Following the research of Yang and Atef proposing new classes of fuzzy $ \beta $-covering via rough sets types over 2-featured universes, we present some modern classes of fuzzy $ \alpha $-covering via rough sets over two distinct finite sets using fuzzy $ \alpha $-neighborhoods for two distinct points over 2-distinct finite universes. Throughout this research, we present the ideas of the fuzzy $ \alpha $-neighborhood system and the fuzzy $ \alpha $-neighborhood for two distinct points over two distinct finite sets and investigate the relations of the fuzzy $ \alpha $-neighborhood system, fuzzy $ \alpha $-minimal and $ \alpha $-maximal descriptions over two distinct finite sets. Moreover, some kinds of fuzzy $ \alpha $-neighborhoods are proposed. In addition, some new types of fuzzy $ \alpha $-coverings over two finite sets are established. Finally, numerous topological characteristics of fuzzy $ \alpha $-covering via rough set types are investigated.
Citation: Amal T. Abushaaban, O. A. Embaby, Abdelfattah A. El-Atik. Modern classes of fuzzy $ \alpha $-covering via rough sets over two distinct finite sets[J]. AIMS Mathematics, 2025, 10(2): 2131-2162. doi: 10.3934/math.2025100
Following the research of Yang and Atef proposing new classes of fuzzy $ \beta $-covering via rough sets types over 2-featured universes, we present some modern classes of fuzzy $ \alpha $-covering via rough sets over two distinct finite sets using fuzzy $ \alpha $-neighborhoods for two distinct points over 2-distinct finite universes. Throughout this research, we present the ideas of the fuzzy $ \alpha $-neighborhood system and the fuzzy $ \alpha $-neighborhood for two distinct points over two distinct finite sets and investigate the relations of the fuzzy $ \alpha $-neighborhood system, fuzzy $ \alpha $-minimal and $ \alpha $-maximal descriptions over two distinct finite sets. Moreover, some kinds of fuzzy $ \alpha $-neighborhoods are proposed. In addition, some new types of fuzzy $ \alpha $-coverings over two finite sets are established. Finally, numerous topological characteristics of fuzzy $ \alpha $-covering via rough set types are investigated.
| [1] |
Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
|
| [2] |
Z. Pawlak, Rough concept analysis, Bull. Pol. Acad. Sci., Math., 33 (1985), 9–10. doi: 10.1007/BF01001956
|
| [3] |
J. H. Dai, Q. Xu, Approximations and uncertainty measures in incomplete information systems, Inform. Sciences, 198 (2012), 62–80. https://doi.org/10.1016/j.ins.2012.02.032 doi: 10.1016/j.ins.2012.02.032
|
| [4] |
Q. H. Hu, L. Zhang, D. G. Chen, W. Pedrycz, D. R. Yu, Gaussian kernel based fuzzy rough sets: model, uncertainty measures and applications, Int. J. Approx. Reason., 51 (2010), 453–471. https://doi.org/10.1016/j.ijar.2010.01.004 doi: 10.1016/j.ijar.2010.01.004
|
| [5] |
W. Wei, J. Y. Liang, Y. H. Qian, A comparative study of rough sets for hybrid data, Inform. Sciences, 190 (2012), 1–16. https://doi.org/10.1016/j.ins.2011.12.006 doi: 10.1016/j.ins.2011.12.006
|
| [6] |
H. M. Abu-Donia, Comparison between different kinds of approximations by using a family of binary relations, Knowl.-Based Syst., 21 (2008), 911–919. https://doi.org/10.1016/j.knosys.2008.03.046 doi: 10.1016/j.knosys.2008.03.046
|
| [7] |
S. Greco, B. Matarazzo, R. Slowinski, Rough approximation by dominance relations, Int. J. Intell. Syst., 17 (2002), 153–171. https://doi.org/10.1002/int.10014 doi: 10.1002/int.10014
|
| [8] |
T. Herawan, M. M. Deris, J. H. Abawajy, A rough set approach for selecting clustering attribute, Knowl.-Based Syst., 23 (2010), 220–231. https://doi.org/10.1016/j.knosys.2009.12.003 doi: 10.1016/j.knosys.2009.12.003
|
| [9] |
R. Jensen, Q. Shen, Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches, IEEE T. Knowl. Data En., 16 (2004), 1457–1471. https://doi.org/10.1109/TKDE.2004.96 doi: 10.1109/TKDE.2004.96
|
| [10] |
M. Atef, A. M. Khalil, S. G. Li, A. A. Azzam, A. F. El Atik, Comparison of six types of rough approximations based on j-neighborhood space and j-adhesion neighborhood space, J. Intell. Fuzzy Syst., 39 (2020), 4515–4531. https://doi.org/10.3233/JIFS-200482 doi: 10.3233/JIFS-200482
|
| [11] |
K. Y. Huang, T. H. Chang, T. C. Chang, Determination of the threshold value $\beta$ of variable precision rough set by fuzzy algorithms, Int. J. Approx. Reason., 52 (2011), 1056–1072. https://doi.org/10.1016/j.ijar.2011.05.001 doi: 10.1016/j.ijar.2011.05.001
|
| [12] |
W. Ziarko, Variable precision rough set model, J. Comput. Syst. Sci., 46 (1993), 39–59. https://doi.org/10.1016/0022-0000(93)90048-2 doi: 10.1016/0022-0000(93)90048-2
|
| [13] |
Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inform. Sciences, 111 (1998), 239–259. https://doi.org/10.1016/S0020-0255(98)10006-3 doi: 10.1016/S0020-0255(98)10006-3
|
| [14] |
Z. Bonikowski, E. Bryniarski, U. Wybraniec-Skardowska, Extensions and intentions in rough set theory, Inform. Sciences, 107 (1998), 149–167. https://doi.org/10.1016/S0020-0255(97)10046-9 doi: 10.1016/S0020-0255(97)10046-9
|
| [15] | J. A. Pomykala, Approximation operations in approximation space, Bulletin of the Polish Academy of Sciences, Mathematics, 35 (1987), 653–662. |
| [16] | J. A. Pomykala, On definability in the nondeterministic information system, Bulletin of the Polish Academy of Sciences, Mathematics, 36 (1988), 193–210. |
| [17] |
P. F. Zhang, T. R. Li, C. Luo, G. Q. Wang, AMG-DTRS: Adaptive multi-granulation decision-theoretic rough sets, Int. J. Approx. Reason., 140 (2022), 7–30. https://doi.org/10.1016/j.ijar.2021.09.017 doi: 10.1016/j.ijar.2021.09.017
|
| [18] |
Z. H. Huang, J. J. Li, Covering based multi-granulation rough fuzzy sets with applications to feature selection, Expert Syst. Appl., 238 (2024), 121908. https://doi.org/10.1016/j.eswa.2023.121908 doi: 10.1016/j.eswa.2023.121908
|
| [19] |
Y. Xu, M. Wang, S. Z. Hu, Matrix-based fast granularity reduction algorithm of multi-granulation rough set, Artif. Intell. Rev., 56 (2023), 4113-4135. https://doi.org/10.1007/s10462-022-10276-4 doi: 10.1007/s10462-022-10276-4
|
| [20] |
P. F. Zhang, D. X. Wang, Z. Yu, Y. J. Zhang, T. Jiang, T. R. Li, A multi-scale information fusion-based multiple correlations for unsupervised attribute selection, Inform. Fusion, 106 (2024), 102276. https://doi.org/10.1016/j.inffus.2024.102276 doi: 10.1016/j.inffus.2024.102276
|
| [21] |
Z. A. Xue, M. M. Jing, Y. X. Li, Y. Zheng, Variable precision multi-granulation covering rough intuitionistic fuzzy sets, Granul. Comput., 8 (2023), 577–596. https://doi.org/10.1007/s41066-022-00342-1 doi: 10.1007/s41066-022-00342-1
|
| [22] |
W. Zhu, Topological approaches to covering rough sets, Inform. Sciences, 177 (2007), 1499–1508. https://doi.org/10.1016/j.ins.2006.06.009 doi: 10.1016/j.ins.2006.06.009
|
| [23] |
W. Zhu, F. Y. Wang, Reduction and axiomization of covering generalized rough sets, Inform. Sciences, 152 (2003), 217–230. https://doi.org/10.1016/S0020-0255(03)00056-2 doi: 10.1016/S0020-0255(03)00056-2
|
| [24] |
W. Zhu, F. Y. Wang, On three types of covering rough sets, IEEE T. Knowl. Data En., 19 (2007), 1131–1144. https://doi.org/10.1109/TKDE.2007.1044 doi: 10.1109/TKDE.2007.1044
|
| [25] |
W. Zhu, F. Y. Wang, The fourth types of covering-based rough sets, Inform. Sciences, 201 (2012), 80–92. https://doi.org/10.1016/j.ins.2012.01.026 doi: 10.1016/j.ins.2012.01.026
|
| [26] |
E. C. C. Tsang, D. G. Chen, D. S. Yeung, Approximations and reducts with covering generalized rough sets, Comput. Math. Appl., 56 (2008), 279–289. https://doi.org/10.1016/j.camwa.2006.12.104 doi: 10.1016/j.camwa.2006.12.104
|
| [27] |
W. H. Xu, W. X. Zhang, Measuring roughness of generalized rough sets induced a covering, Fuzzy Set. Syst., 158 (2007), 2443–2455. https://doi.org/10.1016/j.fss.2007.03.018 doi: 10.1016/j.fss.2007.03.018
|
| [28] |
G. L. Liu, Y. Sai, A comparison of two types of rough sets induced by coverings, Int. J. Approx. Reason., 50 (2009), 521–528. https://doi.org/10.1016/j.ijar.2008.11.001 doi: 10.1016/j.ijar.2008.11.001
|
| [29] |
L. W. Ma, On some types of neighborhood related covering rough sets, Int. J. Approx. Reason., 53 (2012), 901–911. https://doi.org/10.1016/j.ijar.2012.03.004 doi: 10.1016/j.ijar.2012.03.004
|
| [30] | G. J. Klir, B. Yuan, Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh, Singapore: World Scientific, 1996. |
| [31] |
D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107 doi: 10.1080/03081079008935107
|
| [32] |
T. Q. Deng, Y. M. Chen, W. L. Xu, Q. H. Dai, A novel approach to fuzzy rough sets based on a fuzzy covering, Inform. Sciences, 177 (2007), 2308–2326. https://doi.org/10.1016/j.ins.2006.11.013 doi: 10.1016/j.ins.2006.11.013
|
| [33] |
T. J. Li, Y. Leung, W. X. Zhang, Generalized fuzzy rough approximation operators based on fuzzy covering, Int. J. Approx. Reason., 48 (2008), 836–856. https://doi.org/10.1016/j.ijar.2008.01.006 doi: 10.1016/j.ijar.2008.01.006
|
| [34] |
T. Feng, S. P. Zhang, J. S. Mi, The reduction and fusion of fuzzy covering systems based on the evidence theory, Int. J. Approx. Reason., 53 (2012), 87–103. https://doi.org/10.1016/j.ijar.2011.10.002 doi: 10.1016/j.ijar.2011.10.002
|
| [35] | B. $\check{S}$e$\check{s}$elja, L-fuzzy covering relation, Fuzzy Set. Syst., 158 (2007), 2456–2465. https://doi.org/10.1016/j.fss.2007.05.019 |
| [36] |
C. Z. Wang, D. G. Chen, Q. H. Hu, Fuzzy information systems and their homomorphisms, Fuzzy Set. Syst., 249 (2014), 128–138. https://doi.org/10.1016/j.fss.2014.02.009 doi: 10.1016/j.fss.2014.02.009
|
| [37] |
B. Yang, M. Atef, Novel classes of fuzzy $\beta-$covering-based rough set over two distinct universes, Fuzzy Set. Syst., 461 (2023), 108350. https://doi.org/10.1016/j.fss.2022.06.024 doi: 10.1016/j.fss.2022.06.024
|
| [38] |
K. Zhang, J. M. Zhan, W.-Z. Wu, On multi-criteria decision making method based on a fuzzy rough set model with fuzzy $\alpha-$neighborhoods, IEEE T. Fuzzy Syst., 29 (2021), 2491–2505. http://doi.org/10.1109/TFUZZ.2020.3001670 doi: 10.1109/TFUZZ.2020.3001670
|
| [39] |
L. W. Ma, Two fuzzy covering rough set models and their generalizations over fuzzy lattices, Fuzzy Set. Syst., 294 (2016), 1–17. https://doi.org/10.1016/j.fss.2015.05.002 doi: 10.1016/j.fss.2015.05.002
|
| [40] |
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sciences, 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
|
| [41] |
B. Yang, Fuzzy covering-based rough set on two different universes and its application, Artif. Intell. Rev., 55 (2022), 4717–4753. https://doi.org/10.1007/s10462-021-10115-y doi: 10.1007/s10462-021-10115-y
|
| [42] |
Y. Y. Yao, B. X. Yao, Covering based rough set approximations, Inform. Sciences, 200 (2012), 91–107. https://doi.org/10.1016/j.ins.2012.02.065 doi: 10.1016/j.ins.2012.02.065
|
| [43] |
B. Yang, B. Q. Hu, Fuzzy neighborhood operators and derived fuzzy coverings, Fuzzy Set. Syst., 370 (2019), 1–33. https://doi.org/10.1016/j.fss.2018.05.017 doi: 10.1016/j.fss.2018.05.017
|