This study investigates the fixed-time control problem for a class of second-order nonlinear systems. Acknowledging that most existing fixed-time sliding mode controllers encounter singularity issues, this paper aims to design a non-singular fixed-time sliding mode controller. Initially, a novel fixed-time sliding mode surface incorporating a sinusoidal function is proposed. Utilizing Lyapunov stability theory, it is rigorously demonstrated that the closed-loop system achieves fixed-time stability under the proposed controller. Furthermore, improvements are introduced to the controller design to mitigate the chattering phenomenon. It is shown that the tracking error converges to a small region around zero within a fixed time. Finally, comparative simulations conducted in MATLAB confirm the effectiveness and superiority of the proposed control algorithm.
Citation: Zhiqiang Chen, Alexander Yurievich Krasnov. Disturbance observer based fixed time sliding mode control for a class of uncertain second-order nonlinear systems[J]. AIMS Mathematics, 2025, 10(3): 6745-6763. doi: 10.3934/math.2025309
This study investigates the fixed-time control problem for a class of second-order nonlinear systems. Acknowledging that most existing fixed-time sliding mode controllers encounter singularity issues, this paper aims to design a non-singular fixed-time sliding mode controller. Initially, a novel fixed-time sliding mode surface incorporating a sinusoidal function is proposed. Utilizing Lyapunov stability theory, it is rigorously demonstrated that the closed-loop system achieves fixed-time stability under the proposed controller. Furthermore, improvements are introduced to the controller design to mitigate the chattering phenomenon. It is shown that the tracking error converges to a small region around zero within a fixed time. Finally, comparative simulations conducted in MATLAB confirm the effectiveness and superiority of the proposed control algorithm.
| [1] |
J. Fei, H. Wang, Y. Fang, Novel neural network fractional-order sliding-mode control with application to active power filter, IEEE T. Syst. Man Cy. S., 52 (2022), 3508–3518. https://doi.org/10.1109/TSMC.2021.3071360 doi: 10.1109/TSMC.2021.3071360
|
| [2] |
B. Xu, L. Zhang, W. Ji, Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives, IEEE T. Transp. Electr., 7 (2021), 2753–2762. https://doi.org/10.1109/TTE.2021.3083925 doi: 10.1109/TTE.2021.3083925
|
| [3] |
J. Li, J. Wang, P. Hui, Y. Hu, H. Su, Fuzzy-torque approximation-enhanced sliding mode control for lateral stability of mobile robot, IEEE T. Syst. Man Cy. S., 52 (2021), 2491–2500. https://doi.org/10.1109/TSMC.2021.3050616 doi: 10.1109/TSMC.2021.3050616
|
| [4] |
J. Fei, Y. Chen, Dynamic terminal sliding-mode control for single-phase active power filter using new feedback recurrent neural network, IEEE T. Power Electr., 35 (2020), 9904–9922. https://doi.org/10.1109/TPEL.2020.2974470 doi: 10.1109/TPEL.2020.2974470
|
| [5] |
J. Wang, L. Han, X. Dong, Q. Li, Distributed sliding mode control for time-varying formation tracking of multi-UAV system with a dynamic leader, Aerosp. Sci. Technol., 111 (2021), 106549. https://doi.org/10.1016/j.ast.2021.106549 doi: 10.1016/j.ast.2021.106549
|
| [6] |
L. Cui, N. Jin, S. Chang, Z. Zuo, Z. Zhao, Fixed-time ESO based fixed-time integral terminal sliding mode controller design for a missile, ISA T., 125 (2022), 237–251. https://doi.org/10.1016/j.isatra.2021.06.039 doi: 10.1016/j.isatra.2021.06.039
|
| [7] |
X. Shen, J. Liu, A. M. Alcaide, Y. Yin, S. Vazquez, L. G. Franquelo, Adaptive second-order sliding mode control for grid-connected NPC converters with enhanced disturbance rejection, IEEE T. Power Electr. 37 (2022), 206–220. https://doi.org/10.1109/TPEL.2021.3099844 doi: 10.1109/TPEL.2021.3099844
|
| [8] |
G. Bartolini, A. Ferrara, E. Usai, Chattering avoidance by second-order sliding mode control, IEEE T. Automat. Contr., 43 (1998), 241–246. https://doi.org/10.1109/9.661074 doi: 10.1109/9.661074
|
| [9] |
H. Wang, Y. Pan, S. Li, H. Yu, Robust sliding mode control for robots driven by compliant actuators, IEEE T. Contr. Syst. T., 27 (2019), 1259–1266. https://doi.org/10.1109/TCST.2018.2799587 doi: 10.1109/TCST.2018.2799587
|
| [10] |
P. Kachroo, M. Tomizuka, Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems, IEEE T. Automat. Contr., 41 (1996), 1063–1068. https://doi.org/10.1109/9.508917 doi: 10.1109/9.508917
|
| [11] |
J. Pan, B. Shao, J. Xiong, Q. Zhang, Attitude control of quadrotor UAVs based on adaptive sliding mode, Int. J. Control Autom. Syst., 21 (2023), 2698–2707. https://doi.org/10.1007/s12555-022-0189-2 doi: 10.1007/s12555-022-0189-2
|
| [12] |
Z. Man, A. Paplinski, H. Wu, A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators, IEEE T. Automat. Contr., 39 (1994), 2464–2469. https://doi.org/10.1109/9.362847 doi: 10.1109/9.362847
|
| [13] |
A. Silva, D. Santos, Fast nonsingular terminal sliding mode flight control for multirotor aerial vehicles, IEEE T. Aero. Elec. Sys., 56 (2020), 4288–4299. https://doi.org/10.1109/TAES.2020.2988836 doi: 10.1109/TAES.2020.2988836
|
| [14] |
Z. Man, X. Yu, Terminal sliding mode control of MIMO linear systems, IEEE T. Circuits I, 44 (1997), 1065–1070. https://doi.org/10.1109/81.641769 doi: 10.1109/81.641769
|
| [15] |
X.Yu, Z. Man, Fast terminal sliding-mode control design for nonlinear dynamical systems, IEEE T. Circuits I, 49 (2002), 261–264. https://doi.org/10.1109/81.983876 doi: 10.1109/81.983876
|
| [16] |
A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE T. Automa. Contr., 57 (2012), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869
|
| [17] |
Q. Chen, S. Xie, M. Sun, X. He, Adaptive nonsingular fixed-time attitude stabilization of uncertain spacecraft, IEEE T. Aero. Elec. Sys. 54 (2018), 2937–2950. https://doi.org/10.1109/TAES.2018.2832998 doi: 10.1109/TAES.2018.2832998
|
| [18] |
D. Zhao, S. Li, F. Gao, A new terminal sliding mode control for robotic manipulators, Int. J. control, 82 (2009), 1804–1813. https://doi.org/10.1080/00207170902769928 doi: 10.1080/00207170902769928
|
| [19] |
L. Wang, T. Chai, L. Zhai, Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics, IEEE T. Ind. Electron. 56 (2009), 3296–3304. https://doi.org/10.1109/TIE.2008.2011350 doi: 10.1109/TIE.2008.2011350
|
| [20] |
H. Liu, H. Wand, J. Sun, Attitude control for QTR using exponential nonsingular terminal sliding mode control, J. Syst. Eng. Electron., 30 (2019), 191–200. https://doi.org/10.21629/jsee.2019.01.18 doi: 10.21629/jsee.2019.01.18
|
| [21] |
K. C. Veluvolu, Y. C. Soh, High-gain observers with sliding mode for state and unknown input estimations, IEEE T. Ind. Electron., 56 (2009), 3386–3393. https://doi.org/10.1109/TIE.2009.2023636 doi: 10.1109/TIE.2009.2023636
|
| [22] |
P. Mercorelli, A two-stage sliding-mode high-gain observer to reduce uncertainties and disturbances effects for sensorless control in auto motive applications, IEEE T. Ind. Electron., 62 (2015), 5929–5940. https://doi.org/10.1109/TIE.2015.2450725 doi: 10.1109/TIE.2015.2450725
|
| [23] |
M. Hu, X. Wang, Y. Bian, D. Cao, H. Wang, Disturbance observer-based cooperative control of vehicle platoons subject to mismatched disturbance, IEEE T. Intell. Vehicl., 8 (2023), 2748–2758. https://doi.org/10.1109/TIV.2023.3237703 doi: 10.1109/TIV.2023.3237703
|
| [24] |
T. Pan, D. Lin, D. Zheng, S. Fan, J. Ye, Observer based finite-time fault tolerant quadrotor attitude control with actuator faults, Aerosp. Sci. Technol., 104 (2020), 105968. https://doi.org/10.1016/j.ast.2020.105968 doi: 10.1016/j.ast.2020.105968
|
| [25] |
B. Xiao, L. Cao, D. Ran, Attitude exponential stabilization control of rigid bodies via disturbance observer, IEEE T. Syst. Man Cyb. S., 51 (2021), 2751–2759. https://doi.org/10.1109/TSMC.2019.2916839 doi: 10.1109/TSMC.2019.2916839
|
| [26] |
L. Hou, H. Sun, Anti-disturbance attitude control of flexible spacecraft with quantized states, Aerosp. Sci. Technol., 99 (2020), 105760. https://doi.org/10.1016/j.ast.2020.105760 doi: 10.1016/j.ast.2020.105760
|
| [27] |
H. Shen, X. Yu, H. Yan, J. Wang, Robust fixed-time sliding mode attitude control for a 2-DOF helicopter subject to input saturation and prescribed performance, IEEE T. Transp. Electr., 11 (2025), 1223–1233. https://doi.org/10.1109/TTE.2024.3402316 doi: 10.1109/TTE.2024.3402316
|
| [28] |
D. Zhang, J. Hu, J. Cheng, A novel disturbance observer based fixed-time sliding mode control for robotic manipulators with global fast convergence, IEEE/CAA J. Automatic., 11 (2024), 661–672. https://doi.org/10.1109/JAS.2023.123948 doi: 10.1109/JAS.2023.123948
|
| [29] |
H. Chen, P. Wang, G. Tang, Fuzzy disturbance observer-based fixed-time sliding mode control for hypersonic morphing vehicles with uncertainties, IEEE T. Aero. Elec. Sys., 59 (2023), 3521–3530. https://doi.org/10.1109/TAES.2022.3227886 doi: 10.1109/TAES.2022.3227886
|
| [30] |
L. N. Bikas, A. R. George, Prescribed performance under input saturation for uncertain strict-feedback systems: A switching control approach, Automatica, 165 (2024), 111663. https://doi.org/10.1016/j.automatica.2024.111663 doi: 10.1016/j.automatica.2024.111663
|
| [31] |
H. Shen, W. Zhao, J. Cao, J. H. Park, J. Wang, Predefined-time event-triggered tracking control for nonlinear Servo systems: A fuzzy weight-based reinforcement learning scheme, IEEE T. Fuzzy Syst., 32 (2024), 4557–4569. https://doi.org/10.1109/TFUZZ.2024.3403917 doi: 10.1109/TFUZZ.2024.3403917
|
| [32] |
L. Zhang, H. Liu, D. Tang, Y. Hou, Y. Wang, Adaptive fixed-time fault-tolerant tracking control and its application for robot manipulators, IEEE T. Ind. Electron., 69 (2022), 2956–2966. https://doi.org/10.1109/TIE.2021.3070494 doi: 10.1109/TIE.2021.3070494
|
| [33] |
L. Yu, G. He, X. Wang, S. Zhao, Robust fixed-time sliding mode attitude control of tilt trirotor UAV in helicopter mode. IEEE Transactions on Industrial Electronics, IEEE T. Ind. Electron., 69 (2022), 10322–10332. https://doi.org/10.1109/TIE.2021.3118556 doi: 10.1109/TIE.2021.3118556
|