Research article Special Issues

A mass conservative and energy stable scheme for the conservative Allen–Cahn type Ohta–Kawasaki model for diblock copolymers

  • Received: 23 December 2024 Revised: 14 March 2025 Accepted: 17 March 2025 Published: 25 March 2025
  • MSC : 65M06, 65N06

  • The conservative Allen–Cahn type Ohta–Kawasaki model was introduced to reformulate the Cahn–Hilliard type Ohta–Kawasaki model. A difficulty in numerically solving the conservative Allen–Cahn type Ohta–Kawasaki model is how to discretize the nonlinear and nonlocal terms in time to preserve the mass conservation and energy decay properties without losing the efficiency and accuracy. To settle this problem, we present a linear, second-order, mass conservative, and energy stable scheme based on the Crank–Nicolson formula. In the scheme, the nonlinear and nonlocal terms are explicitly treated, which make the scheme linear, and the energy stability is guaranteed by adopting a truncated double-well potential and by adding two second-order stabilization terms. We analytically and numerically show that the scheme is mass conservative and energy stable. Additionally, the scheme can be easily implemented within a few lines of MATLAB code.

    Citation: Hyun Geun Lee. A mass conservative and energy stable scheme for the conservative Allen–Cahn type Ohta–Kawasaki model for diblock copolymers[J]. AIMS Mathematics, 2025, 10(3): 6719-6731. doi: 10.3934/math.2025307

    Related Papers:

  • The conservative Allen–Cahn type Ohta–Kawasaki model was introduced to reformulate the Cahn–Hilliard type Ohta–Kawasaki model. A difficulty in numerically solving the conservative Allen–Cahn type Ohta–Kawasaki model is how to discretize the nonlinear and nonlocal terms in time to preserve the mass conservation and energy decay properties without losing the efficiency and accuracy. To settle this problem, we present a linear, second-order, mass conservative, and energy stable scheme based on the Crank–Nicolson formula. In the scheme, the nonlinear and nonlocal terms are explicitly treated, which make the scheme linear, and the energy stability is guaranteed by adopting a truncated double-well potential and by adding two second-order stabilization terms. We analytically and numerically show that the scheme is mass conservative and energy stable. Additionally, the scheme can be easily implemented within a few lines of MATLAB code.



    加载中


    [1] T. Ohta, K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621–2632. https://doi.org/10.1021/ma00164a028 doi: 10.1021/ma00164a028
    [2] C. B. Muratov, Theory of domain patterns in systems with long-range interactions of Coulomb type, Phys. Rev. E, 66 (2002), 066108. https://doi.org/10.1103/PhysRevE.66.066108 doi: 10.1103/PhysRevE.66.066108
    [3] H. Abels, J. Kampmann, On a model for phase separation on biological membranes and its relation to the Ohta–Kawasaki equation, Eur. J. Appl. Math., 31 (2020), 297–338. https://doi.org/10.1017/S0956792519000056 doi: 10.1017/S0956792519000056
    [4] Y. Nishiura, I. Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers, Phys. D, 84 (1995), 31–39. https://doi.org/10.1016/0167-2789(95)00005-O doi: 10.1016/0167-2789(95)00005-O
    [5] S. Geng, T. Li, Q. Ye, X. Yang, A new conservative Allen–Cahn type Ohta–Kawasaki phase-field model for diblock copolymers and its numerical approximations, Adv. Appl. Math. Mech., 14 (2022), 101–124. https://doi.org/10.4208/aamm.OA-2020-0293 doi: 10.4208/aamm.OA-2020-0293
    [6] J. Rubinstein, P. Sternberg, Nonlocal reaction–diffusion equations and nucleation, IMA J. Appl. Math., 48 (1992), 249–264. https://doi.org/10.1093/imamat/48.3.249 doi: 10.1093/imamat/48.3.249
    [7] M. Grasselli, A. Poiatti, Multi-component conserved Allen–Cahn equations, Interfaces Free Bound., 26 (2024), 489–541. https://doi.org/10.4171/IFB/513 doi: 10.4171/IFB/513
    [8] J. Shen, X. Yang, Numerical approximations of allen-cahn and cahn-hilliard equations, Discret. Contin. Dyn. Syst., 28 (2010), 1669–1691. https://doi.org/10.3934/dcds.2010.28.1669 doi: 10.3934/dcds.2010.28.1669
    [9] H. Zhang, H. Wang, X. Teng, A second-order, global-in-time energy stable implicit-explicit Runge–Kutta scheme for the phase field crystal equation, SIAM J. Numer. Anal., 62 (2024), 2667–2697. https://doi.org/10.1137/24M1637623 doi: 10.1137/24M1637623
    [10] H. Wang, Y. Wang, H. Zhang, S. Song, Energy stability and error estimate of the RKMK2e scheme for the extended Fisher–Kolmogorov equation, Appl. Numer. Math., 212 (2025), 60–76. https://doi.org/10.1016/j.apnum.2025.01.014 doi: 10.1016/j.apnum.2025.01.014
    [11] Y. Wang, H. Zhang, J. Sun, X. Qian, A unified global-in-time energy stability analysis of ETDRK schemes for the Cahn–Hilliard–Ohta–Kawasaki equation, ResearchGate Preprint, 2024. Available from: https://www.researchgate.net/publication/387047013
    [12] D. D. Dai, W. Zhang, Y. L. Wang, Numerical simulation of the space fractional $(3+1)$-dimensional Gray–Scott models with the Riesz fractional derivative, AIMS Math., 7 (2022), 10234–10244. https://doi.org/10.3934/math.2022569 doi: 10.3934/math.2022569
    [13] H. G. Lee, Numerical simulation of a space-fractional molecular beam epitaxy model without slope selection, Fractal Fract., 7 (2023), 558. https://doi.org/10.3390/fractalfract7070558 doi: 10.3390/fractalfract7070558
    [14] X. Y. Li, Y. L. Wang, Z. Y. Li, Numerical simulation for the fractional-in-space Ginzburg–Landau equation using Fourier spectral method, AIMS Math., 8 (2023), 2407–2418. https://doi.org/10.3934/math.2023124 doi: 10.3934/math.2023124
    [15] S. F. Alrzqi, F. A. Alrawajeh, H. N. Hassan, An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method, AIMS Math., 9 (2024), 8661–8688. https://doi.org/10.3934/math.2024420 doi: 10.3934/math.2024420
    [16] H. G. Lee, A linear second-order convex splitting scheme for the modified phase-field crystal equation with a strong nonlinear vacancy potential, Appl. Math. Lett., 156 (2024), 109145. https://doi.org/10.1016/j.aml.2024.109145 doi: 10.1016/j.aml.2024.109145
    [17] X. Zhang, J. F. Douglas, R. L. Jones, Influence of film casting method on block copolymer ordering in thin films, Soft Matter, 8 (2012), 4980–4987. https://doi.org/10.1039/C2SM07308K doi: 10.1039/C2SM07308K
    [18] J. Yang, C. Lee, D. Jeong, J. Kim, A simple and explicit numerical method for the phase-field model for diblock copolymer melts, Comput. Mater. Sci., 205 (2022), 111192. https://doi.org/10.1016/j.commatsci.2022.111192 doi: 10.1016/j.commatsci.2022.111192
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(849) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog