Research article

Virtual element method for the Laplacian eigenvalue problem with Neumann boundary conditions

  • Published: 10 April 2025
  • MSC : 65N25, 65N30

  • The Laplacian eigenvalue problem is fundamental to the free vibration problem. The finite element method (FEM) is a classical numerical method for solving eigenvalue problems. However, for some complex problems, the flexibility of mesh generation in the FEM is not strong. The virtual element method (VEM), an extension of the FEM to polygonal meshes, offers more flexibility in mesh generation and has significant advantages when dealing with complex regions with high regularity. Additionally, the VEM does not require the explicit expression of basis functions, which simplifies the computational process. In this paper, we use the VEM to solve the Laplacian eigenvalue problem with Neumann boundary conditions. Considering standard assumptions on polygonal meshes, the source problem of the Laplacian eigenvalue problem in variational form by defining the solution operator is obtained. We then construct the virtual element space and the degrees of freedom to define the appropriate projection operator. To approximate the exact solutions, we construct discrete bilinear form and right-hand side. Furthermore, we apply the spectral approximation theory to prove the error estimates of the eigenvalues. To support the convergence analysis, a series of numerical examples is reported. For the Laplacian eigenvalue problem with Neumann boundary conditions on a square domain, experiments demonstrate the convergence behavior of approximate solutions and extrapolated values. The results indicate that the errors of the eigenvalues are converged with the refinement of the grid. Numerical experiments also verify the effectiveness of the theoretical analysis in solving eigenvalue problems under different meshes.

    Citation: Junchi Ma, Lin Chen, Xinbo Cheng. Virtual element method for the Laplacian eigenvalue problem with Neumann boundary conditions[J]. AIMS Mathematics, 2025, 10(4): 8203-8219. doi: 10.3934/math.2025377

    Related Papers:

  • The Laplacian eigenvalue problem is fundamental to the free vibration problem. The finite element method (FEM) is a classical numerical method for solving eigenvalue problems. However, for some complex problems, the flexibility of mesh generation in the FEM is not strong. The virtual element method (VEM), an extension of the FEM to polygonal meshes, offers more flexibility in mesh generation and has significant advantages when dealing with complex regions with high regularity. Additionally, the VEM does not require the explicit expression of basis functions, which simplifies the computational process. In this paper, we use the VEM to solve the Laplacian eigenvalue problem with Neumann boundary conditions. Considering standard assumptions on polygonal meshes, the source problem of the Laplacian eigenvalue problem in variational form by defining the solution operator is obtained. We then construct the virtual element space and the degrees of freedom to define the appropriate projection operator. To approximate the exact solutions, we construct discrete bilinear form and right-hand side. Furthermore, we apply the spectral approximation theory to prove the error estimates of the eigenvalues. To support the convergence analysis, a series of numerical examples is reported. For the Laplacian eigenvalue problem with Neumann boundary conditions on a square domain, experiments demonstrate the convergence behavior of approximate solutions and extrapolated values. The results indicate that the errors of the eigenvalues are converged with the refinement of the grid. Numerical experiments also verify the effectiveness of the theoretical analysis in solving eigenvalue problems under different meshes.



    加载中


    [1] S. C. Brenner, L. Ridgway Scott, The mathematical theory of finite element methods, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75934-0
    [2] P. F. Zhu, K. Liu, Numerical investigation of convergence in the $L^\infty$ norm for modified SGFEM applied to elliptic interface problems, AIMS Mathematics, 9 (2024), 31252–31273. https://doi.org/10.3934/math.20241507 doi: 10.3934/math.20241507
    [3] L. Beir$\tilde{a}$o da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, A. Russo, Basic principles of virtual element methods, Math. Mod. Meth. Appl. S., 23 (2013), 199–214. https://doi.org/10.1142/S0218202512500492 doi: 10.1142/S0218202512500492
    [4] L. Beir$\tilde{a}$o da Veiga, F. Brezzi, L. D. Marini, A. Russo, Virtual element method for general second-order elliptic problems on polygonal meshes, Math. Mod. Meth. Appl. S., 26 (2016), 729–750. https://doi.org/10.1142/S0218202516500160 doi: 10.1142/S0218202516500160
    [5] D. Mora, G. Rivera, R. Rodríguez, A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem, Comput. Math. Appl., 74 (2017), 2172–2190. https://doi.org/10.1016/j.camwa.2017.05.016 doi: 10.1016/j.camwa.2017.05.016
    [6] G. Monzón, A virtual element method for a biharmonic Steklov eigenvalue problem, Adv. Pure Appl. Math., 10 (2019), 325–337. https://doi.org/10.1515/apam-2018-0072 doi: 10.1515/apam-2018-0072
    [7] F. Gardini, G. Vacca, Virtual element method for second-order elliptic eigenvalue problems, IMA J. Numer. Anal., 38 (2018), 2026–2054. https://doi.org/10.1093/imanum/drx063 doi: 10.1093/imanum/drx063
    [8] X. Y. Wang, G. Wang, P. Yang, Novel Pareto Z-eigenvalue inclusion intervals for tensor eigenvalue complementarity problems and its applications, AIMS Mathematics, 9 (2024), 30214–30229. https://doi.org/10.3934/math.20241459 doi: 10.3934/math.20241459
    [9] D. Mora, G. Rivera, A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations, IMA J. Numer. Anal., 40 (2020), 322–357. https://doi.org/10.1093/imanum/dry063 doi: 10.1093/imanum/dry063
    [10] L. Beir$\tilde{a}$o da Veiga, D. Mora, G. Rivera, R. Rodríguez, A virtual element method for the acoustic vibration problem, Numer. Math., 136 (2017), 725–763. https://doi.org/10.1007/s00211-016-0855-5 doi: 10.1007/s00211-016-0855-5
    [11] D. Mora, G. Rivera, I. Velásquez, A virtual element method for the vibration problem of Kirchhoff plates, ESAIM: M2AN, 52 (2018), 1437–1456. https://doi.org/10.1051/m2an/2017041 doi: 10.1051/m2an/2017041
    [12] J. Meng, L. Q. Mei, A linear virtual element method for the Kirchhoff plate buckling problem, Appl. Math. Lett., 103 (2020), 106188. https://doi.org/10.1016/j.aml.2019.106188 doi: 10.1016/j.aml.2019.106188
    [13] D. Mora, I. Velásquez, A virtual element method for the transmission eigenvalue problem, Math. Mod. Meth. Appl. S., 28 (2018), 2803–2831. https://doi.org/10.1142/S0218202518500616 doi: 10.1142/S0218202518500616
    [14] D. Mora, I. Velásquez, Virtual elements for the transmission eigenvalue problem on polytopal meshes, SIAM J. Sci. Comput., 43 (2021), A2425–A2447. https://doi.org/10.1137/20M1347887 doi: 10.1137/20M1347887
    [15] J. Meng, G. Wang, L. Mei, A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem, Calcolo, 58 (2021), 2. https://doi.org/10.1007/s10092-020-00391-5 doi: 10.1007/s10092-020-00391-5
    [16] O. Čertík, F. Gardini, G. Manzini, L. Mascotto, G. Vacca, The p- and hp-versions of the virtual element method for elliptic eigenvalue problems, Comput. Math. Appl., 79 (2020), 2035–2056. https://doi.org/10.1016/j.camwa.2019.10.018 doi: 10.1016/j.camwa.2019.10.018
    [17] M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, S. Scialò, Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems, Comput. Method. Appl. M., 311 (2016), 18–40. https://doi.org/10.1016/j.cma.2016.07.043 doi: 10.1016/j.cma.2016.07.043
    [18] S. Berrone, A. Borio, G. Manzini, SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations, Comput. Method. Appl. M., 340 (2018), 500–529. https://doi.org/10.1016/j.cma.2018.05.027 doi: 10.1016/j.cma.2018.05.027
    [19] I. Babuška, J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, 2 (1991), 641–787. https://doi.org/10.1016/S1570-8659(05)80042-0
    [20] P. Grisvard, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Proceedings of the Third Symposium on the Numerical Solution of Partial Differential Equations, 1976,207–274. https://doi.org/10.1016/B978-0-12-358503-5.50013-0
    [21] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl., 66 (2013), 376–391. https://doi.org/10.1016/j.camwa.2013.05.015 doi: 10.1016/j.camwa.2013.05.015
    [22] J. P. Wang, X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101–2126. https://doi.org/10.1090/s0025-5718-2014-02852-4 doi: 10.1090/s0025-5718-2014-02852-4
    [23] A. Cangiani, F. Gardini, G. Manzini, Convergence of the mimetic finite difference method for eigenvalue problems in mixed form, Comput. Method. Appl. M., 200 (2011), 1150–1160. https://doi.org/10.1016/j.cma.2010.06.011 doi: 10.1016/j.cma.2010.06.011
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(995) PDF downloads(68) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog