Research article Special Issues

Analytical insight into fractional Fornberg-Whitham equations using novel transform methods

  • Published: 09 April 2025
  • MSC : 34G20, 35A20, 35A22, 35R11

  • This work addressed one of the most essential evolutionary equations that was widely used in describing various nonlinear wave propagation and dispersive phenomena in various scientific and engineering applications, which was called the nonlinear fractional Fornberg-Whitham (FFW). Due to the importance of this equation, we examined it by employing two highly effective techniques: the residual power series method (RPSM) and the new iterative approach (NIM), both distinguished by their efficacy in solving more complicated nonlinear fractional evolutionary equations. Moreover, we integrated the Elzaki transform with both approaches to create Elzaki RPSM (ERPSM) and Elzaki NIM (ENIM) to ease the calculations. The ERPSM effectively combined the power series approach with residual error analysis to generate highly accurate series solutions, while ENIM provided alternative frameworks for handling nonlinearities and achieving rapid convergence. Comparative studies of the obtained solutions highlighted these methods' efficiency, accuracy, and reliability in solving fractional-order differential equations. The results underscored the potential of these analytical techniques for modeling and solving complex fractional wave equations, contributing to the advancement of mathematical physics and computational fluid dynamics.

    Citation: Safyan Mukhtar, Wedad Albalawi, Faisal Haroon, Samir A. El-Tantawy. Analytical insight into fractional Fornberg-Whitham equations using novel transform methods[J]. AIMS Mathematics, 2025, 10(4): 8165-8190. doi: 10.3934/math.2025375

    Related Papers:

  • This work addressed one of the most essential evolutionary equations that was widely used in describing various nonlinear wave propagation and dispersive phenomena in various scientific and engineering applications, which was called the nonlinear fractional Fornberg-Whitham (FFW). Due to the importance of this equation, we examined it by employing two highly effective techniques: the residual power series method (RPSM) and the new iterative approach (NIM), both distinguished by their efficacy in solving more complicated nonlinear fractional evolutionary equations. Moreover, we integrated the Elzaki transform with both approaches to create Elzaki RPSM (ERPSM) and Elzaki NIM (ENIM) to ease the calculations. The ERPSM effectively combined the power series approach with residual error analysis to generate highly accurate series solutions, while ENIM provided alternative frameworks for handling nonlinearities and achieving rapid convergence. Comparative studies of the obtained solutions highlighted these methods' efficiency, accuracy, and reliability in solving fractional-order differential equations. The results underscored the potential of these analytical techniques for modeling and solving complex fractional wave equations, contributing to the advancement of mathematical physics and computational fluid dynamics.



    加载中


    [1] A. Akgul, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos, Soliton. Fract., 114 (2018), 478–482. https://doi.org/10.1016/j.chaos.2018.07.032 doi: 10.1016/j.chaos.2018.07.032
    [2] E. K. Akgul, Solutions of the linear and non-linear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108. https://doi.org/10.1063/1.5084035 doi: 10.1063/1.5084035
    [3] S. A. El-Wakil, E. M. Abulwafa, M. A. Zahran, A. A. Mahmoud, Time-fractional KdV equation: formulation and solution using variational methods, Nonlinear Dyn., 65 (2011), 55–63. https://doi.org/10.1007/s11071-010-9873-5 doi: 10.1007/s11071-010-9873-5
    [4] S. A. El-Wakil, E. M. Abulwafa, E. K. El-shewy, A. A. Mahmoud, Time-fractional KdV equation for electron-acoustic waves in plasma of cold electron and two different temperature isothermal ions, Astrophys Space Sci., 333 (2011), 269–276. https://doi.org/10.1007/s10509-011-0629-6 doi: 10.1007/s10509-011-0629-6
    [5] S. A. El-Wakil, E. M. Abulwafa, E. K. El-shewy, A. A. Mahmoud, Ion-acoustic waves in unmagnetized collisionless weakly relativistic plasma of warm-ion and isothermal-electron using time-fractional KdV equation, Adv. Space Res., 49 (2012), 1721–1727. https://doi.org/10.1016/j.asr.2012.02.018 doi: 10.1016/j.asr.2012.02.018
    [6] A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos, Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [7] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [8] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006.
    [10] K. M. Owolabi, A. Atangana, Chaotic behaviour in system of noninteger-order ordinary differential equations, Chaos, Soliton. Fract., 115 (2018), 362–370. https://doi.org/10.1016/j.chaos.2018.07.034 doi: 10.1016/j.chaos.2018.07.034
    [11] G. B. Whitham, Variational methods and applications to water waves, Proc. R. Soc. London Ser. A, 299 (1967), 6–25. https://doi.org/10.1098/rspa.1967.0119 doi: 10.1098/rspa.1967.0119
    [12] B. Fornberg, G. B. Whitham, A numerical and theoretical study of certain non-linear wave phenomena, Philos. Trans. R. Soc. London, Ser. A, 289 (1978), 373–404. https://doi.org/10.1098/rsta.1978.0064 doi: 10.1098/rsta.1978.0064
    [13] F. Abidi, K. Omrani, The homotopy analysis method for solving the Fornberg–Whitham equation and comparison with Adomian's decomposition method, Comput. Math. Appl., 59 (2010), 2743–2750. https://doi.org/10.1016/j.camwa.2010.01.042 doi: 10.1016/j.camwa.2010.01.042
    [14] A. Chen, J. Li, X. Deng, W. Huang, Travelling wave solutions of the Fornberg–Whitham equation, Appl. Math. Comput., 215 (2009), 3068–3075. https://doi.org/10.1016/j.amc.2009.09.057 doi: 10.1016/j.amc.2009.09.057
    [15] J. Yin, L. Tian, X. Fan, Classifcation of travelling waves in the Fornberg–Whitham equation, J. Math. Anal. Appl., 368 (2010), 133–143. https://doi.org/10.1016/j.jmaa.2010.03.037 doi: 10.1016/j.jmaa.2010.03.037
    [16] J. Zhou, L. Tian, A type of bounded traveling wave solutions for the Fornberg–Whitham equation, J. Math. Anal. Appl., 346 (2008), 255–261. https://doi.org/10.1016/j.jmaa.2008.05.055 doi: 10.1016/j.jmaa.2008.05.055
    [17] J. Lu, An analytical approach to the Fornberg–Whitham type equations by using the variational iteration method, Comput. Math. Appl., 61 (2011), 2010–2013. https://doi.org/10.1016/j.camwa.2010.08.052 doi: 10.1016/j.camwa.2010.08.052
    [18] M. G. Sakar, F. Erdogan, The homotopy analysis method for solving the time-fractional Fornberg–Whitham equation and comparison with Adomian's decomposition method, Appl. Math. Model., 37 (2013), 8876–8885. https://doi.org/10.1016/j.apm.2013.03.074 doi: 10.1016/j.apm.2013.03.074
    [19] T. Mathanaranjan, D. Vijayakumar, Laplace decomposition method for time-fractional Fornberg-Whitham type equations, J. Appl. Math. Phys., 9 (2021), 260–271. https://doi.org/10.4236/jamp.2021.92019 doi: 10.4236/jamp.2021.92019
    [20] P. P. Sartanpara, R. Meher, S. K. Meher, The generalized time-fractional Fornberg–Whitham equation: an analytic approach, Partial Differ. Equ. Appl. Math., 5 (2022), 100350. https://doi.org/10.1016/j.padiff.2022.100350 doi: 10.1016/j.padiff.2022.100350
    [21] A. El-Ajou, O. A. Arqub, S. Momani, Approximate analytical solution of the non-linear fractional KdV-Burgers equation: a new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. https://doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004
    [22] T. Eriqat, A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and non-linear neutral fractional pantograph equations, Chaos, Soliton. Fract., 138 (2020), 109957. https://doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957
    [23] A. El-Ajou, Z. Al-Zhour, A vector series solution for a class of hyperbolic system of Caputo time-fractional partial differential equations with variable coefficients, Front. Phys., 9 (2021), 525250. https://doi.org/10.3389/fphy.2021.525250 doi: 10.3389/fphy.2021.525250
    [24] A. El-Ajou, Adapting the Laplace transform to create solitary solutions for the non-linear time-fractional dispersive PDEs via a new approach, Eur. Phys. J. Plus, 136 (2021), 229. https://doi.org/10.1140/epjp/s13360-020-01061-9 doi: 10.1140/epjp/s13360-020-01061-9
    [25] Y. Zhou, L. Peng, On the time-fractional Navier-Stokes equations, Comput. Math. Appl., 73 (2017), 874–891. https://doi.org/10.1016/j.camwa.2016.03.026 doi: 10.1016/j.camwa.2016.03.026
    [26] M. N. Oqielat, A. El-Ajou, Z. Al-Zhour, T. Eriqat, M. Al-Smadi, A new approach to solving fuzzy quadratic Riccati differential equations, Int. J. Fuzzy Log. Intell. Syst., 22 (2022), 23–47. https://doi.org/10.5391/IJFIS.2022.22.1.23 doi: 10.5391/IJFIS.2022.22.1.23
    [27] A. M. Malik, O. H. Mohammed, Two efficient methods for solving fractional Lane-Emden equations with conformable fractional derivative, J. Egypt. Math. Soc., 28 (2020), 1–11. https://doi.org/10.1186/s42787-020-00099-z doi: 10.1186/s42787-020-00099-z
    [28] T. Eriqat, M. N. Oqielat, Z. Al-Zhour, A. El-Ajou, A. S. Bataineh, Revisited Fisher's equation and logistic system model: a new fractional approach and some modifications, Int. J. Dynam. Control, 11 (2023), 555–563. https://doi.org/10.1007/s40435-022-01020-5 doi: 10.1007/s40435-022-01020-5
    [29] M. N. Oqielat, T. Eriqat, Z. Al-Zhour, O. Ogilat, A. El-Ajou, I. Hashim, Construction of fractional series solutions to non-linear fractional reaction-diffusion for bacteria growth model via Laplace residual power series method, Int. J. Dynam. Control, 11 (2023), 520–527. https://doi.org/10.1007/s40435-022-01001-8 doi: 10.1007/s40435-022-01001-8
    [30] V. Daftardar-Gejji, H. Jafari, An iterative method for solving non-linear functional equations, J. Math. Anal. Appl., 316 (2006), 753–763. https://doi.org/10.1016/j.jmaa.2005.05.009 doi: 10.1016/j.jmaa.2005.05.009
    [31] M. A. Awuya, D. Subasi, Aboodh transform iterative method for solving fractional partial differential equation with Mittag-Leffler kernel, Symmetry, 13 (2021), 2055. https://doi.org/10.3390/sym13112055 doi: 10.3390/sym13112055
    [32] H. Jafari, M. Nazari, D. Baleanu, C. M. Khalique, A new approach for solving a system of fractional partial differential equations, Comput. Math. Appl., 66 (2013), 838–843. https://doi.org/10.1016/j.camwa.2012.11.014 doi: 10.1016/j.camwa.2012.11.014
    [33] M. M. Khalil, S. Ur Rehman, A. H. Ali, R. Nawaz, B. Batiha, New modifications of natural transform iterative method and q-homotopy analysis method applied to fractional order KDV-Burger and Sawada–Kotera equations, Partial Differ. Equ. Appl. Math., 12 (2024) 100950. https://doi.org/10.1016/j.padiff.2024.100950
    [34] L. Zada, R. Nawaz, S. Ahsan, K. S. Nisar, D. Baleanu, New iterative approach for the solutions of fractional order inhomogeneous partial differential equations, AIMS Math., 6 (2021), 1348–1365. https://doi.org/10.3934/math.2021084 doi: 10.3934/math.2021084
    [35] A. W. Alrowaily, M. Khalid, A. Kabir, A. H. Salas, C. G. L. Tiofack, S. M. E. Ismaeel, et al., On the Laplace new iterative method for modeling fractional positron-acoustic cnoidal waves in electron-positron-ion plasmas with Kaniadakis distributed electrons, Braz. J. Phys., 55 (2025), 106. https://doi.org/10.1007/s13538-025-01735-8 doi: 10.1007/s13538-025-01735-8
    [36] A. H. Almuqrin, C. G. L. Tiofack, A. Mohamadou, A. Alim, S. M. E. Ismaeel, W. Alhejaili, et al., On the "Tantawy Technique" and other methods for analyzing the family of fractional Burgers' equations: applications to plasma physics, J. Low Freq. Noise, Vib. Active Control, 2025. https://doi.org/10.1177/14613484251314580
    [37] H. A. Alyousef, R. Shah, C. G. L. Tiofack, A. H. Salas, W. Alhejaili, S. M. E. Ismaeel, et al., Novel approximations to the third- and fifth-order fractional KdV-type equations and modeling nonlinear structures in plasmas and fluids, Braz. J. Phys., 55 (2025), 20. https://doi.org/10.1007/s13538-024-01660-2 doi: 10.1007/s13538-024-01660-2
    [38] M. Almheidat, H. Yasmin, M. Al Huwayz, R. Shah, S. A. El-Tantawy, A novel investigation into time-fractional multi-dimensional Navier–Stokes equations within Aboodh transform, Open Phys., 22 (2024), 20240081. https://doi.org/10.1515/phys-2024-0081 doi: 10.1515/phys-2024-0081
    [39] A. H. Ganie, S. Noor, M. Al Huwayz, A. Shafee, S. A. El-Tantawy, Numerical simulations for fractional Hirota–Satsuma coupled Korteweg–de Vries systems, Open Phys., 22 (2024), 20240008.
    [40] S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha, S. M. E. Ismaeel, S. A. El-Tantawy, On the approximations to fractional nonlinear damped Burger's-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. https://doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
    [41] S. A. El-Tantawy, R. T. Matoog, R. Shah, A. W. Alrowaily, S. M. E. Ismaeel, On the shock wave approximation to fractional generalized Burger–Fisher equations using the residual power series transform method, Phys. Fluids, 36 (2024), 023105. https://doi.org/10.1063/5.0187127 doi: 10.1063/5.0187127
    [42] G. Adomian, Solving frontier problems of physics: the decomposition method, Vol. 60, Springer Science and Business Media, 2013.
    [43] J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3
    [44] J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng., 167 (1998), 57–68. https://doi.org/10.1016/S0045-7825(98)00108-X doi: 10.1016/S0045-7825(98)00108-X
    [45] V. Daftardar-Gejji, S. Bhalekar, Solving fractional diffusion-wave equations using a new iterative method, Fract. Calc. Appl. Anal., 11 (2008), 193–202.
    [46] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, Vol. 3, World Scientific, 2012.
    [47] J. Zhang, X. Chen, L. Li, C. Zhou, Elzaki transform residual power series method for the fractional population diffusion equations, Eng. Lett., 29 (2021).
    [48] E. Keshavarz, Y. Ordokhani, M. Razzaghi, Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Model., 38 (2014), 6038–6051. https://doi.org/10.1016/j.apm.2014.04.064 doi: 10.1016/j.apm.2014.04.064
    [49] P. Rahimkhani, Y. Ordokhani, E. Babolian, Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math., 309 (2017), 493–510. https://doi.org/10.1016/j.cam.2016.06.005 doi: 10.1016/j.cam.2016.06.005
    [50] A. El-Ajou, O. A. Arqub, S. Momani, Approximate analytical solution of the non-linear fractional KdV-Burgers equation: a new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. https://doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004
    [51] T. M. Elzaki, The new integral transform Elzaki transform, Global J. Pure Appl. Math., 7 (2011), 57–64.
    [52] M. Suleman, T. M. Elzaki, Q. Wu, N. Anjum, J. U. Rahman, New application of Elzaki projected differential transform method, J. Comput. Theor. Nanosci., 14 (2017), 631–639. https://doi.org/10.1166/jctn.2017.6253 doi: 10.1166/jctn.2017.6253
    [53] A. K. H. Sedeeg, A coupling Elzaki transform and homotopy perturbation method for solving non-linear fractional heat-like equations, Am. J. Math. Comput. Model., 1 (2016), 15–20.
    [54] S. Bhalekar, V. Daftardar-Gejji, New iterative method: application to partial differential equations, Appl. Math. Comput., 203 (2008), 778–783. https://doi.org/10.1016/j.amc.2008.05.071 doi: 10.1016/j.amc.2008.05.071
    [55] B. He, Q. Meng, S. Li, Explicit peakon and solitary wave solutions for the modified Fornberg-Whitham equation, Appl. Math. Comput., 217 (2010), 1976–1982. https://doi.org/10.1016/j.amc.2010.06.055 doi: 10.1016/j.amc.2010.06.055
    [56] A. H. Almuqrin, C. G. L. Tiofack, D. V. Douanla, A. Mohamadou, W. Alhejaili, S. M. E. Ismaeel, et al., On the "Tantawy Technique" and other methods for analyzing Fractional Fokker Plank-type Equations, J. Low Freq. Noise, Vib. Active Control, 2025. https://doi.org/10.1177/14613484251319893
    [57] S. A. El-Tantawy, A. S. Al-Johani, A. H. Almuqrin, A. Khan, L. S. El-Sherif, Novel approximations to the fourth-order fractional Cahn–Hillard equations: application to the Tantawy Technique and other two techniques with Yang transform, J. Low Freq. Noise, Vib. Active Control, 2025. https://doi.org/10.1177/14613484251322240
    [58] S. A. El-Tantawy, S. I. H. Bacha, M. Khalid, W. Alhejaili, Application of the Tantawy technique for modeling fractional ion-acoustic waves in electronegative plasmas having Cairns distributed-electrons, Part (I): fractional KdV solitary waves, Braz. J. Phys., 55 (2025), 123.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(943) PDF downloads(97) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog