In this article, the Cauchy problem for a 3D elliptic equation is considered in a cylindrical domain. To regularize the problem, we propose a regularization method named "identical approximation regularization", which does not require complicated calculations. Two identical approximate regularization solutions are compared in the numerical section. The experimental results show that the Dirichlet reconstruction solution is more effective than the others.
Citation: Shangqin He. The identical approximation regularization method for the inverse problem to a 3D elliptic equation with variable coefficients[J]. AIMS Mathematics, 2025, 10(3): 6732-6744. doi: 10.3934/math.2025308
In this article, the Cauchy problem for a 3D elliptic equation is considered in a cylindrical domain. To regularize the problem, we propose a regularization method named "identical approximation regularization", which does not require complicated calculations. Two identical approximate regularization solutions are compared in the numerical section. The experimental results show that the Dirichlet reconstruction solution is more effective than the others.
| [1] | A. Kirsch, An introduction to the mathematical theory of inverse problems, 2 Eds., New York: Springer, 1971. http://doi.org/10.1007/978-1-4419-8474-6 |
| [2] |
C. Wang, J. Wang, Primal-Dual Weak Galerkin Finite Element Methods for Elliptic Cauchy Problems, Comput. Math. Appl., 79 (2020), 746–763. https://doi.org/10.1016/j.camwa.2019.07.031 doi: 10.1016/j.camwa.2019.07.031
|
| [3] |
D.N. Hào, N.V. Duc, D. Lesnic, A non-local boundary value problem method for the Cauchy problem for elliptic equations, Inverse Probl., 25 (2009), 055002. http://doi.org/10.1088/0266-5611/25/5/055002 doi: 10.1088/0266-5611/25/5/055002
|
| [4] |
V. I. Vasil'Ev, A. M. Kardashevsky, V. V. Popov, G. A. Prokopev, Iterative solution of the inverse Cauchy problem for an elliptic equation by the conjugate gradient method, AIP Conf. Proc., 1895 (2017), 110009. http://doi.org/10.1063/1.5007415 doi: 10.1063/1.5007415
|
| [5] |
H. Cheng, X. L. Feng, F. L. Fu, A mollification regularization method for the Cauchy problem of an elliptic equation in a multi-dimensional case, Inverse Probl. Sci. Eng., 18 (2010), 977–982. http://doi.org/10.1080/17415977.2010.492519 doi: 10.1080/17415977.2010.492519
|
| [6] |
D. N. Hào, A mollification method for ill-posed problems, Numer. Math., 68 (1994), 469–506. http://doi.org/10.1007/s002110050073 doi: 10.1007/s002110050073
|
| [7] |
F. Berntsson, V. A. Kozlov, D. Wokiyi, Solvability of a non-linear Cauchy problem for an elliptic equation, Int. J. Comput. Math., 96 (2019), 2317–2333. http://doi.org/10.1080/00207160.2019.1569640 doi: 10.1080/00207160.2019.1569640
|
| [8] |
M. Lassas, T. Liimatainen, Y. H. Lin, M. Salo, Inverse problems for elliptic equations with power type nonlinearities, J. Math. Pures Appl., 53 (2021), 23–28. http://doi.org/10.1016/J.MATPUR.2020.11.006 doi: 10.1016/J.MATPUR.2020.11.006
|
| [9] |
H. Zhang, Modified Tikhonov Method for Cauchy Problem of Elliptic Equation with Variable Coefficients, Amer. J. Comput. Math., 4 (2014), 213–222. http://doi.org/10.4236/ajcm.2014.43018 doi: 10.4236/ajcm.2014.43018
|
| [10] | M. Vladislav, S. Kabanikhin, M. Shishlenin, N. S. Novikov, A. Vasin, A. V. Gasnikov, Convex optimization with inexact gradients in Hilbert space and applications to elliptic inverse problems, Comput. Optim. Appl., 2021. http://doi.org/10.13140/RG.2.2.16851.91681 |
| [11] |
V. A. Khoa, P. T. Hoangnhan, Constructing a variational quasi-reversibility method for a Cauchy problem for elliptic equations, Math. Methods Appl. Sci., 44 (2021), 3334–3355. http://doi.org/10.1002/mma.6945 doi: 10.1002/mma.6945
|
| [12] | C. S. Liu, L. Qiu, Solving the 2D and 3D nonlinear inverse source problems of elliptic type partial differential equations by a homogenization function method, Numer. Methods Partial Differ. Eq.: Int. J., (2023), 1287–1298. http://doi.org/10.1002/num.22934 |
| [13] |
Z. Kaytmaz, M. Yldz, Solvability of an Inverse Problem for an Elliptic-Type Equation, Cumhuriyet Sci. J., 41 (2024), 130–134. http://doi.org/10.17776/csj.1359651 doi: 10.17776/csj.1359651
|
| [14] |
M. Choulli, H. Takase, Lipschitz stability for an elliptic inverse problem with two measurements, Cumhuriyet Sci. J., 41 (2025), 130–134. http://doi.org/10.1007/s40687-025-00504-y doi: 10.1007/s40687-025-00504-y
|
| [15] |
D. Motreanu, E. Tornatore, Elliptic equations with unbounded coefficient, convection term and intrinsic operator, Math. Z., 308 (2024), 38. http://doi.org/10.1007/s00209-024-03591-9 doi: 10.1007/s00209-024-03591-9
|
| [16] |
Q. Xi, Z. Fu, C. Alves, A. Ji, A semi-analytical boundary collocation solver for the inverse Cauchy problems in heat conduction under 3D FGMs with heat source, Numer. Heat Trans., Part B: Fundam., 76 (2019), 311–327. http://doi.org/10.1080/10407790.2019.1665386 doi: 10.1080/10407790.2019.1665386
|
| [17] |
H. Wen, J. F. Zhuo, C. T. Zhuo, G. Yan, A meshless collocation method for solving the inverse Cauchy problem associated with the variable-order fractional heat conduction model under functionally graded materials, Eng. Anal. Boundary Elem., 140 (2022), 132–144. http://doi.org/10.1016/j.enganbound.2022.04.007 doi: 10.1016/j.enganbound.2022.04.007
|
| [18] |
S. Q. He, X. F. Feng, Identical approximation operator and regularization method for the Cauchy problem of 2-D heat conduction equation, Math. Methods Appl. Sci., 4 (2021), 12931–12944. http://doi.org/10.1002/mma.7596 doi: 10.1002/mma.7596
|
| [19] |
D. N. Hào, P. M. Hien, H. Sahli, Stability results for a Cauchy problem for an elliptic equation, Inverse Probl., 23 (2007), 421–461. http://doi.org/10.1088/0266-5611/23/1/024 doi: 10.1088/0266-5611/23/1/024
|
| [20] | S. Rajnikant, Real and complex analysis, Singapore: Springer, 2013. http://doi.org/10.1007/978-981-13-0938-0 |
| [21] | S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Berlin: Springer, 1975. http://doi.org/10.1007/978-3-642-65711-5 |