The traveling wave behavior of the nonlinear third and fourth-order advection-diffusion equation has been elaborated. In this study, the effect of dispersion and dissipation processes was mainly analyzed thoroughly. In the thorough analysis, strictly permanent short waves to breaking waves, having comparative higher amplitudes, have been observed. The governed problem was employed with the space-splitting method for a coupled system of equations to conduct the computational process. For the time derivative, the Crank-Nicolson difference approximation was studied. An orthogonal collocation method using Hermite splines has been implemented to approximate the solution of the semi-discretized coupled problem. The proposed method reduces the equation to an iterative scheme of an algebraic system of collocation equations, which reduced the computational complexity. The proposed scheme is found to be unconditionally stable, and the numerical demonstrations and comparisons represented the computational efficiency.
Citation: Abdul-Majeed Ayebire, Saroj Sahani, Priyanka, Shelly Arora. Numerical study of soliton behavior of generalised Kuramoto-Sivashinsky type equations with Hermite splines[J]. AIMS Mathematics, 2025, 10(2): 2098-2130. doi: 10.3934/math.2025099
The traveling wave behavior of the nonlinear third and fourth-order advection-diffusion equation has been elaborated. In this study, the effect of dispersion and dissipation processes was mainly analyzed thoroughly. In the thorough analysis, strictly permanent short waves to breaking waves, having comparative higher amplitudes, have been observed. The governed problem was employed with the space-splitting method for a coupled system of equations to conduct the computational process. For the time derivative, the Crank-Nicolson difference approximation was studied. An orthogonal collocation method using Hermite splines has been implemented to approximate the solution of the semi-discretized coupled problem. The proposed method reduces the equation to an iterative scheme of an algebraic system of collocation equations, which reduced the computational complexity. The proposed scheme is found to be unconditionally stable, and the numerical demonstrations and comparisons represented the computational efficiency.
| [1] | M. Şenol, L. Akinyemi, H. Nkansah, W. Adel, New solutions for four novel generalized nonlinear fractional fifth-order equations, J. Ocean Eng. Sci., (2022). https://doi.org/10.1016/j.joes.2022.03.013 |
| [2] | M. Richard, W. Zhao, S. Maitama, New analytical modelling of fractional generalized Kuramoto-Sivashinky equation via Atangana-Baleanu operator and J-transform method, J. Ocean Eng. Sci., (2022). https://doi.org/10.1016/j.joes.2022.06.025 |
| [3] |
S. S. Ray, A. K. Gupta, Two-dimensional Legendre wavelet method for travelling wave solutions of time-fractional generalized seventh order KdV equation, Comput. Math. Appl., 73 (2017), 1118–1133. https://doi.org/10.1016/j.camwa.2016.06.046 doi: 10.1016/j.camwa.2016.06.046
|
| [4] |
T. J. Bridges, G. Derks, G. Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: A numerical framework, Physica D, 172 (2002), 190–216. https://doi.org/10.1016/S0167-2789(02)00655-3 doi: 10.1016/S0167-2789(02)00655-3
|
| [5] |
Z. Q. Zhang, H. Ma, A rational spectral method for the KdV equation on the half line, J. Comput. Appl. Math., 230 (2009), 614–625. https://doi.org/10.1016/j.cam.2009.01.025 doi: 10.1016/j.cam.2009.01.025
|
| [6] |
X. Wang, Y. Liu, J. Ouyang, A meshfree collocation method based on moving Taylor polynomial approximation for high order partial differential equations, Eng. Anal. Bound. Elem., 116 (2020), 77–92. https://doi.org/10.1016/j.enganabound.2020.04.002 doi: 10.1016/j.enganabound.2020.04.002
|
| [7] |
D. Benney, Long waves on liquid films, J. Math. Phys., 45 (1966), 150–155. https://doi.org/10.1002/SAPM1966451150 doi: 10.1002/SAPM1966451150
|
| [8] |
H. Lai, C. Ma, Lattice Boltzmann method for the generalized Kuramoto–Sivashinsky equation, Physica A, 388 (2009), 1405–1412. https://doi.org/10.1016/j.physa.2009.01.005 doi: 10.1016/j.physa.2009.01.005
|
| [9] |
M. Lakestani, M. Dehghan, Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions, Appl. Math. Model., 36 (2012), 605–617. https://doi.org/10.1016/j.apm.2011.07.028 doi: 10.1016/j.apm.2011.07.028
|
| [10] |
S. Haq, N. Bibi, I. S. Tirmizi, M. Usman, Meshless method of lines for the numerical solution of generalized Kuramoto-Sivashinsky equation, Appl. Math. Comput., 217 (2010), 2404–2413. https://doi.org/10.1016/j.amc.2010.07.041 doi: 10.1016/j.amc.2010.07.041
|
| [11] |
E. Dabboura, H. Sadat, C. Prax, A moving least squares meshless method for solving the generalized Kuramoto-Sivashinsky equation, Alex. Eng. J., 55 (2016), 2783–2787. https://doi.org/10.1016/j.aej.2016.07.024 doi: 10.1016/j.aej.2016.07.024
|
| [12] |
A. H. Khater, R. Temsah, Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods, Comput. Math. Appl., 56 (2008), 1465–1472. https://doi.org/10.1016/j.camwa.2008.03.013 doi: 10.1016/j.camwa.2008.03.013
|
| [13] |
Y. Fu, Z. Liu, Persistence of travelling fronts of KdV–Burgers–Kuramoto equation, Appl. Math. Comput., 216 (2010), 2199–2206. https://doi.org/10.1016/j.amc.2010.03.057 doi: 10.1016/j.amc.2010.03.057
|
| [14] |
A. Mouloud, H. Fellouah, B. A. Wade, M. Kessal, Time discretization and stability regions for dissipative–dispersive Kuramoto–Sivashinsky equation arising in turbulent gas flow over laminar liquid, J. Comput. Appl. Math., 330 (2018), 605–617. https://doi.org/10.1016/j.cam.2017.09.014 doi: 10.1016/j.cam.2017.09.014
|
| [15] |
D. C. Sarocka, A. J. Bernoff, L. F. Rossi, Large-amplitude solutions to the Sivashinsky and Riley–Davis equations for directional solidification, Physica D, 127 (1999), 146–176. https://doi.org/10.1016/S0167-2789(98)00281-4 doi: 10.1016/S0167-2789(98)00281-4
|
| [16] |
J. Daou, A. Kelly, J. Landel, Flame stability under flow-induced anisotropic diffusion and heat loss, Combust. Flame, 248 (2023), 112588. https://doi.org/10.1016/j.combustflame.2022.112588 doi: 10.1016/j.combustflame.2022.112588
|
| [17] |
M. Benlahsen, G. Bognar, Z. Csati, M. Guedda, K. Hriczo, Dynamical properties of a nonlinear Kuramoto–Sivashinsky growth equation, Alex. Eng. J., 60 (2021), 3419–3427. https://doi.org/10.1016/j.aej.2021.02.003 doi: 10.1016/j.aej.2021.02.003
|
| [18] |
N. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Phys. Lett. A, 147 (1990), 287–291. https://doi.org/10.1016/0375-9601(90)90449-X doi: 10.1016/0375-9601(90)90449-X
|
| [19] |
B. Guo, X. Pan, Similarity transformation, the structure of the travelling waves solution and the existence of a global smooth solution to generalized Kuramoto Sivashinsky type equations, Acta Math. Sci., 11 (1991), 48–55. https://doi.org/10.1016/S0252-9602(18)30428-4 doi: 10.1016/S0252-9602(18)30428-4
|
| [20] |
A. Biswas, D. Swanson, Existence and generalized Gevrey regularity of solutions to the Kuramoto–Sivashinsky equation in $R^n$, J. Differ. Equations, 240 (2007), 145–163. https://doi.org/10.1016/j.jde.2007.05.022 doi: 10.1016/j.jde.2007.05.022
|
| [21] |
Y. Lenbury, C. Rattanakul, D. Li, Stability of solution of Kuramoto-Sivashinsky-Korteweg-de Vries system, Comput. Math. Appl., 52 (2006), 497–508. https://doi.org/10.1016/j.camwa.2005.11.038 doi: 10.1016/j.camwa.2005.11.038
|
| [22] |
C. M. Alfaro, R. D. Benguria, M. C. Depassier, Finite mode analysis of the generalized Kuramoto-Sivashinsky equation, Physica D, 61 (1992), 1–5. https://doi.org/10.1016/0167-2789(92)90143-B doi: 10.1016/0167-2789(92)90143-B
|
| [23] |
N. A. Kudryashov, On wave structures described by the generalized Kuramoto–Sivashinsky equation, Appl. Math. Lett., 49 (2015), 84–90. https://doi.org/10.1016/j.aml.2015.05.001 doi: 10.1016/j.aml.2015.05.001
|
| [24] |
H. Zhao, S. Tang, Nonlinear stability and optimal decay rate for a multidimensional generalized Kuramoto–Sivashinsky system, J. Math. Anal. Appl., 246 (2000), 423–445. https://doi.org/10.1006/jmaa.2000.6796 doi: 10.1006/jmaa.2000.6796
|
| [25] |
R. de la Rosa, S. Bruzón, S. María, Symmetry reductions of a generalized Kuramoto–Sivashinsky equation via equivalence transformations, Commun. Nonlinear Sci., 63 (2018), 12–20. https://doi.org/10.1016/j.cnsns.2018.02.038 doi: 10.1016/j.cnsns.2018.02.038
|
| [26] |
A. P. Hooper, R. Grimshaw, Travelling wave solutions of the Kuramoto-Sivashinsky equation, Wave Motion, 10 (1988), 405–420. https://doi.org/10.1016/0165-2125(88)90045-5 doi: 10.1016/0165-2125(88)90045-5
|
| [27] | M. Sajjadian, The shock profile wave propagation of Kuramoto-Sivashinsky equation and solitonic solutions of generalized Kuramoto-Sivashinsky equation, Acta Univ. Apulensis Math. Inform., 38 (2014), 163–176. |
| [28] |
M. S. Ismail, Numerical solution of complex modified Korteweg-de Vries equation by collocation method, Commun. Nonlinear Sci., 14 (2009), 749–759. https://doi.org/10.1016/j.cnsns.2007.12.005 doi: 10.1016/j.cnsns.2007.12.005
|
| [29] |
X. Zhang, P. Zhang, A reduced high-order compact finite difference scheme based on proper orthogonal decomposition technique for KdV equation, Appl. Math. Comput., 339 (2018), 535–545. https://doi.org/10.1016/j.amc.2018.07.017 doi: 10.1016/j.amc.2018.07.017
|
| [30] |
M. M. Khader, K. M. Saad, Z. Hammouch, D. Baleanu, A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives, Appl. Numer. Math., 161 (2021), 137–146. https://doi.org/10.1016/j.apnum.2020.10.024 doi: 10.1016/j.apnum.2020.10.024
|
| [31] |
Q. Zhang, L. Liu, Convergence and stability in maximum norms of linearized fourth-order conservative compact scheme for Benjamin–Bona–Mahony–Burgers' equation, J. Sci. Comput., 87 (2021), 1–31. https://doi.org/10.1007/s10915-021-01474-3 doi: 10.1007/s10915-021-01474-3
|
| [32] |
C. I. Christov, M. G. Velarde, Dissipative solitons, Physica D, 86 (1995), 323–347. https://doi.org/10.1016/0167-2789(95)00111-G doi: 10.1016/0167-2789(95)00111-G
|
| [33] | I. C. Christov, Z. Yu, Twenty-five years of dissipative solitons, AIP Conference Proceedings, 2522 2022. https://doi.org/10.48550/arXiv.2108.13351 |
| [34] |
C. M. Elliott, D. A. French, F. A. Milner, A second order splitting method for the Cahn-Hilliard equation, Numer. Math., 54 (1989), 575–590. https://doi.org/10.1007/BF01396363 doi: 10.1007/BF01396363
|
| [35] |
Priyanka, S. Arora, F. Mebrek-Oudina, S. Sahani, Super convergence analysis of fully discrete Hermite splines to simulate wave behaviour of Kuramoto–Sivashinsky equation, Wave Motion, 121 (2023), 103187. https://doi.org/10.1016/j.wavemoti.2023.103187 doi: 10.1016/j.wavemoti.2023.103187
|
| [36] | S. Arora, R. Jain, V. K. Kukreja, A robust Hermite spline collocation technique to study generalized Burgers-Huxley equation, generalized Burgers-Fisher equation and Modified Burgers' equation, J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.016 |
| [37] |
S. Arora, R. Jain, V. K. Kukreja, Solution of Benjamin-Bona-Mahony-Burgers equation using collocation method with quintic Hermite splines, Appl. Numer. Math., 154 (2020), 1–16. https://doi.org/10.1016/j.apnum.2020.03.015 doi: 10.1016/j.apnum.2020.03.015
|
| [38] |
S. Arora, I. Kaur, Applications of quintic Hermite collocation with time discretization to singularly perturbed problems, Appl. Math. Comput., 316 (2018), 409–421. https://doi.org/10.1016/j.amc.2017.08.040 doi: 10.1016/j.amc.2017.08.040
|
| [39] | J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Mathematical proceedings of the Cambridge philosophical society: Cambridge University Press, 43 (1947), 50–67. https://doi.org/10.1017/S0305004100023197 |
| [40] |
Q. Zhang, Y. Qin, Z. Z. Sun, Linearly compact scheme for 2D Sobolev equation with Burgers' type nonlinearity, Numer. Algorithms, 91 (2022), 1081–1114. https://doi.org/10.1007/s11075-022-01293-z doi: 10.1007/s11075-022-01293-z
|
| [41] |
Q. Zhang, L. Liu, Z. Zhang, Linearly Implicit Invariant-Preserving Decoupled Difference Scheme For The Rotation-Two-Component Camassa–Holm System, SIAM J. Sci. Comput., 44 (2022), A2226–A2252. https://doi.org/10.1137/21M1452020 doi: 10.1137/21M1452020
|
| [42] | S. G. Rubin, Jr. Graves, A. Randolph, A cubic spline approximation for problems in fluid mechanics, 1975. |
| [43] |
S. Arora, S. S. Dhaliwal, V. K. Kukreja, Computationally efficient technique for weight functions and effect of orthogonal polynomials on the average, Appl. math. comput., 186 (2007), 623–631. https://doi.org/10.1016/j.amc.2006.08.005 doi: 10.1016/j.amc.2006.08.005
|
| [44] |
Z. Chai, B. Shi, L. Zheng, A unified Lattice Boltzmann model for some nonlinear partial differential equations, Chaos, Soliton. Fract., 36 (2008), 874–882. https://doi.org/10.1016/j.chaos.2006.07.023 doi: 10.1016/j.chaos.2006.07.023
|
| [45] |
L. Degon, A. Chowdhury, Approximate solutions to the Gardner equation by spectral modified exponential time differencing method, Partial Differ. Equ. Appl. Math., 5 (2022), 100310. https://doi.org/10.1016/j.padiff.2022.100310 doi: 10.1016/j.padiff.2022.100310
|