The primary objective of this research is to develop a novel high-order symmetric and energy-preserving method for solving two-dimensional nonlinear wave equations. Initially, the nonlinear wave equation is reformulated as an abstract Hamiltonian ordinary differential equation (ODE) system with separable energy in an appropriate infinite-dimensional function space. Subsequently, an energy-preserving and symmetric continuous-stage Runge-Kutta-Nyström time-stepping scheme is derived. After approximating the spatial differential operator using the two-dimensional Fourier pseudo-spectral method, we derive an energy-preserving fully discrete scheme. A rigorous error analysis demonstrates that the proposed method can achieve at least fourth-order accuracy in time. Finally, numerical examples are provided to validate the accuracy, efficiency, and long-term energy conservation of the method.
Citation: Dongjie Gao, Peiguo Zhang, Longqin Wang, Zhenlong Dai, Yonglei Fang. A novel high-order symmetric and energy-preserving continuous-stage Runge-Kutta-Nyström Fourier pseudo-spectral scheme for solving the two-dimensional nonlinear wave equation[J]. AIMS Mathematics, 2025, 10(3): 6764-6787. doi: 10.3934/math.2025310
The primary objective of this research is to develop a novel high-order symmetric and energy-preserving method for solving two-dimensional nonlinear wave equations. Initially, the nonlinear wave equation is reformulated as an abstract Hamiltonian ordinary differential equation (ODE) system with separable energy in an appropriate infinite-dimensional function space. Subsequently, an energy-preserving and symmetric continuous-stage Runge-Kutta-Nyström time-stepping scheme is derived. After approximating the spatial differential operator using the two-dimensional Fourier pseudo-spectral method, we derive an energy-preserving fully discrete scheme. A rigorous error analysis demonstrates that the proposed method can achieve at least fourth-order accuracy in time. Finally, numerical examples are provided to validate the accuracy, efficiency, and long-term energy conservation of the method.
| [1] |
T. Aktosun, F. Demontis, C. Der Mee, Exact solutions to the sine-Gordon equation, J. Math. Phys., 51 (2010), 123521. https://doi.org/10.1063/1.3520596 doi: 10.1063/1.3520596
|
| [2] |
J. Argyris, M. Haase, J. Heinrich, Finite element approximation to two-dimensional sine-Gordon solitons, Comput. Method. Appl. M., 86 (1991), 1–26. https://doi.org/10.1016/0045-7825(91)90136-T doi: 10.1016/0045-7825(91)90136-T
|
| [3] |
Z. Asgari, S. M. Hosseini, Numerical solution of two-dimensional sine-Gordon and MBE models using Fourier spectral and high order explicit time stepping methods, Comput. Phys. Commun., 184 (2013), 565–572. https://doi.org/10.1016/j.cpc.2012.10.009 doi: 10.1016/j.cpc.2012.10.009
|
| [4] |
R. Sassaman, A. Biswas, Soliton perturbation theory for phi-four model and nonlinear Klein-Gordon equations, Commun. Nonlinear Sci., 14 (2009), 3239–3249. https://doi.org/10.1016/j.cnsns.2008.12.020 doi: 10.1016/j.cnsns.2008.12.020
|
| [5] | L. Brugnano, F. Iavernaro, Line integral methods for conservative problems, 1 Ed., New York: Chapman and Hall/CRC, 2016. https://doi.org/10.1201/b19319 |
| [6] | L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods), JNAIAM, 5 (2010), 17–37. |
| [7] |
L. Brugnano, G. Caccia, F. Iavernaro, Energy conservation issues in the numerical solution of the semilinear wave equation, Appl. Math. Comput., 270 (2015), 842–870. https://doi.org/10.1016/j.amc.2015.08.078 doi: 10.1016/j.amc.2015.08.078
|
| [8] |
L. Brugnano, F. Iavernaro, D. Trigiante, Energy and quadratic invariants preserving integrators based upon gauss collocation formulae, SIAM J. Numer. Anal., 50 (2012), 2897–2916. https://doi.org/10.1137/110856617 doi: 10.1137/110856617
|
| [9] |
H. Y. Cao, Z. Z. Sun, G. H. Gao, A three‐level linearized finite difference scheme for the Camassa-Holm equation, Numer. Meth. Part. D. E., 30 (2014), 451–471. https://doi.org/10.1002/num.21819 doi: 10.1002/num.21819
|
| [10] |
J. Chabassier, P. Joly, Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: application to the vibrating piano string, Comput. Method. Appl. M., 199 (2010), 2779–2795. https://doi.org/10.1016/j.cma.2010.04.013 doi: 10.1016/j.cma.2010.04.013
|
| [11] |
M. Dehghan, A. Shokri, A numerical method for one-dimensional nonlinear Sine-Gordon equation using collocation and radial basis functions, Numer. Meth. Part. D. E., 24 (2008), 687–698. https://doi.org/10.1002/num.20289 doi: 10.1002/num.20289
|
| [12] |
D. Duncan, Sympletic finite difference approximations of the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 34 (1997), 1742–1760. https://doi.org/10.1137/S0036142993243106 doi: 10.1137/S0036142993243106
|
| [13] |
Y. Gong, Q. Wang, Y. Wang, J. Cai, A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation, J. Comput. Phys., 328 (2017), 354–370. https://doi.org/10.1016/j.jcp.2016.10.022 doi: 10.1016/j.jcp.2016.10.022
|
| [14] |
P. Guyenne, A. Kairzhan, C. Sulem, Hamiltonian Dysthe equation for three-dimensional deep-water gravity waves, Multiscale Model. Sim., 20 (2022), 349–378. https://doi.org/10.1137/21m1432788 doi: 10.1137/21m1432788
|
| [15] | E. Hairer, Energy-preserving variant of collocation methods, JNAIAM, 5 (2010), 73–84. |
| [16] | E. Hairer, G. Wanner, C. Lubich, Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, 2 Eds., Berlin: Springer, 2006. https://doi.org/10.1007/3-540-30666-8 |
| [17] |
B. Hou, D. Liang, Energy-preserving time high-order AVF compact finite difference schemes for nonlinear wave equations with variable coefficients, J. Comput. Phys., 421 (2020), 109738. https://doi.org/10.1016/j.jcp.2020.109738 doi: 10.1016/j.jcp.2020.109738
|
| [18] |
B. Hou, D. Liang, The energy-preserving time high-order AVF compact finite difference scheme for nonlinear wave equations in two dimensions, Appl. Numer. Math., 170 (2021), 298–320. https://doi.org/10.1016/j.apnum.2021.07.026 doi: 10.1016/j.apnum.2021.07.026
|
| [19] |
D. Kaya, S. El-Sayed, A numerical solution of the Klein-Gordon equation and convergence of the decomposition method, Appl. Math. Comput., 156 (2004), 341–353. https://doi.org/10.1016/j.amc.2003.07.014 doi: 10.1016/j.amc.2003.07.014
|
| [20] |
J. Li, Z. Sun, X. Zhao, A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci. China Math., 55 (2012), 805–826. https://doi.org/10.1007/s11425-011-4290-x doi: 10.1007/s11425-011-4290-x
|
| [21] |
S. Li, L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32 (1995), 1839–1875. https://doi.org/10.1137/0732083 doi: 10.1137/0732083
|
| [22] |
C. Liu, J. Li, Z. Yang, Y. Tang, K. Liu, Two high-order energy-preserving and symmetric Gauss collocation integrators for solving the hyperbolic Hamiltonian systems, Math. Comput. Sim., 205 (2023), 19–32. https://doi.org/10.1016/j.matcom.2022.09.016 doi: 10.1016/j.matcom.2022.09.016
|
| [23] |
C. Liu, K. Liu, A fourth-order energy-preserving and symmetric average vector field integrator with low regularity assumption, J. Comput. Appl. Math., 439 (2024), 115605. https://doi.org/10.1016/j.cam.2023.115605 doi: 10.1016/j.cam.2023.115605
|
| [24] |
C. Liu, A. Iserles, X. Wu, Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations, J. Comput. Phys., 356 (2018), 1–30. https://doi.org/10.1016/j.jcp.2017.10.057 doi: 10.1016/j.jcp.2017.10.057
|
| [25] |
W. J. Liu, J. B. Sun, B. Y. Wu, Space-time spectral method for the two-dimensional generalized sine-Gordon equation, J. Math. Anal. Appl., 427 (2015), 787–804. https://doi.org/10.1016/j.jmaa.2015.02.057 doi: 10.1016/j.jmaa.2015.02.057
|
| [26] |
C. Liu, Y. Tang, J. Yu, Y. Fang, High-order symmetric and energy-preserving collocation integrators for the second-order Hamiltonian system, J. Math. Chem., 62 (2024), 330–355. https://doi.org/10.1007/s10910-023-01536-x doi: 10.1007/s10910-023-01536-x
|
| [27] |
C. Y. Liu, X. Y. Wu, Continuous trigonometric collocation polynomial approximations with geometric and superconvergence analysis for efficiently solving semi-linear highly oscillatory hyperbolic systems, Calcolo, 58 (2021), 6. https://doi.org/10.1007/s10092-020-00394-2 doi: 10.1007/s10092-020-00394-2
|
| [28] |
C. Liu, X. Wu, Nonlinear stability and convergence of ERKN integrators for solving nonlinear multi-frequency highly oscillatory second-order ODEs with applications to semi-linear wave equations, Appl. Numer. Math., 153 (2020), 352–380. https://doi.org/10.1016/j.apnum.2020.02.020 doi: 10.1016/j.apnum.2020.02.020
|
| [29] |
C. Y. Liu, X. Y. Wu, Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein-Gordon equations, J. Comput. Phys., 340 (2017), 243–275. https://doi.org/10.1016/j.jcp.2017.03.038 doi: 10.1016/j.jcp.2017.03.038
|
| [30] |
C. Y. Liu, X. Y. Wu, The boundness of the operator-valued functions for multidimensional nonlinear wave equations with applications, Appl. Math. Lett., 74 (2017), 60–67. https://doi.org/10.1016/j.aml.2017.04.026 doi: 10.1016/j.aml.2017.04.026
|
| [31] |
C. Y. Liu, X. Y. Wu, W. Shi, New energy-preserving algorithms for nonlinear Hamiltonian wave equation equipped with Neumann boundary conditions, Appl. Math. Comput., 339 (2018), 588–606. https://doi.org/10.1016/j.amc.2018.07.059 doi: 10.1016/j.amc.2018.07.059
|
| [32] |
C. Liu, W. Shi, X. Wu, Numerical analysis of an energy-conservation scheme for two-dimensional hamiltonian wave equations with Neumann boundary conditions, Int. J. Numer. Anal. Mod., 16 (2019), 319–339. https://doi.org/2019-IJNAM-12806 doi: 2019-IJNAM-12806
|
| [33] |
W. Shi, K. Liu, X. Wu, C. Liu, An energy-preserving algorithm for nonlinear Hamiltonian wave equations with Neumann boundary conditions, Calcolo, 54 (2017), 1379–1402. https://doi.org/10.1007/s10092-017-0232-5 doi: 10.1007/s10092-017-0232-5
|
| [34] |
W. Tang, J. Zhang, Symplecticity-preserving continuous-stage Runge-Kutta-Nyström methods, Appl. Math. Comput., 323 (2018), 204–219. https://doi.org/10.1016/j.amc.2017.11.054 doi: 10.1016/j.amc.2017.11.054
|
| [35] |
W. Tang, J. Zhang, Symmetric integrators based on continuous-stage Runge-Kutta-Nyström methods for reversible systems, Appl. Math. Comput., 361 (2019), 1–12. https://doi.org/10.1016/j.amc.2019.05.013 doi: 10.1016/j.amc.2019.05.013
|
| [36] |
W. Tang, Y. Sun, J. Zhang, High order symplectic integrators based on continuous-stage Runge-Kutta-Nyström methods, Appl. Math. Comput., 361 (2019), 670–679. https://doi.org/10.1016/j.amc.2019.06.031 doi: 10.1016/j.amc.2019.06.031
|
| [37] | R. Teman, Infinite-dimensional dynamical systems in mechanics and physics, New York: Springer, 1997. http://doi.org/10.1007/978-1-4684-0313-8 |
| [38] |
B. Wang, X. Y. Wu, The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein-Gordon equations, IMA J. Numer. Anal., 39 (2019), 2016–2044. https://doi.org/10.1093/imanum/dry047 doi: 10.1093/imanum/dry047
|
| [39] |
A. Wazwaz, Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations, Chaos Soliton. Fract., 28 (2006), 127–135. https://doi.org/10.1016/j.chaos.2005.05.017 doi: 10.1016/j.chaos.2005.05.017
|
| [40] |
L. Xu, P. Guyenne, Numerical simulation of three-dimensional nonlinear water waves, J. Comput. Phys., 228 (2009), 8446–8466. https://doi.org/10.1016/j.jcp.2009.08.015 doi: 10.1016/j.jcp.2009.08.015
|