Citation: Silvia Martorano Raimundo, Hyun Mo Yang, Ezio Venturino. Theoretical assessment of the relative incidences of sensitive andresistant tuberculosis epidemic in presence of drug treatment[J]. Mathematical Biosciences and Engineering, 2014, 11(4): 971-993. doi: 10.3934/mbe.2014.11.971
[1] | Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437 |
[2] | Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song . Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences and Engineering, 2008, 5(1): 145-174. doi: 10.3934/mbe.2008.5.145 |
[3] | Tianqi Song, Chuncheng Wang, Boping Tian . Mathematical models for within-host competition of malaria parasites. Mathematical Biosciences and Engineering, 2019, 16(6): 6623-6653. doi: 10.3934/mbe.2019330 |
[4] | Rishin Haldar, Swathi Jamjala Narayanan . A novel ensemble based recommendation approach using network based analysis for identification of effective drugs for Tuberculosis. Mathematical Biosciences and Engineering, 2022, 19(1): 873-891. doi: 10.3934/mbe.2022040 |
[5] | Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354 |
[6] | Azizeh Jabbari, Carlos Castillo-Chavez, Fereshteh Nazari, Baojun Song, Hossein Kheiri . A two-strain TB model with multiplelatent stages. Mathematical Biosciences and Engineering, 2016, 13(4): 741-785. doi: 10.3934/mbe.2016017 |
[7] | Benjamin H. Singer, Denise E. Kirschner . Influence of backward bifurcation on interpretation of $R_0$ in a model of epidemic tuberculosis with reinfection. Mathematical Biosciences and Engineering, 2004, 1(1): 81-93. doi: 10.3934/mbe.2004.1.81 |
[8] | Hengki Tasman, Edy Soewono, Kuntjoro Adji Sidarto, Din Syafruddin, William Oscar Rogers . A model for transmission of partial resistance to anti-malarial drugs. Mathematical Biosciences and Engineering, 2009, 6(3): 649-661. doi: 10.3934/mbe.2009.6.649 |
[9] | Cristian Tomasetti, Doron Levy . An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences and Engineering, 2010, 7(4): 905-918. doi: 10.3934/mbe.2010.7.905 |
[10] | Natalia L. Komarova . Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2011, 8(2): 289-306. doi: 10.3934/mbe.2011.8.289 |
[1] | PLoS Medicine, 3 (2006), e124. |
[2] | Academic, New York, 1979. |
[3] | Bulletin of Mathematical Biology, 71 (2009), 1745-1780. |
[4] | Nature Medicine, 10 (2004), 1111-1116. |
[5] | Science, 273 (1996), 497-500. |
[6] | Nature Medicine, 1 (1995), 815-821. |
[7] | Journal of Molecular Medicine, 76 (1998), 624-636. |
[8] | Emerging Infectious Diseases, 10 (2004), 1523-1528. |
[9] | The International Journal of Tuberculosis and Lung Disease, 13 (2009), 1456-1466. |
[10] | Clinical Infectious Diseases, 33 (2001), e42-e47. |
[11] | Nonlinear Dynamics, 67 (2012), 2027-2051. |
[12] | MMWR, 34 (1985), 429-431. |
[13] | Nature Medicine, 10 (2004), 1117-1121. |
[14] | PLos ONE, 3 (2008), e2363. |
[15] | PLos ONE, 6 (2011), e18327. |
[16] | Bulletin of Mathematical Biology, 71 (2009), 247-263. |
[17] | American Review of Respiratory Disease, 121 (1980), 313-316. |
[18] | BMC Infectious Diseases, 10 (2010),349 http://www.biomedcentral.com/1471-2334/10/349. |
[19] | Proceedings of the Royal Society of London B, 268 (2001), 45-52. |
[20] | Tuberculosis, 83 (2003), 44-51. |
[21] | Math. Biosc., 167 (2000), 51-64. |
[22] | SIAM Journal on Applied Mathematics, 62 (2002), 1634-1656. |
[23] | Archives of Internal Medicine, 160 (2000), 630-636. |
[24] | Proceedings of the Royal Society B, 271 (2004), 617-623. |
[25] | 2nd Ed. krieger, Basel, 1980. |
[26] | SIAM Review, 42 (2000), 599-653. |
[27] | in D. Mollison (Ed.), Epidemic Models: Their Structure and Relation to Data, Cambridge University, Cambridge, 5 (1994), p. 84. |
[28] | Discrete Dynamics in Nature and Society, 2011. |
[29] | PLos ONE, 3 (2008), e1839. |
[30] | The New England Journal of Medicine, 315 (1986), 1570-1575. |
[31] | Journal of Theoretical Biology, 269 (2011), 31-45. |
[32] | Infection and Immunity, 63 (1995), 741-743. |
[33] | BioSystems, 108 (2012), 1-13. |
[34] | Journal of Biological Systems, 10 (2002), 61-83. |
[35] | Systems Analysis Modelling Simulation, 43 (2003), 423-442. |
[36] | Biosystems, 99 (2010), 215-222. |
[37] | The International Journal of Tuberculosis and Lung Disease, 5 (2001), 339-354. |
[38] | Theoretical Population Biology, 71 (2007), 196-212. |
[39] | Journal of Theoretical Biology, 280 (2011), 88-100. |
[40] | Journal of Biological Dynamics, 2 (2008), 323-345. |
[41] | The New England Journal of Medicine, 328 (1993), 1137-1144. |
[42] | The American Review of Respiratory Disease, 132 (1985), 125-132. |
[43] | Am J Epidemiol, 178 (2013), 508-520. |
[44] | The International Journal of Tuberculosis and Lung Disease, 5 (2001), 321-328. |
[45] | http://www.who.int/tb/publications/2011/factsheet_tb_2011.pdf (accessed in September, 2012). |
[46] | WHO/CDS/TB/2000/.278 The WHO/IUATLD Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Report 2. World Health Organization, Geneva, Switzerland (2000). |
[47] | Fact sheet N. 104, March 2012. (accessed in September, 2012). |
1. | Hyun Mo Yang, The basic reproduction number obtained from Jacobian and next generation matrices – A case study of dengue transmission modelling, 2014, 126, 03032647, 52, 10.1016/j.biosystems.2014.10.002 | |
2. | Hyun Mo Yang, The transovarial transmission in the dynamics of dengue infection: Epidemiological implications and thresholds, 2017, 286, 00255564, 1, 10.1016/j.mbs.2017.01.006 | |
3. | Ezio Venturino, Surabhi Pandey, A TB model: Is disease eradication possible in India?, 2017, 15, 1551-0018, 233, 10.3934/mbe.2018010 | |
4. | Daniel A.M. Villela, Imperfect testing of individuals for infectious diseases: Mathematical model and analysis, 2017, 46, 10075704, 153, 10.1016/j.cnsns.2016.10.010 | |
5. | Anna Maria Niewiadomska, Bamini Jayabalasingham, Jessica C. Seidman, Lander Willem, Bryan Grenfell, David Spiro, Cecile Viboud, Population-level mathematical modeling of antimicrobial resistance: a systematic review, 2019, 17, 1741-7015, 10.1186/s12916-019-1314-9 | |
6. | Yayehirad A. Melsew, Adeshina I. Adekunle, Allen C. Cheng, Emma S. McBryde, Romain Ragonnet, James M. Trauer, Heterogeneous infectiousness in mathematical models of tuberculosis: A systematic review, 2020, 30, 17554365, 100374, 10.1016/j.epidem.2019.100374 | |
7. | Hyun Mo Yang, David Greenhalgh, Proof of conjecture in: The basic reproduction number obtained from Jacobian and next generation matrices—A case study of dengue transmission modelling, 2015, 265, 00963003, 103, 10.1016/j.amc.2015.04.112 | |
8. | ZAREEN A. KHAN, AZIZ KHAN, THABET ABDELJAWAD, HASIB KHAN, COMPUTATIONAL ANALYSIS OF FRACTIONAL ORDER IMPERFECT TESTING INFECTION DISEASE MODEL, 2022, 30, 0218-348X, 10.1142/S0218348X22401697 | |
9. | HYUN MO YANG, ARE THE BEGINNING AND ENDING PHASES OF EPIDEMICS CHARACTERIZED BY THE NEXT GENERATION MATRICES? – A CASE STUDY OF DRUG-SENSITIVE AND RESISTANT TUBERCULOSIS MODEL, 2021, 29, 0218-3390, 719, 10.1142/S0218339021500157 |