyapunov-Krasovskii functional with a double sum representing the delay-dependent components. In addition, this study demonstrates that improved global mean-squared finite-time synchronization of space-time discrete stochastic fuzzy genetic regulatory networks with boundary controls can be achieved by optimizing the small diffusion intensities, the small fuzzy MIN and MAX parameters, and the large degradation rates of mRNA and proteins. It was unexpected to discover that the sizes of the time lags exert a direct influence on the value of the convergent rate of global mean-squared finite-time exponential synchronization of the networks. This paper presents a framework for exploring the issues of global mean-squared finite-time asymptotic and exponential synchronization for space-time discrete stochastic fuzzy genetic regulatory networks via the Dirichlet controlled boundaries. To conclude, an illustrative example is provided to demonstrate the efficacy of the aforementioned method.
Citation: Dong Pan, Huizhen Qu. Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays[J]. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101
This paper presents an investigation into the phenomenon of global mean-squared finite-time synchronization within the context of two distinct schemes: The asymptotic and exponential forms. The subject matter encompasses space-time discrete stochastic fuzzy genetic regulatory networks, wherein Dirichlet controlled boundary values and time delays are taken into account. The findings presented therein pertain to global mean-squared finite-time synchronization for the aforementioned discrete stochastic fuzzy networks, which incorporate the Lyapunov-Krasovskii functional with a double sum representing the delay-dependent components. In addition, this study demonstrates that improved global mean-squared finite-time synchronization of space-time discrete stochastic fuzzy genetic regulatory networks with boundary controls can be achieved by optimizing the small diffusion intensities, the small fuzzy MIN and MAX parameters, and the large degradation rates of mRNA and proteins. It was unexpected to discover that the sizes of the time lags exert a direct influence on the value of the convergent rate of global mean-squared finite-time exponential synchronization of the networks. This paper presents a framework for exploring the issues of global mean-squared finite-time asymptotic and exponential synchronization for space-time discrete stochastic fuzzy genetic regulatory networks via the Dirichlet controlled boundaries. To conclude, an illustrative example is provided to demonstrate the efficacy of the aforementioned method.
| [1] |
A. S. Ortiz, J. G. Nieto, J. F. A. Montes, I. N. Delgado, Multi-objective context-guided consensus of a massive array of techniques for the inference of gene regulatory networks, Comput. Biol. Med., 179 (2024), 108850. https://doi.org/10.1016/j.compbiomed.2024.108850 doi: 10.1016/j.compbiomed.2024.108850
|
| [2] |
G. Ai, C. He, S. T. Bi, Z. R. Zhou, A. K. Liu, X. Hu, et al., Dissecting the molecular basis of spike traits by integrating gene regulatory networks and genetic variation in wheat, Plant Commun., 5 (2024), 100879. https://doi.org/10.1016/j.xplc.2024.100879 doi: 10.1016/j.xplc.2024.100879
|
| [3] |
A. A. Brown, J. J. F. Tajes, M. G. Hong, C. A. Brorsson, R. W. Koivula, D, Davtian, et al., Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits, Nat. Commun., 14, (2023) 5062. https://doi.org/10.1038/s41467-023-40569-3 doi: 10.1038/s41467-023-40569-3
|
| [4] |
H. Jiang, Y. Wang, C. Yin, H. Pan, L. Chen, K. Feng, et al., SLIVER: Unveiling large scale gene regulatory networks of single-cell transcriptomic data through causal structure learning and modules aggregation, Comput. Biol. Med., 178 (2024), 108690. https://doi.org/10.1016/j.compbiomed.2024.108690 doi: 10.1016/j.compbiomed.2024.108690
|
| [5] |
P. J. Wei, J. J. Bao, Z. Gao, J. Y. Tan, R. F. Cao, Y. Su, et al., MEFFGRN: Matrix enhancement and feature fusion-based method for reconstructing the gene regulatory network of epithelioma papulosum cyprini cells by spring viremia of carp virus infection, Comput. biol. med., 179 (2024), 108835. https://doi.org/10.1016/j.compbiomed.2024.108835 doi: 10.1016/j.compbiomed.2024.108835
|
| [6] |
C. Wang, C. L. Chen, B. W. Lei, S. H. Qin, Y. Y. Zhang, K. Li, et al., Constructing eRNA-mediated gene regulatory networks to explore the genetic basis of muscle and fat-relevant traits in pigs, Genet. Sel. Evol., 56 (2024), 28. https://doi.org/10.1186/s12711-024-00897-4 doi: 10.1186/s12711-024-00897-4
|
| [7] |
M. Kchaou, G. Narayanan, M. S. Ali, S. Sanober, G. Rajchakit, B. Priya, Finite-time Mittag-Leffler synchronization of delayed fractional-order discrete-time complex-valued genetic regulatory networks: Decomposition and direct approaches, Inform. Sciences, 664 (2024), 120337. https://doi.org/10.1016/j.ins.2024.120337 doi: 10.1016/j.ins.2024.120337
|
| [8] |
J. Fan, X. Wan, Y. Wu, B. Ruan, Finite-time $H_\infty$ asynchronous state estimation for stochastically switched delayed genetic regulatory networks with sojourn probabilities, J. Franklin I., 361 (2024), 106685. https://doi.org/10.1016/j.jfranklin.2024.106685 doi: 10.1016/j.jfranklin.2024.106685
|
| [9] |
S. Rao, X. Lv, Passivity-based control and asymptotic synchronization for multi-variable discrete stochastic genetic regulatory networks with complex network dynamics, Eur. Phys. J. Plus, 139 (2024), 76. https://doi.org/10.1140/epjp/s13360-024-04860-6 doi: 10.1140/epjp/s13360-024-04860-6
|
| [10] |
G. Narayanan, M. S. Ali, R. Karthikeyan, G. Rajchakit, A. Jirawattanapanit, Novel adaptive strategies for synchronization control mechanism in nonlinear dynamic fuzzy modeling of fractional-order genetic regulatory networks, Chaos Soliton. Fract., 165 (2022), 112748. https://doi.org/10.1016/j.chaos.2022.112748 doi: 10.1016/j.chaos.2022.112748
|
| [11] |
P. Anbalagan, E. Hincal, R. Ramachandran, D. Baleanu, J. Cao, M. Niezabitowski, An asymptotic state estimator design and synchronization criteria for fractional order time-delayed genetic regulatory networks, Asian J. Control, 24 (2022), 3163–3174. https://doi.org/10.1002/asjc.2733 doi: 10.1002/asjc.2733
|
| [12] |
M. Zamani, S. Mohammadi, Finite element solution of coupled multiphysics reaction-diffusion equations for fracture healing in hard biological tissues, Comput. Biol. Med., 179 (2024), 108829. https://doi.org/10.1016/j.compbiomed.2024.108829 doi: 10.1016/j.compbiomed.2024.108829
|
| [13] |
X. She, L. Wang, Finite-time stability of reaction-diffusion genetic regulatory networks with nondifferential time-varying mixed delays, Math. Method. Appl. Sci., 47 (2024), 7404–7417. https://doi.org/10.1002/mma.9978 doi: 10.1002/mma.9978
|
| [14] |
X. Song, X. Li, S. Song, C. K. Ahn, State observer design of coupled genetic regulatory networks with reaction-diffusion terms via time-space sampled-data communications, IEEE-ACM T. Comput. Bi., 19 (2022), 3704–3714. https://doi.org/10.1109/TCBB.2021.3114405 doi: 10.1109/TCBB.2021.3114405
|
| [15] | B. Hao, T. W. Zhang, Exponential convergence in the mean-square sense of nonlocal stochastic almost automorphic genetic regulatory lattice networks, T. I. Meas. Control, 46 (2024), 116–130. |
| [16] |
S. B. Rao, T. W. Zhang, Almost automorphic behaviours of nonlocal stochastic fuzzy Cohen-Grossberg lattice neural networks, Int. J. Gen. Syst., 53 (2024), 1014–1041. https://doi.org/10.1080/03081079.2024.2340699 doi: 10.1080/03081079.2024.2340699
|
| [17] |
X. F. Hu, L. M. Wang, C. K. Zhang, X. B. Wan, Y. He, Fixed-time stabilization of discontinuous spatiotemporal neural networks with time-varying coefficients via aperiodically switching control, Sci. China Inform. Sci., 66 (2023), 152204. https://doi.org/10.1007/s11432-022-3650-8 doi: 10.1007/s11432-022-3650-8
|
| [18] |
T. W. Zhang, Z. H. Li, Switching clusters' synchronization for discrete space-time complex dynamical networks via boundary feedback controls, Pattern Recogn., 143 (2023), 109763. https://doi.org/10.1016/j.patcog.2023.109763 doi: 10.1016/j.patcog.2023.109763
|
| [19] |
T. W. Zhang, Y. Y. Yang, S. F. Han, Node-to-node clustering asymptotic synchronized discrete stochastic neural networks in time and space with Bernoulli switching delay, Chinese J. Phys., 92 (2024), 743–754. https://doi.org/10.1016/j.cjph.2024.09.007 doi: 10.1016/j.cjph.2024.09.007
|
| [20] |
G. Rajchakit, K. A. Banu, T. Aparna, C. P. Lim, Event-triggered secure control for Markov jump neural networks with time-varying delays and subject to cyber-attacks via state estimation fuzzy approach, Int. J. Syst. Sci., 56 (2025), 211–226. https://doi.org/10.1080/00207721.2024.2390694 doi: 10.1080/00207721.2024.2390694
|
| [21] |
C. Aouiti, Q. Hui, E. Moulay, F. Touati, Global dissipativity of fuzzy genetic regulatory networks with mixed delays, Int. J. Syst. Sci., 53 (2022), 2644–2663. https://doi.org/10.1080/00207721.2022.2056653 doi: 10.1080/00207721.2022.2056653
|
| [22] |
T. W. Zhang, Y. K. Li, Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique, Knowl.-Based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675
|
| [23] |
T. W. Zhang, H. Z. Qu, J. W. Zhou, Asymptotically almost periodic synchronization in fuzzy competitive neural networks with Caputo-Fabrizio operator, Fuzzy Set. Syst., 471 (2023), 108676. https://doi.org/10.1016/j.fss.2023.108676 doi: 10.1016/j.fss.2023.108676
|
| [24] |
V. Gokulakrishnan, R. Srinivasan, M. S. Ali, G. Rajchakit, B. Priya, Novel LMI-based boundary stabilization of stochastic delayed reaction-diffusion Cohen-Grossberg BAM neural networks with impulsive effects, Neural Process. Lett., 56 (2024), 76. https://doi.org/10.1007/s11063-024-11494-3 doi: 10.1007/s11063-024-11494-3
|
| [25] |
J. Wichmann, On temporal regularity of strong solutions to stochastic $p$-Laplace systems, SIAM J. Math. Anal., 55 (2023), 3713–3730. https://doi.org/10.1137/21M1460491 doi: 10.1137/21M1460491
|
| [26] |
F. Tatari, H. Modares, Deterministic and stochastic fixed-time stability of discrete-time autonomous systems, IEEE-CAA J. Automatica, 10 (2023), 945–956. https://doi.org/10.1109/JAS.2023.123405 doi: 10.1109/JAS.2023.123405
|
| [27] |
T. W. Zhang, Y. Y. Yang, S. F. Han, Exponential heterogeneous anti-synchronization of multi-variable discrete stochastic inertial neural networks with adaptive corrective parameter, Eng. Appl. Artif. Intel., 142 (2025), 109871. https://doi.org/10.1016/j.engappai.2024.109871 doi: 10.1016/j.engappai.2024.109871
|
| [28] |
G. Rajchakit, R. Sriraman, C. P. Lim, P. Sam-ang, P. Hammachukiattikul, Synchronization in finite-time analysis of Clifford-valued neural networks with finite-time distributed delays, Mathematics, 9 (2021), 1163. https://doi.org/10.3390/math9111163 doi: 10.3390/math9111163
|
| [29] |
Y. Qin, J. Wang, X. Chen, K. Shi, H. Shen, Anti-disturbance synchronization of fuzzy genetic regulatory networks with reaction-diffusion, J. Franklin I., 359 (2022), 3733–3748. https://doi.org/10.1016/j.jfranklin.2022.03.031 doi: 10.1016/j.jfranklin.2022.03.031
|
| [30] |
X. Song, X. Li, C. K. Ahn, S. Song, Space-dividing-based cluster synchronization of reaction-diffusion genetic regulatory networks via intermittent control, IEEE T. Nanobiosci., 21 (2022), 55–64. https://doi.org/10.1109/TNB.2021.3111109 doi: 10.1109/TNB.2021.3111109
|
| [31] |
R. Q. Tang, X. S. Yang, P. Shi, Z. R. Xiang, L. B. Qing, Finite-time stabilization of uncertain delayed T-S fuzzy systems via intermittent control, IEEE T. Fuzzy Syst., 32 (2024), 116–125. https://doi.org/10.1109/TFUZZ.2023.3292233 doi: 10.1109/TFUZZ.2023.3292233
|
| [32] |
N. Padmaja, P. Balasubramaniam, Mixed $H_\infty$/passivity based stability analysis of fractional-order gene regulatory networks with variable delays, Math. Comput. Simulat., 192 (2022), 167–181. https://doi.org/10.1016/j.matcom.2020.09.019 doi: 10.1016/j.matcom.2020.09.019
|
| [33] |
X. Y. Chen, T. Y. Jia, Z. S. Wang, X. P. Xie, J. L. Qiu, Practical fixed-time bipartite synchronization of uncertain coupled neural networks subject to deception attacks via dual-channel event-triggered control, IEEE T. Cybernetics, 54 (2024), 3615–3625. https://doi.org/10.1109/TCYB.2023.3338165 doi: 10.1109/TCYB.2023.3338165
|
| [34] |
X. Y. Chen, H. W. Liu, G. H. Wen, Y. Liu, J. D. Cao, J. L. Qiu, Adaptive neural preassigned-time control for macro-micro composite positioning stage with displacement constraints, IEEE T. Ind. Inform., 20 (2024) 1103–1112. https://doi.org/10.1109/TII.2023.3254602 doi: 10.1109/TII.2023.3254602
|
| [35] | S. G. Georgiev, Integral equations on time scales, Dordrecht: Atlantis Press, 2016. |
| [36] |
G. V. Milovanović, I. Z. Milovanović, On discrete inequalities of Wirtinger's type, J. Math. Anal. Appl., 88 (1982), 378–387. https://doi.org/10.1016/0022-247X(82)90201-3 doi: 10.1016/0022-247X(82)90201-3
|
| [37] |
T. Yang, L. Yang, The global stability of fuzzy cellular neural network, IEEE T. Circuits-I, 43 (1996), 880–883. https://doi.org/10.1109/81.538999 doi: 10.1109/81.538999
|
| [38] |
T. T. Cheng, L. M. Wang, Z. C. Wei, G. D. Zhang, Fixed/preassigned-time stabilization of discontinuous switched systems with time-varying delays, Appl. Math. Comput., 476 (2024), 128763. https://doi.org/10.1016/j.amc.2024.128763 doi: 10.1016/j.amc.2024.128763
|
| [39] |
X. F. Hu, L. M. Wang, C. K. Zhang, Y. He, Fixed-time synchronization of fuzzy complex dynamical networks with reaction-diffusion terms via intermittent pinning control, IEEE T. Fuzzy Syst., 32 (2024), 2307–2317. https://doi.org/10.1109/TFUZZ.2024.3349599 doi: 10.1109/TFUZZ.2024.3349599
|