Citation: Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang. On the mechanism of antibiotic resistance and fecal microbiota transplantation[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
[1] | Grace Noveli Belvy Louvila, Armel Judice Ntsokongo, Franck Davhys Reval Langa, Benjamin Mampassi . A conserved Caginalp phase-field system with two temperatures and a nonlinear coupling term based on heat conduction. AIMS Mathematics, 2023, 8(6): 14485-14507. doi: 10.3934/math.2023740 |
[2] | Armel Judice Ntsokongo, Daniel Moukoko, Franck Davhys Reval Langa, Fidèle Moukamba . On higher-order anisotropic conservative Caginalp phase-field type models. AIMS Mathematics, 2017, 2(2): 215-229. doi: 10.3934/Math.2017.2.215 |
[3] | Kiran Sajjan, N. Ameer Ahammad, C. S. K. Raju, M. Karuna Prasad, Nehad Ali Shah, Thongchai Botmart . Study of nonlinear thermal convection of ternary nanofluid within Darcy-Brinkman porous structure with time dependent heat source/sink. AIMS Mathematics, 2023, 8(2): 4237-4260. doi: 10.3934/math.2023211 |
[4] | Jean De Dieu Mangoubi, Mayeul Evrard Isseret Goyaud, Daniel Moukoko . Pullback attractor for a nonautonomous parabolic Cahn-Hilliard phase-field system. AIMS Mathematics, 2023, 8(9): 22037-22066. doi: 10.3934/math.20231123 |
[5] | Armel Judice Ntsokongo, Narcisse Batangouna . Existence and uniqueness of solutions for a conserved phase-field type model. AIMS Mathematics, 2016, 1(2): 144-155. doi: 10.3934/Math.2016.2.144 |
[6] | Nadeem Abbas, Wasfi Shatanawi, Taqi A. M. Shatnawi . Innovation of prescribe conditions for radiative Casson micropolar hybrid nanofluid flow with inclined MHD over a stretching sheet/cylinder. AIMS Mathematics, 2025, 10(2): 3561-3580. doi: 10.3934/math.2025164 |
[7] | Brice Landry Doumbé Bangola . Phase-field system with two temperatures and a nonlinear coupling term. AIMS Mathematics, 2018, 3(2): 298-315. doi: 10.3934/Math.2018.2.298 |
[8] | Hyun Geun Lee . A mass conservative and energy stable scheme for the conservative Allen–Cahn type Ohta–Kawasaki model for diblock copolymers. AIMS Mathematics, 2025, 10(3): 6719-6731. doi: 10.3934/math.2025307 |
[9] | Ahmed Abouelregal, Meshari Alesemi, Husam Alfadil . Thermoelastic reactions in a long and thin flexible viscoelastic cylinder due to non-uniform heat flow under the non-Fourier model with fractional derivative of two different orders. AIMS Mathematics, 2022, 7(5): 8510-8533. doi: 10.3934/math.2022474 |
[10] | Yonghui Zou, Xin Xu, An Gao . Local well-posedness to the thermal boundary layer equations in Sobolev space. AIMS Mathematics, 2023, 8(4): 9933-9964. doi: 10.3934/math.2023503 |
G. Caginalp introduced in [1] and [2] the following phase-field systems:
∂u∂t+Δ2u−Δf(u)=−Δθ, | (1.1) |
∂θ∂t−Δθ=−∂u∂t, | (1.2) |
where
Equations (1.1) and (1.2) are based on the total free energy
ψ(u,θ)=∫Ω(12|∇u|2+F(u)−uθ−12θ2)dx, | (1.3) |
where
H=−∂θψ, | (1.4) |
where
H=u+θ. | (1.5) |
The gouverning equations for
∂u∂t=Δ∂uψ, | (1.6) |
∂H∂t=−divq, | (1.7) |
where
q=−∇θ, | (1.8) |
we obtain (1.1) and (1.2).
Now, one drawback of the Fourier law is that it predicts that thermal signals propagate with an infinite speed, which violates causality (the so-called "paradox of heat conduction", see, e.g. [5]). Therefore, several modifications of (1.8) have been proposed in the literature to correct this unrealistic feature, leading to a second order in time equation for the temperature.
In particular, we considered in [15] (see also [19] the Maxwell-Cattaneo law)
(1+η∂∂t)q=−∇θ,η>0, | (1.9) |
which leads to
η∂2θ∂t2+∂θ∂t−Δθ=−η∂2u∂t2−∂u∂t. | (1.10) |
Green and Naghdi proposed in [21] an alternative treatment for a thermomechanical theory of deformable media. This theory is based on an entropy balance rather than the usual entropy inequality and is proposed in a very rational way. If we restrict our attention to the heat conduction, we recall that proposed three different theories, labelled as type Ⅰ, type Ⅱ and type Ⅲ, respectively. In particular, when type Ⅰ is linearized, we recover the classical theory based on the Fourier law. The linearized versions of the two other theories are decribed by the constitutive equation of type Ⅱ (see [12])
q=−k∇α,k>0, | (1.11) |
where
α(t)=∫tt0θ(τ)dτ+α0 | (1.12) |
is called the thermal displacement variable. It is pertinent to note that these theories have received much attention in the recent years.
If we add the constitutive equation (1.9) to equation (1.7), we then obtain the following equations for
∂2α∂t2−kΔα=−∂u∂t. | (1.13) |
Our aim in this paper is to study the model consisting the equation (1.1) (
We consider the following initial and boundary value problem (for simplificity, we take
∂u∂t+Δ2u−Δf(u)=−Δ∂α∂t, | (2.1) |
∂2α∂t2−Δα=−∂u∂t, | (2.2) |
u=Δu=α=0onΓ, | (2.3) |
u|t=0=u0,α|t=0=α0,∂α∂t|t=0=α1, | (2.4) |
where
We make the following assumptions:
f is of class C2(R),f(0)=0, | (2.5) |
f′(s)⩾−c0,c0⩾0,s∈R, | (2.6) |
f(s)s⩾c1F(s)−c2⩾−c3,c1>0,c2,c3⩾0,s∈R, | (2.7) |
where
We futher assume that
u0∈H10(Ω)∩H2(Ω). | (2.8) |
Remark 2.1. We take here, for simplicity, Dirichlet boundary conditions. However, we can obtain the same results for Neumann boundary conditions, namely,
∂u∂ν=∂Δu∂ν=∂α∂ν=0onΓ, | (2.9) |
where
∂¯u∂t+Δ2¯u−Δ(f(u)−⟨f(u)⟩)=−Δ∂¯α∂t, | (2.10) |
∂2¯α∂t2−Δ¯α=−∂¯u∂t, | (2.11) |
where
v↦(‖(−Δ)−12¯v‖2+⟨v⟩2)12, |
where, here,
⟨.⟩=1vol(Ω)⟨.,1⟩H−1(Ω),H1(Ω). |
Furthermore,
v↦(‖¯v‖2+⟨v⟩2)12, |
v↦(‖∇¯v‖2+⟨v⟩2)12, |
and
v↦(‖Δ¯v‖2+⟨v⟩2)12 |
are norms in
|f(s)|⩽ϵF(s)+cϵ,∀ϵ>0,s∈R, | (2.12) |
which allows to deal with term
We denote by
Throughout this paper, the same letters
The estimates derived in this section are formal, but they can easily be justified within a Galerkin scheme.
We rewrite (2.1) in the equivalent form
(−Δ)−1∂u∂t−Δu+f(u)=∂α∂t. | (3.1) |
We multiply (3.1) by
ddt(‖∇u‖2+2∫ΩF(u)dx)+2‖∂u∂t‖2−1=2((∂α∂t,∂u∂t)). | (3.2) |
We then multiply (2.2) by
ddt(‖∇α‖2+‖∂α∂t‖2)=−2((∂α∂t,∂u∂t)). | (3.3) |
Summing (3.2) and (3.3), we find a differential inequality of the form
dE1dt+c‖∂u∂t‖2−1⩽c′,c>0, | (3.4) |
where
E1=‖∇u‖2+2∫ΩF(u)dx+‖∇α‖2+‖∂α∂t‖2 |
satisfies
E1⩾c(‖u‖H1(Ω)+∫ΩF(u)dx+‖α‖2H1(Ω)+‖∂α∂t‖2)−c′,c>0, | (3.5) |
hence estimates on
We multiply (3.1) by
12ddt‖Δu‖2+‖∂u∂t‖2=((Δf(u),∂u∂t))−((Δ∂α∂t,∂u∂t)), |
which yields, owing to (2.5) and the continuous embedding
ddt‖Δu‖2+‖∂u∂t‖2⩽Q(‖u‖H2(Ω))−2((Δ∂α∂t,∂u∂t)). | (3.6) |
Multiplying also (2.2) by
ddt(‖Δα‖2+‖∇∂α∂t‖2)=2((Δ∂α∂t,∂u∂t)). | (3.7) |
Summing then (3.6) and (3.7), we obtain
ddt(‖Δu‖2+‖Δα‖2+‖∇∂α∂t‖2)+‖∂u∂t‖2⩽Q(‖u‖H2(Ω)). | (3.8) |
In particular, setting
y=‖Δu‖2+‖Δα‖2+‖∇∂α∂t‖2, |
we deduce from (3.8) an inequation of the form
y′⩽Q(y). | (3.9) |
Let z be the solution to the ordinary differential equation
z′=Q(z),z(0)=y(0). | (3.10) |
It follows from the comparison principle that there exists
y(t)⩽z(t),∀t∈[0,T0], | (3.11) |
hence
‖u(t)‖2H2(Ω)+‖α(t)‖2H2(Ω)+‖∂α∂t(t)‖2H1(Ω)⩽Q(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩽T0. | (3.12) |
We now differentiate (3.1) with respect to time and have, noting that
(−Δ)−1∂∂t∂u∂t−Δ∂u∂t+f′(u)∂u∂t=Δα−∂u∂t. | (3.13) |
We multiply (3.13) by
ddt(t‖∂u∂t‖2−1)+32t‖∇∂u∂t‖2⩽ct(‖∂u∂t‖2+‖∇α‖2)+‖∂u∂t‖2−1, |
hence, noting that
ddt(t‖∂u∂t‖2−1)+t‖∇∂u∂t‖2⩽ct(‖∂u∂t‖2−1+‖∇α‖2)+‖∂u∂t‖2−1. | (3.14) |
In particular, we deduce from (3.4), (3.12), (3.14) and Gronwall's lemma that
‖∂u∂t‖2−1⩽1tQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t∈(0,T0]. | (3.15) |
Multiplying then (3.13) by
ddt‖∂u∂t‖2−1+‖∇∂u∂t‖2⩽c(‖∂u∂t‖2−1+‖∇α‖2). | (3.16) |
It thus follows from (3.4), (3.16) and Gronwall's lemma that
‖∂u∂t‖2−1⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω))‖∂u∂t(T0)‖2−1,t⩾T0, | (3.17) |
hence, owing to (3.15),
‖∂u∂t‖2−1⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾T0. | (3.18) |
We now rewrite (3.1) in the forme
−Δu+f(u)=hu(t),u=0onΓ, | (3.19) |
for
hu(t)=−(−Δ)−1∂u∂t+∂α∂t | (3.20) |
satisfies, owing to (3.4) and (3.18)
‖hu(t)‖⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾T0. | (3.21) |
We multiply (3.19) by
‖∇u‖2⩽c‖hu(t)‖2+c′. | (3.22) |
Then, multipying (3.19) by
‖Δu‖2⩽c(‖hu(t)‖2+‖∇u‖2). | (3.23) |
We thus deduce from
‖u(t)‖2H2(Ω)⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾T0, | (3.24) |
and, thus, owing to (3.12)
‖u(t)‖2H2(Ω)⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾0. | (3.25) |
Returning to (3.7), we have
ddt(‖Δα‖2+‖∇∂α∂t‖2)⩽‖Δ∂α∂t‖2+‖∂u∂t‖2. | (3.26) |
Noting that it follows from (3.4), (3.16) and (3.18) that
∫tT0(‖Δ∂α∂t‖2+‖∂u∂t‖2)dτ⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾T0, | (3.27) |
we finally deduce from (3.12) and
‖u(t)‖2H2(Ω)+‖α(t)‖2H2(Ω)+‖∂α∂t(t)‖2H1(Ω)⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾0. | (3.28) |
We first have the following.
Theorem 4.1. We assume that
u,α∈L∞(0,T;H10(Ω)∩H2(Ω)),∂u∂t∈L2(0,T;H−1(Ω))and∂α∂t∈L∞(0,T;H10(Ω)). |
Proof. The proof is based on (3.28) and, e.g., a standard Galerkin scheme.
We have, concerning the uniqueness, the following.
Theorem 4.2. We assume that the assumptions of Theorem
Proof. Let
(u,α,∂α∂t)=(u(1),α(1),∂α(1)∂t)−(u(2),α(2),∂α(2)∂t) |
and
(u0,α0,α1)=(u(1)0,α(1)0,α(1)1)−(u(2)0,α(2)0,α(2)1). |
Then,
∂u∂t+Δ2u−Δ(f(u(1))−f(u(2)))=−Δ∂α∂t, | (4.1) |
∂2α∂t2−Δα=−∂u∂t, | (4.2) |
u=α=0on∂Ω, | (4.3) |
u|t=0=u0,α|t=0=α0,∂α∂t|t=0=α1. | (4.4) |
We multiply (4.1) by
ddt(‖∇u‖2+‖∇α‖2+‖∂α∂t‖2)+‖∂u∂t‖2−1⩽‖∇(f(u(1))−f(u(2)))‖2. | (4.5) |
Furthermore,
‖∇(f(u(1))−f(u(2))‖=‖∇(∫10f′(u(1)+s(u(2)−u(1)))dsu)‖⩽‖∫10f′(u(1)+s(u(2)−u(1)))ds∇u‖+‖∫10f″(u(1)+s(u(2)−u(1)))(∇u(1)+s∇(u(2)−u(1)))dsu‖⩽Q(‖u(1)0‖H2(Ω),‖u(2)0‖H2(Ω),‖α(1)0‖H1(Ω),‖α(2)0‖H1(Ω),‖α(1)1‖H1(Ω),‖α(2)1‖H1(Ω))×(‖∇u‖+‖|u||∇u(1)|‖+‖|u||∇u(2)|‖)⩽Q(‖u(1)0‖H2(Ω),‖u(2)0‖H2(Ω),‖α(1)0‖H1(Ω),‖α(2)0‖H1(Ω),‖α(1)1‖H1(Ω),‖α(2)1‖H1(Ω))‖∇u‖. | (4.6) |
We thus deduce from (4.5) and (4.6) that
ddt(‖∇u‖2+‖∇α‖2+‖∂α∂t‖2)+‖∂u∂t‖2−1⩽Q(‖u(1)0‖H2(Ω),‖u(2)0‖H2(Ω),‖α(1)0‖H1(Ω),‖α(2)0‖H1(Ω),‖α(1)1‖H1(Ω),‖α(2)1‖H1(Ω))‖∇u‖2. | (4.7) |
In particular, we have a differential inequality of the form
dE2dt⩽QE2, | (4.8) |
where
E2=‖∇u‖2+‖∇α‖2+‖∂α∂t‖2 |
satisfies
E2⩾c(‖u‖2H1(Ω)+‖α‖2H1(Ω)+‖∂α∂t‖2)−c′. | (4.9) |
It follows from
‖u(t)‖2H1(Ω)+‖α(t)‖2H1(Ω)+‖∂α∂t(t)‖2⩽ceQt(‖u0‖2H1(Ω)+‖α0‖2H1(Ω)+‖α1‖2),t⩾0, | (4.10) |
hence the uniqueness, as well as the continuous dependence with respect to the initial data in the
The authors wish to thank the referees for their careful reading of the paper and useful comments.
All authors declare no conflicts of interest in this paper.
[1] | S. Nancey, J. Bienvenu, B. Coffin, et al., Butyrate strongly inhibits in vitro stimulated release of cytokines in blood, Dig. Dis. Sci., 47 (2002), 921–928. |
[2] | S. M. Finegold, S. E. Dowd, V. Gontcharova, et al., Pyrosequencing study of fecal microflora of autistic and control children, Anaerobe, 16 (2010), 444–453. |
[3] | A. C. Ericsson, S. Akter, M. M. Hanson, et al., Differential susceptibility to colorectal cancer due to naturally occurring gut microbiota, Oncotarget, 6 (2015), 33689–33704. |
[4] | H. E. Jakobsson, C. Jernberg, A. F. Andersson, et al., Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome, PLoS One, 5 (2010), e9836. |
[5] | L. Dethlefsen and D. A. Relman, Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation, Proc. Natl. Acad. Sci. U. S. A., 108 (2011), 4554–4561. |
[6] | J. J. Faith, J. L. Guruge, M. Charbonneau, et al., The long-term stability of the human gut microbiota, Science, 341 (2013), 1237439. |
[7] | I. Gustafsson, M. Sjolund, E. Torell, et al., Bacteria with increased mutation frequency and antibiotic resistance are enriched in the commensal flora of patients with high antibiotic usage, J. Antimicrob. Chemother., 52 (2003), 645–650. |
[8] | D. Artis, Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut, Nat. Rev. Immunol., 8 (2008), 411–420. |
[9] | V. Bucci, C. D. Nadell and J. B. Xavier, The evolution of bacteriocin production in bacterial biofilms, Am. Nat., 178 (2008), E162–173. |
[10] | J. Zheng, M. G. Ganzle, X. B. Lin, et al., Diversity and dynamics of bacteriocins from human microbiome, Environ Microbiol, 17 (2015), 2133–2143. |
[11] | F. Zhang, B. Cui, X. He, et al., Microbiota transplantation: concept, methodology and strategy for its modernization, Protein. Cell., 9 (2018), 462–473. |
[12] | S. N. Gopalsamy, M. H. Woodworth, T. Wang, et al., The Use of Microbiome Restoration Therapeutics to Eliminate Intestinal Colonization With Multidrug-Resistant Organisms, Am. J. Med. Sci., 356 (2018), 433–440. |
[13] | Y. Wei, J. Gong, W. Zhu, et al., Fecal microbiota transplantation restores dysbiosis in patients with methicillin resistant Staphylococcus aureus enterocolitis, BMC Infect. Dis., 15 (2015), 265. |
[14] | D. Ishikawa, T. Sasaki, T. Osada, et al., Changes in Intestinal Microbiota Following Combination Therapy with Fecal Microbial Transplantation and Antibiotics for Ulcerative Colitis, Inflamm. Bowel. Dis., 23 (2017), 116–125. |
[15] | E. van Nood, A. Vrieze, M. Nieuwdorp, et al., Duodenal infusion of donor feces for recurrent Clostridium difficile, N. Engl. J. Med., 368 (2013), 407–415. |
[16] | C. Ubeda, V. Bucci, S. Caballero, et al., Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization, Infect. Immun., 81 (2013), 965–973. |
[17] | L. J. Brandt, American Journal of Gastroenterology Lecture: Intestinal microbiota and the role of fecal microbiota transplant (FMT) in treatment of C. difficile infection, Am. J. Gastroenterol., 108 (2013), 177–185. |
[18] | M. C. Zanella Terrier, M. L. Simonet, P. Bichard, et al., Recurrent Clostridium difficile infections: the importance of the intestinal microbiota, World J. Gastroenterol., 20 (2014), 7416–7423. |
[19] | S. Jamot, V. Raghunathan, K. Patel, et al., Factors Associated with the Use of Fecal Microbiota Transplant in Patients with Recurrent Clostridium difficile Infections, Infect. Control. Hosp. Epidemiol., 39 (2018), 302–306. |
[20] | G. Cammarota, G. Ianiro and A. Gasbarrini, Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review, J. Clin. Gastroenterol., 48 (2014), 693–702. |
[21] | Y. Li, A. Karlin, J. D. Loike, et al., Determination of the critical concentration of neutrophils required to block bacterial growth in tissues, J. Exp. Med., 200 (2004), 613–622. |
[22] | A. Heinken and I. Thiele, Anoxic Conditions Promote Species-Specific Mutualism between Gut Microbes In Silico, Appl. Environ. Microbiol., 81 (2015), 4049–4061. |
[23] | T. J. Wiles, M. Jemielita, R. P. Baker, et al., Host Gut Motility Promotes Competitive Exclusion within a Model Intestinal Microbiota, PLoS Biol., 14 (2016), e1002517. |
[24] | T. E. Gibson, A. Bashan, H. T. Cao, et al., On the Origins and Control of Community Types in the Human Microbiome, PLoS Comput. Biol., 12 (2016), e1004688. |
[25] | D. Gonze, L. Lahti, J. Raes, et al., Multi-stability and the origin of microbial community types, ISME J., 11 (2017), 2159–2166. |
[26] | A. L. Gomes, J. E. Galagan and D. Segre, Resource competition may lead to effective treatment of antibiotic resistant infections, PLoS One, 8 (2013), e80775. |
[27] | E. M. D'Agata, M. Dupont-Rouzeyrol, P. Magal, et al., The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria, PLoS One, 3 (2008), e4036. |
[28] | V. Bucci, S. Bradde, G. Biroli, et al., Social interaction, noise and antibiotic-mediated switches in the intestinal microbiota, PLoS Comput. Biol., 8 (2012), e1002497. |
[29] | S. Estrela and S. P. Brown, Community interactions and spatial structure shape selection on antibiotic resistant lineages, PLoS Comput. Biol., 14 (2018), e1006179. |
[30] | S. W. Wu, H. de Lencastre and A. Tomasz, Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus, J. Bacteriol., 183 (2001), 2417–2424. |
[31] | S. Gottig, S. Riedel-Christ, A. Saleh, et al., Impact of blaNDM-1 on fitness and pathogenicity of Escherichia coli and Klebsiella pneumoniae, Int. J. Antimicrob. Agents., 47 (2016), 430–435. |
[32] | R. Freter, H. Brickner, J. Fekete, et al., Survival and implantation of Escherichia coli in the intestinal tract, Infect. Immun., 39 (1983), 686–703. |
[33] | M. P. Leatham, S. Banerjee, S. M. Autieri, et al., Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine, Infect. Immun., 77 (2009), 2876–2886. |
[34] | K. Tabita, S. Sakaguchi, S. Kozaki, et al., Comparative studies on Clostridium botulinum type A strains associated with infant botulism in Japan and in California, USA, Jpn. J. Med. Sci. Biol., 43 (1990), 219–231. |
[35] | Y. Yamashiro, Gut Microbiota in Health and Disease, Ann. Nutr. Metab., 71 (2017), 242–246. |
[36] | C. Cordonnier, G. Le Bihan, J. G. Emond-Rheault, et al., Vitamin B12 Uptake by the Gut Commensal Bacteria Bacteroides thetaiotaomicron Limits the Production of Shiga Toxin by Enterohemorrhagic Escherichia coli, Toxins (Basel), 8 (2016), E14. |
[37] | R. A. Sorg, L. Lin, G. S. van Doorn, et al., Collective Resistance in Microbial Communities by Intracellular Antibiotic Deactivation, PLoS Biol., 14 (2016), e2000631. |
[38] | T. Ito, K. Okuma, X. X. Ma, et al., Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC, Drug Resist Updat., 6 (2003), 41–52. |
[39] | H. Nicoloff and D. I. Andersson, Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or -degrading enzymes, J. Antimicrob. Chemother., 71 (2016), 100–110. |
[40] | C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, et al., Diversity, stability and resilience of the human gut microbiota, Nature, 489, (2012), 220–230. |
[41] | C. Manichanh, J. Reeder, P. Gibert, et al., Reshaping the gut microbiome with bacterial transplantation and antibiotic intake, Genome. Res., 20 (2010), 1411–1419. |
[42] | E. K. Costello, C. L. Lauber, M. Hamady, et al., Bacterial community variation in human body habitats across space and time, Science, 326 (2009), 1694–1697. |
[43] | P. J. Turnbaugh, M. Hamady, T. Yatsunenko, et al., A core gut microbiome in obese and lean twins, Nature, 457 (2009), 480–484. |
[44] | A. Uygun, K. Ozturk, H. Demirci, et al., Fecal microbiota transplantation is a rescue treatment modality for refractory ulcerative colitis, Medicine (Baltimore), 96 (2017), e6479. |
[45] | B. Cui, Q. Feng, H. Wang, et al., Fecal microbiota transplantation through mid-gut for refractory Crohn's disease: safety, feasibility, and efficacy trial results, J. Gastroenterol. Hepatol., 30 (2015), 51–58. |
[46] | C. R. Kelly, S. Kahn, P. Kashyap, et al., Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook, Gastroenterology, 149 (2015), 223–237. |
[47] | S. Vermeire, M. Joossens, K. Verbeke, et al., Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease, J. Crohns. Colitis, 10 (2016), 387–394. |
[48] | H. Seedorf, N. W. Griffin, V. K. Ridaura, et al., Bacteria from diverse habitats colonize and compete in the mouse gut, Cell, 159 (2014), 253–266. |
[49] | S. K. Ji, H. Yan, T. Jiang, et al., Preparing the Gut with Antibiotics Enhances Gut Microbiota Reprogramming Efficiency by Promoting Xenomicrobiota Colonization, Front. Microbiol., 8 (2017), 1208. |
[50] | D. L. Suskind, M. J. Brittnacher, G. Wahbeh, et al., Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn's disease, Inflamm. Bowel. Dis., 21 (2015), 556–563. |
[51] | A. K. Seth, P. Rawal, R. Bagga, et al., Successful colonoscopic fecal microbiota transplantation for active ulcerative colitis: First report from India, Indian. J. Gastroenterol., 35 (2016), 393–395. |
[52] | S. X. Liu, Y. H. Li, W. K. Dai, et al., Fecal microbiota transplantation induces remission of infantile allergic colitis through gut microbiota re-establishment, World J. Gastroenterol., 23 (2017), 8570–8581. |
[53] | J. Zhang, J. J. Cunningham, J. S. Brown, et al., Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer, Nat. Commun., 8 (2017), 1816. |
[54] | R. B. Montgomery, E. A. Mostaghel, R. Vessella, et al., Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth, Cancer Res., 68 (2008), 4447–4454. |
[55] | J. M. Hyatt, D. E. Nix, C. W. Stratton, et al., In vitro pharmacodynamics of piperacillin, piperacillin-tazobactam, and ciprofloxacin alone and in combination against Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 39 (1995), 1711–1716. |
[56] | D. M. Chaput de Saintonge, D. F. Levine, I. T. Savage, et al., Trial of three-day and ten-day courses of amoxycillin in otitis media, Br. Med. J. (Clin. Res. Ed.), 284 (1982), 1078–1081. |
[57] | C. Llor and L. Bjerrum, Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem, Ther. Adv. Drug Saf., 5, (2014), 229–241. |
[58] | I. van Langeveld, R. C. Gagnon, P. F. Conrad, et al., Multiple-Drug Resistance in Burn Patients: A Retrospective Study on the Impact of Antibiotic Resistance on Survival and Length of Stay, J. Burn. Care. Res., 38, (2017), 99–105. |