A study of the relationship between pseudo-umbilical totally real submanifolds and minimal totally real submanifolds in complex space forms is presented in this paper. The paper studies totally real submanifolds in complex space forms. The moving-frame method and the DDVV inequality (a conjecture for the Wintgen inequality on Riemannian submanifolds in real space forms proven by P.J. De Smet, F. Dillen, L. Verstraelen, and L. Vrancken) are used to obtain some rigidity theorems and an integral inequality, improving the associated results.
Citation: Fatimah Alghamdi, Fatemah Mofarreh, Akram Ali, Mohamed Lemine Bouleryah. Some rigidity theorems for totally real submanifolds in complex space forms[J]. AIMS Mathematics, 2025, 10(4): 8191-8202. doi: 10.3934/math.2025376
A study of the relationship between pseudo-umbilical totally real submanifolds and minimal totally real submanifolds in complex space forms is presented in this paper. The paper studies totally real submanifolds in complex space forms. The moving-frame method and the DDVV inequality (a conjecture for the Wintgen inequality on Riemannian submanifolds in real space forms proven by P.J. De Smet, F. Dillen, L. Verstraelen, and L. Vrancken) are used to obtain some rigidity theorems and an integral inequality, improving the associated results.
| [1] |
A. Ali, A. H. Alkhaldi, P. Laurian-Ioan, R. Ali, Eigenvalue inequalities for the $p$-Laplacian operator on C-totally real submanifolds in Sasakian space forms, Appl. Anal., 101 (2022), 702–713. https://doi.org/10.1080/00036811.2020.1758307 doi: 10.1080/00036811.2020.1758307
|
| [2] |
A. Ali, J. W. Lee, A. H. Alkhaldi, The first eigenvalue for the $p$-Laplacian on Lagrangian submanifolds in complex space forms, Int. J. Math., 33 (2022), 2250016. https://doi.org/10.1142/S0129167X22500161 doi: 10.1142/S0129167X22500161
|
| [3] |
N. Alluhaibi, A. Ali, The eigenvalue estimates of $p$-Laplacian of totally real submanifolds in generalized complex space forms, Ricerche Mat., 73 (2024), 1307–1321. https://doi.org/10.1007/s11587-021-00670-5 doi: 10.1007/s11587-021-00670-5
|
| [4] |
B. Y. Chen, K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257–266. https://doi.org/10.1090/S0002-9947-1974-0346708-7 doi: 10.1090/S0002-9947-1974-0346708-7
|
| [5] |
Q. Chen, S. Xu, Rigidity of compact minimal submanifolds in a unit sphere, Geom. Dedicata, 45 (1993), 83–88. https://doi.org/10.1007/BF01667404 doi: 10.1007/BF01667404
|
| [6] | S. S. Chern, M. Carmo, S. Kobayashi, Minimal submanifolds of a sphere with the second fundamental form of constant length, In: Functional Analysis and Related Fields: Proceedings of a Conference in honor of Professor Marshall Stone, 1970, 59–75. |
| [7] |
J. Ge, Z. Tang, A proof of the DDVV conjecture and its equality case, Pac. J. Math., 237 (2009), 87–95. http://dx.doi.org/10.2140/pjm.2008.237.87 doi: 10.2140/pjm.2008.237.87
|
| [8] |
H. B. Lawson, Local rigidity theorems for minimal hypersurfaces, Ann. Math., 89 (1969), 187–197. https://doi.org/10.2307/1970816 doi: 10.2307/1970816
|
| [9] |
A. M. Li, J. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math., 58 (1992), 582–594. https://doi.org/10.1007/BF01193528 doi: 10.1007/BF01193528
|
| [10] |
Z. Lu, Normal scalar curvature conjecture and its applications, J. Funct. Anal., 261 (2011), 1284–1308. https://doi.org/10.1016/j.jfa.2011.05.002 doi: 10.1016/j.jfa.2011.05.002
|
| [11] |
Y. Luo, L. Sun, J. Yin, An optimal pinching theorem of minimal Legendrian submanifolds in the unit sphere, Calc. Var., 61 (2022), 192. https://doi.org/10.1007/s00526-022-02304-6 doi: 10.1007/s00526-022-02304-6
|
| [12] | P. F. Leung, Minimal submanifolds in a sphere, Math Z., 183 (1983), 75–86. |
| [13] |
Y. L. Li, A. Ali, F. Mofarreh, A. Abolarinwa, R. Ali, Some eigenvalues estimate for the $\phi$-Laplace operator on slant submanifolds of Sasakian space forms, J. Funct. Spaces, 2021 (2021), 6195939. https://doi.org/10.1155/2021/6195939 doi: 10.1155/2021/6195939
|
| [14] |
Y. L. Li, F. Mofarreh, R. P. Agrawal, A. Ali, Reilly-type inequality for the $\Phi$-Laplace operator on semi-slant submanifolds of Sasakian space forms, J. Inequal. Appl., 2022 (2022), 102. https://doi.org/10.1186/s13660-022-02838-5 doi: 10.1186/s13660-022-02838-5
|
| [15] |
Y. L. Li, A. Ali, F. Mofarreh, A. Abolarinwa, N. Alshehri, A. Ali, Bounds for eigenvalues of $q$-Laplacian on contact submanifolds of Sasakian space forms, Mathematics, 11 (2023), 4717. https://doi.org/10.3390/math11234717 doi: 10.3390/math11234717
|
| [16] | M. Liu, W. Song, Complete totally real pseudo-umbilical submanifolds in a complex projective space, J. Math. Res. Exposition, 31 (2011), 946–950. |
| [17] | Y. B. Shen, Curvature and stability for minimal submanifolds, Sci. Sinica Ser. A, 31 (1988), 787–797. |
| [18] |
J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math., 88 (1968), 62–105. https://doi.org/10.2307/1970556 doi: 10.2307/1970556
|
| [19] |
H. W. Xu, A rigidity theorem for submanifold with parallel mean curvature in a sphere, Arch. Math., 61 (1993), 489–496. https://doi.org/10.1007/BF01207549 doi: 10.1007/BF01207549
|
| [20] | H. W. Xu, J. R. Gu, A general gap theorem for submanifolds with parallel mean curvature in $\mathbb{R}^{n+p}$, Commun. Anal. Geom., 15 (2007), 175–194. |
| [21] | J. Zhou, C. Xu, W. Song, The rigidity of total real submanifolds in a complex projective space, J. Math., 35 (2015), 1139–1147. |