Research article

A novel high-order symmetric and energy-preserving continuous-stage Runge-Kutta-Nyström Fourier pseudo-spectral scheme for solving the two-dimensional nonlinear wave equation

  • Received: 17 January 2025 Revised: 14 March 2025 Accepted: 19 March 2025 Published: 26 March 2025
  • MSC : 34C14, 65L06, 65L20, 65L70

  • The primary objective of this research is to develop a novel high-order symmetric and energy-preserving method for solving two-dimensional nonlinear wave equations. Initially, the nonlinear wave equation is reformulated as an abstract Hamiltonian ordinary differential equation (ODE) system with separable energy in an appropriate infinite-dimensional function space. Subsequently, an energy-preserving and symmetric continuous-stage Runge-Kutta-Nyström time-stepping scheme is derived. After approximating the spatial differential operator using the two-dimensional Fourier pseudo-spectral method, we derive an energy-preserving fully discrete scheme. A rigorous error analysis demonstrates that the proposed method can achieve at least fourth-order accuracy in time. Finally, numerical examples are provided to validate the accuracy, efficiency, and long-term energy conservation of the method.

    Citation: Dongjie Gao, Peiguo Zhang, Longqin Wang, Zhenlong Dai, Yonglei Fang. A novel high-order symmetric and energy-preserving continuous-stage Runge-Kutta-Nyström Fourier pseudo-spectral scheme for solving the two-dimensional nonlinear wave equation[J]. AIMS Mathematics, 2025, 10(3): 6764-6787. doi: 10.3934/math.2025310

    Related Papers:

    [1] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [2] Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299
    [3] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
    [4] Marimuthu Mohan Raja, Velusamy Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, Wedad Albalawi, Abdel-Haleem Abdel-Aty . A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r(1,2) with impulses. AIMS Mathematics, 2023, 8(5): 10802-10821. doi: 10.3934/math.2023548
    [5] Sivaranjani Ramasamy, Thangavelu Senthilprabu, Kulandhaivel Karthikeyan, Palanisamy Geetha, Saowaluck Chasreechai, Thanin Sitthiwirattham . Existence, uniqueness and controllability results of nonlinear neutral implicit ABC fractional integro-differential equations with delay and impulses. AIMS Mathematics, 2025, 10(2): 4326-4354. doi: 10.3934/math.2025200
    [6] Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550
    [7] Rajesh Dhayal, Muslim Malik, Syed Abbas . Solvability and optimal controls of non-instantaneous impulsive stochastic neutral integro-differential equation driven by fractional Brownian motion. AIMS Mathematics, 2019, 4(3): 663-683. doi: 10.3934/math.2019.3.663
    [8] Yong-Ki Ma, Marimuthu Mohan Raja, Kottakkaran Sooppy Nisar, Anurag Shukla, Velusamy Vijayakumar . Results on controllability for Sobolev type fractional differential equations of order 1<r<2 with finite delay. AIMS Mathematics, 2022, 7(6): 10215-10233. doi: 10.3934/math.2022568
    [9] Hasanen A. Hammad, Mohammed E. Dafaalla, Kottakkaran Sooppy Nisar . A Grammian matrix and controllability study of fractional delay integro-differential Langevin systems. AIMS Mathematics, 2024, 9(6): 15469-15485. doi: 10.3934/math.2024748
    [10] H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220
  • The primary objective of this research is to develop a novel high-order symmetric and energy-preserving method for solving two-dimensional nonlinear wave equations. Initially, the nonlinear wave equation is reformulated as an abstract Hamiltonian ordinary differential equation (ODE) system with separable energy in an appropriate infinite-dimensional function space. Subsequently, an energy-preserving and symmetric continuous-stage Runge-Kutta-Nyström time-stepping scheme is derived. After approximating the spatial differential operator using the two-dimensional Fourier pseudo-spectral method, we derive an energy-preserving fully discrete scheme. A rigorous error analysis demonstrates that the proposed method can achieve at least fourth-order accuracy in time. Finally, numerical examples are provided to validate the accuracy, efficiency, and long-term energy conservation of the method.



    It was recognized that in 1922, Banach proved a "contraction mapping principle for fixed points (FPs)" in his Ph.D. dissertation; see also [1]. It is one of the most significant results in functional analysis and its applications in other branches of mathematics. Specifically, this principle is considered as the basic source of metric FP theory. The study of FP and common fixed point (CFP) results satisfying a certain metric contraction condition has received the attention of many authors; see, for instance [2,3,4,5,6,7,8,9,10].

    Huang and Zhang [11] in 2007, introduced the notion of a cone metric space (CM-space) which generalized the notion of a metric space (M-space). They presented some basic properties and proved a cone Banach contraction theorem for FPs in terms of the interior points of the underlying cone. After the publication of this article, many researchers contributed their work to the problems on CM-spaces. Abbas and Jungck [12], Ilić and Rakocević [13] and Vetro [14] generalized the concept of Huang and Zhang [11] and proved some FP, CFP and coincidence point results on CM-spaces by using different types of contraction conditions. Abbas et al. [15], Abdeljawad et al. [16,17], Altun et al. [18], Janković et al. [19], Karapinar [20,21,22], Khamsi [23], Kumar and Rathee [24], and Rezapour and Hamlbarani [25] proved different contractive-type FP and CFP results on CM-spaces.

    In 1969, Nadler [26] initially introduced the concept of multi-valued contraction mappings in the theory of FP by using the Hausdorff metric. He proved some multi-valued FP results on complete M-spaces. In other papers [28,29,30,31], the authors contributed their ideas to the theory of FP and established multi-valued contraction results in the context of M-spaces. In [32], Rezapour and Haghi proved FP results for multi-functions on CM-spaces. Later on, Klim and Wardowski [33] established some FP results for set-valued nonlinear contraction mappings on CM-spaces. After that, Latif and Shaddad [34] proved some FP results for multi-valued maps on CM-spaces. Cho and Bae [35] presented modified FP theorems for multi-valued mappings on CM-spaces. Meanwhile, Wardowski [36] proved some Nadler type contraction results for set-valued mappings on CM-spaces. Mehmood et al. [37,38], proved some multi-valued contraction results for FPs on CM-space and order CM-spaces with an application. In 2015, Fierro [39] established some FP theorems on topological vector spaces valued CM-spaces for set-valued mappings. Recently, Rehman et al. [40] proved some multi-valued contraction theorems for FPs and CFPs on HCM-spaces.

    In this paper, we study some new types of generalized multi-valued contraction results on complete CM-spaces. We prove some CFP theorems for a pair of multi-valued contraction mappings on CM-spaces with the condition of normality of the cone. We present an illustrative example to support our work. Further, we present an application of nonlinear integral equations to validate our work. This concept can be extended for different types of multi-valued contraction mappings in the context of M-spaces with the application of different types of integral equations and differential equations. This paper is organized as follows: in Section 2, we introduce the preliminary concepts related to our main work. In Section 3, we establish some CFP theorems for a pair of multi-valued contraction mappings on CM-spaces with an illustrative example. In Section 4, we present a supportive application of nonlinear integral equations to unify our main work. Finally, in Section 5, we present the conclusion of our work.

    Definition 2.1. [11] Let E be a real Banach space. A subset PE is called a cone if the following are satisfied:

    (ⅰ) P is closed, nonempty and P{θ}, where θ is the zero element of E;

    (ⅱ) If 0b1,b2< and u1,u2P, then b1u1+b2u2P;

    (ⅲ) PP={θ}.

    Given a cone PE, define a partial ordering on E with respect to P by u1u2 if and only if u2u1P. We shall write u1<u2 if u1u2 and u1u2 while u1u2, and if and only if u2u1int(P), where int(P) denotes the interior of P. A nonempty cone P is called normal if there is K>1 such that  u1,u2E, u1Ku2, whenever θu1u2.

    A cone P is known as regular if every non-decreasing sequence which is bounded from above is convergent, i.e., if {un} is a sequence such that for some vE, we have u1u2v. Then there exists uE such that

    limn+unu=0.

    Equivalently, a cone P is regular if and only if every non-increasing sequence which is bounded from below is convergent.

    Throughout this paper, we assume that E is a real Banach space, P is a cone in E with int(P) and is the partial ordering on E with respect to P.

    Definition 2.2. [11] Let U be a nonempty set. Let δ: U×UE be called a cone metric if the following hold

    (ⅰ) δ(u1,u2)θ and δ(u1,u2)=θu1=u2;

    (ⅱ) δ(u1,u2)=δ(u2,u1);

    (ⅲ) δ(u1,u2)δ(u1,u3)+δ(u3,u2);

    for all u1,u2,u3U. The a pair (U,δ) is called a CM-space.

    Definition 2.3. [11] Let (U,δ) be a CM-space. Let υU and {un} be a sequence in U. Then the following are true:

    (ⅰ) {un} is said to be convergent to υ if for every ζE with ζθ, there is a positive integer N such that δ(un,υ)ζ for nN. We denote this by limn+un=υ or unυ as n+.

    (ⅱ) {un} is said to be a Cauchy sequence if for every ζE with ζθ, there is a positive integer N such that δ(un,um)ζ for m,nN.

    (ⅲ) (U,δ) is called complete if every Cauchy sequence is convergent in U.

    Lemma 2.4. [11] Let (U,δ) be a CM-space and P be a normal cone. Let {un} be a sequence in U and u,vU. Then the following are true:

    (ⅰ) limn+un=ulimn+δ(un,u)=θ.

    (ⅱ) {un} is a Cauchy sequence iff limm,n+δ(un,um)=θ.

    (ⅲ) If limn+un=u and limn+un=v, then u=v.

    In what follows, B denotes (resp. B(U), CB(U)) the set of nonempty (resp. bounded, sequentially closed and bounded) subsets of (U,δ).

    Let (U,δ) be a CM-space and we denote

    s(u1)={u2E: u1u2}

    for u1E, and

    s(x,B)=yB s(δ(x,y))

    for xU and BB. For A,BB(U), we represent

    s(A,B)=(xA s(x,B))(yB s(y,A)).

    Lemma 2.5. [35] Let (U,δ) be a CM-space and P be a cone in Banach space E. Then the following are true:

    (ⅰ) For all u1,u2E, if u1u2, then s(u2)s(u1).

    (ⅱ) For all uU and AB, if θs(u,A), then uA.

    (ⅲ) For all u1P and A,BB(U) and xA, if u1s(A,B), then u1s(x,B).

    (ⅳ) If unE with unθ, then for each ζint(P) there exists N such that unζ for all n>N.

    Remark 2.6. [35] Let (U,δ) be a CM-space.

    (ⅰ) If E=R and P=[0,+), then (U,δ) is an M-space. Moreover, for A,BCB(U), Hδ(A,B)=infs(A,B) is the Hausdorff distance induced by δ.

    (ⅱ) s({x},{y})=s(δ(x,y)) for x,yU.

    Definition 2.7. Let T: UCB(U) be a multi-valued map. An element u0U is called an FP of T if u0Tu0.

    Theorem 2.8. [26] Let (U,δ) be a complete M-space. Let T: UCB(U) satisfy

    Hδ(Tμ,Tν)ηδ(μ,ν),  μ,νU, (2.1)

    where η[0,1). Then T has an FP.

    Definition 2.9. [28] An element u0U is a CFP of the mappings S,T: UCB(U) if u0Tu0Su0.

    First we define that δ(u,A):=infνAδ(u,ν). Now, we present our first main result.

    Theorem 3.1. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings satisfying

    (b1δ(μ,ν)+b2[δ(μ,Sμ)+δ(ν,Tν)]+b3[δ(ν,Sμ)+δ(μ,Tν)])s(Sμ,Tν) (3.1)

    for all μ,νU, b1(0,1) and b2,b30 with b1+2b2+2b3<1. Then S and T have a CFP in U.

    Proof. Fix μ0U and let there exists μ1U such that μ1Sμ0. Then, from (3.1), we have

    (b1δ(μ0,μ1)+b2[δ(μ0,Sμ0)+δ(μ1,Tμ1)]+b3[δ(μ1,Sμ0)+δ(μ0,Tμ1)])s(Sμ0,Tμ1).

    Since μ1Sμ0 and by Lemma 2.5(ⅲ), we have

    (b1δ(μ0,μ1)+b2[δ(μ0,μ1)+δ(μ1,Tμ1)]+b3[δ(μ1,μ1)+δ(μ0,Tμ1)])s(μ1,Tμ1).

    Then there exists μ2Tμ1 such that

    (b1δ(μ0,μ1)+b2[δ(μ0,Sμ0)+δ(μ1,μ2)]+b3[δ(μ1,Sμ0)+δ(μ0,μ2)])s(δ(μ1,μ2)).

    This implies that

    δ(μ1,μ2)b1δ(μ0,μ1)+b2[δ(μ0,μ1)+δ(μ1,μ2)]+b3δ(μ0,μ2)b1δ(μ0,μ1)+b2[δ(μ0,μ1)+δ(μ1,μ2)]+b3[δ(μ0,μ1)+δ(μ1,μ2)].

    After simplification, we obtain

    δ(μ1,μ2)βδ(μ0,μ1),where β=b1+b2+b31(b2+b3)<1. (3.2)

    Again from (3.1), we have

    (b1δ(μ2,μ1)+b2[δ(μ2,Sμ2)+δ(μ1,Tμ1)]+b3[δ(μ1,Sμ2)+δ(μ2,Tμ1)])s(Sμ2,Tμ1).

    Since μ2Tμ1, and by Lemma 2.5(ⅲ), we have

    (b1δ(μ2,μ1)+b2[δ(μ2,Sμ2)+δ(μ1,μ2)]+b3[δ(μ1,Sμ2)+δ(μ2,μ2)])s(μ2,Sμ2).

    Then there exists μ3Sμ2 such that

    (b1δ(μ2,μ1)+b2[δ(μ2,μ3)+δ(μ1,μ2)]+b3[δ(μ1,μ3)+δ(μ2,μ2)])s(δ(μ2,μ3)).

    This implies that

    δ(μ2,μ3)b1δ(μ2,μ1)+b2[δ(μ2,μ3)+δ(μ1,μ2)]+b3δ(μ1,μ3)b1δ(μ2,μ1)+b2[δ(μ2,μ3)+δ(μ1,μ2)]+b3[δ(μ1,μ2)+δ(μ2,μ3)].

    After simplification, we obtain

    δ(μ2,μ3)βδ(μ1,μ2), (3.3)

    where

    β=b1+b2+b31(b2+b3)<1.

    From (3.2) and (3.3), we have

    δ(μ2,μ3)βδ(μ2,μ1)β2δ(μ0,μ1).

    By repeatedly applying the above arguments we construct a sequence {μn} in U such that

    μ2n+1Sμ2n, and  μ2n+2Tμ2n+1,  nN.

    And

    δ(μn,μn+1)βδ(μn1,μn), (3.4)

    where β is as in (3.3). Thus, by induction, we obtain

    δ(μn,μn+1)βnδ(μ0,μ1). (3.5)

    We claim that {μn} is a Cauchy sequence. Let m>n; then, by the triangular inequality and from (3.5), we have

    δ(μn,μm)δ(μn,μn+1)+δ(μn+1,μn+2)++δ(μm1,μm)βnδ(μ0,μ1)+βn+1δ(μ0,μ1)++βm1δ(μ0,μ1)βn(1+β+β2++βmn1+)δ(μ0,μ1)βn1βδ(μ0,μ1)θas n+.

    By Lemma 2.4(ⅱ), {μn} is a Cauchy sequence in (U,δ). Since (U,δ) is complete, there exists ω1U such that μnω1 as n+. Therefore,

    limn+μ2n+1=limn+μ2n+2=ω1. (3.6)

    Now, we have to prove that ω1Sω1. From (3.1), we have

    (b1δ(ω1,μ2n+1)+b2[δ(ω1,Sω1)+δ(μ2n+1,Tμ2n+1)]+b3[δ(ω1,Tμ2n+1)+δ(μ2n+1,Sω1)])s(Tμ2n+1,Sω1).

    Since μ2n+2Tμ2n+1 and by Lemma 2.5(ⅲ), we have

    (b1δ(ω1,μ2n+1)+b2[δ(ω1,Sω1)+δ(μ2n+1,μ2n+2)]+b3[δ(ω1,μ2n+2)+δ(μ2n+1,Sω1)])s(μ2n+2,Sω1).

    Then there exists vnSw1 such that

    (b1δ(ω1,μ2n+1)+b2[δ(ω1,vn)+δ(μ2n+1,μ2n+2)]+b3[δ(ω1,μ2n+2)+δ(μ2n+1,vn)])s(δ(μ2n+2,vn)).

    This implies that

    δ(μ2n+2,vn)b1δ(ω1,μ2n+1)+b2[δ(ω1,vn)+δ(μ2n+1,μ2n+2)]+b3[δ(ω1,μ2n+2)+δ(μ2n+1,vn)]b1δ(ω1,μ2n+1)+b2[δ(ω1,μ2n+2)+δ(μ2n+2,vn)+δ(μ2n+1,ω1)+δ(ω1,μ2n+2)]+b3[δ(ω1,μ2n+2)+δ(μ2n+1,ω1)+δ(ω1,μ2n+2)+δ(μ2n+2,vn)]=2(b2+b3)δ(ω1,μ2n+2)+(b1+b2+b3)δ(ω1,μ2n+1)+(b2+b3)δ(μ2n+2,vn).

    After simplification, we get that

    δ(μ2n+2,vn)2(b2+b3)1b2b3δ(ω1,μ2n+2)+b1+b2+b31b2b3δ(ω1,μ2n+1).

    Now, by taking the limit as n+, we get that

    limn+δ(μ2n+2,vn)=θ.

    Therefore, since

    δ(ω1,vn)δ(ω1,μ2n+2)+δ(μ2n+2,vn)

    by Lemma 2.4, we deduce that limn+vn=ω1. Since Sω1 is closed, sequentially, we obtain ω1Sω1.

    Similarly, we can prove that ω1Tω1. Hence, it is proved that the mappings S and T have a CFP in U, that is, ω1Sω1Tω1.

    By putting the constants b3=0 and b2=0 in Theorem 3.1, we get the following two corollaries, respectively.

    Corollary 3.2. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings satisfying

    b1δ(μ,ν)+b2[δ(μ,Sμ)+δ(ν,Tν)]s(Sμ,Tν) (3.7)

    for all μ,νU, b1(0,1) and b20 with (b1+2b2)<1. Then S and T have a CFP in U.

    Corollary 3.3. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings satisfying

    b1δ(μ,ν)+b3[δ(ν,Sμ)+δ(μ,Tν)]s(Sμ,Tν) (3.8)

    for all μ,νU, b1(0,1) and b30 with (b1+2b3)<1. Then S and T have a CFP in U.

    If we put S=T in Theorem 3.1, we get the following corollary:

    Corollary 3.4. Let (U,δ) be a complete CM-space. Let S: UCB(U) be a multi-valued mapping such that

    (b1δ(μ,ν)+b2[δ(μ,Sμ)+δ(ν,Sν)]+b3[δ(ν,Sμ)+δ(μ,Sν)])s(Sμ,Sν) (3.9)

    for all μ,νU, b1(0,1) and b2,b30 with (b1+2b2+2b3)<1. Then S has an FP in U.

    Remark 3.5. In the context of complete M-spaces instead of complete CM-spaces, if we put b2=b3=0 and S=T in Theorem 3.1, then we obtain Nadler's result [26].

    In the sense of Nadler's multi-valued concept [26], Theorem 3.1 can be stated as follows:

    Corollary 3.6. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings such that:

    Hδ(Sμ,Tν)b1δ(μ,ν)+b2[δ(μ,Sμ)+δ(ν,Tν)]+b3[δ(ν,Sμ)+δ(μ,Tν)] (3.10)

    for all μ,νU, b1(0,1), and b2,b30 with (b1+2b2+2b3)<1. Then S and T have a CFP in U.

    Now, we present our second main result.

    Theorem 3.7. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings verifying

    (b1δ(μ,ν)+b2max{δ(μ,Sμ),δ(ν,Tν),δ(ν,Sμ),δ(μ,Tν)})s(Sμ,Tν) (3.11)

    for all μ,νU, b1[0,1) and b20 with (b1+2b2)<1. Then S and T have a CFP in U.

    Proof. Fix μ0U and μ1Sμ0. Then, from (3.11), we have

    (b1δ(μ0,μ1)+b2max{δ(μ0,Sμ0),δ(gμ1,Tμ1),δ(μ1,Sμ0),δ(μ0,Tμ1)})s(Sμ0,Tμ1).

    Thus by Lemma 2.5(ⅲ), we have

    (b1δ(μ0,μ1)+b2max{δ(μ0,μ1),δ(gμ1,Tμ1),δ(μ1,μ1),δ(μ0,Tμ1)})s(μ1,Tμ1).

    Then there exists μ2Tμ1 such that

    (b1δ(μ0,μ1)+b2max{δ(μ0,μ1),δ(μ1,μ2),δ(μ0,μ2)})s(δ(μ1,μ2)).

    This implies that

    δ(μ1,μ2)b1δ(μ0,μ1)+b2max{δ(μ0,μ1),δ(μ1,μ2),δ(μ0,μ2)}. (3.12)

    We may have the following three cases:

    (a) If δ(μ0,μ1) is the maximum term of {δ(μ0,μ1),δ(μ1,μ2),δ(μ0,μ2)}, then, from (3.12), we get that

    δ(μ1,μ2)(b1+b2)δ(μ0,μ1). (3.13)

    (b) If δ(μ1,μ2) is the maximum term of {δ(μ0,μ1),δ(μ1,μ2),δ(μ0,μ2)}, then, from (3.12), we get that

    δ(μ1,μ2)b11b2δ(μ0,μ1). (3.14)

    (c) If δ(μ0,μ2) is the maximum term of {δ(μ0,μ1),δ(μ1,μ2),δ(μ0,μ2)}, then, from (3.12) and the triangle inequality, we get that

    δ(μ1,μ2)b1+b21b2δ(μ0,μ1). (3.15)

    Let us define

    β:=max{(b1+b2),(b11b2),(b1+b21b2)}<1,

    where (b1+2b2)<1; then, from (3.13)–(3.15), we have that

    δ(μ1,μ2)βδ(μ0,μ1). (3.16)

    Again from (3.11), we have

    (b1δ(μ2,μ1)+b2max{δ(μ2,Sμ2),δ(μ1,Tμ1),δ(μ1,Sμ2),δ(μ2,Tμ1)})s(Sμ2,Tμ1).

    Since μ2Tμ1, and by Lemma 2.5(ⅲ), we have

    (b1δ(μ1,μ2)+b2max{δ(μ2,Sμ2),δ(μ1,μ2),δ(μ1,Sμ2),δ(μ2,μ2)})s(μ2,Sμ2).

    Then there exists μ3Sμ2 such that

    (b1δ(μ1,μ2)+b2max{δ(μ2,μ3),δ(μ1,μ2),δ(μ1,μ3)})s(δ(μ3,μ2)).

    This implies that

    δ(μ2,μ3)b1δ(μ1,μ2)+b2max{δ(μ1,μ2),δ(μ2,μ3),δ(μ1,μ3)}. (3.17)

    Then, we may have the following three cases:

    (a) If δ(μ1,μ2) is the maximum term of {δ(μ1,μ2),δ(μ2,μ3),δ(μ1,μ3)}, then, from (3.17), we get that

    δ(μ2,μ3)(b1+b2)δ(μ1,μ2). (3.18)

    (b) If δ(μ2,μ3) is the maximum term of {δ(μ1,μ2),δ(μ2,μ3),δ(μ1,μ3)}, then, from (3.17), we have

    δ(μ2,μ3)b11b2δ(μ1,μ2). (3.19)

    (c) If δ(μ1,μ3) is the maximum term of {δ(μ1,μ2),δ(μ2,μ3),δ(μ1,μ3)}, then, from (3.17) and the triangle inequality, we get that

    δ(μ2,μ3)b1+b21b2δ(μ1,μ2). (3.20)

    Then from (3.18)–(3.20), we find that

    δ(μ2,μ3)βδ(μ1,μ2), (3.21)

    where β is as in (3.16). From (3.16) and (3.21), we have

    δ(μ2,μ3)βδ(μ2,μ1)β2δ(μ0,μ1).

    By repeatedly applying the above arguments we construct a sequence {μn} in U such that

    μ2n+1Sμ2n, and  μ2n+2Tμ2n+1,  nN.

    And

    δ(μn,μn+1)βδ(μn1,μn), (3.22)

    where β is as in (3.16).

    Thus, by induction, we obtain

    δ(μn,μn+1)βnδ(μ0,μ1),  nN. (3.23)

    Now, we have to show that {μn} is a Cauchy sequence. Let m>n; then, by the triangular inequality and from (3.22), we have

    δ(μn,μm)δ(μn,μn+1)+δ(μn+1,μn+2)++δ(μm1,μm)βnδ(μ0,μ1)+βn+1δ(μ0,μ1)++βm1δ(μ0,μ1)βn(1+β+β2++βmn1+)δ(μ0,μ1)βn1βδ(μ0,μ1)θas n+.

    By Lemma 2.4(ⅱ), {μn} is a Cauchy sequence in (U,δ). Since (U,δ) is complete, there exists ω1U such that μnω1 as n+. Therefore,

    limn+μ2n+1=limn+μ2n+2=ω1. (3.24)

    Now, we have to prove that ω1Sω1. From (3.11), we have

    (b1δ(ω1,μ2n+1)+b2max{δ(ω1,Sω1),δ(μ2n+1,Tμ2n+1),δ(ω1,Tμ2n+1),δ(μ2n+1,Sω1)})s(Sω1,Tμ2n+1).

    Since μ2n+2Tμ2n+1 and by Lemma 2.5(ⅲ), we have

    (b1δ(ω1,μ2n+1)+b2max{δ(ω1,Sω1),δ(μ2n+1,μ2n+2),δ(ω1,μ2n+2),δ(μ2n+1,Sω1)})s(μ2n+2,Sω1).

    Then, there exists vnSω1 such that

    (b1δ(ω1,μ2n+1)+b2max{δ(ω1,vn),δ(μ2n+1,μ2n+2),δ(ω1,μ2n+2),δ(μ2n+1,vn)})s(δ(μ2n+2,vn)).

    This implies that

    δ(μ2n+2,vn)b1δ(ω1,μ2n+1)+b2max{δ(ω1,vn),δ(μ2n+1,μ2n+2),δ(ω1,μ2n+2),δ(μ2n+1,vn)}. (3.25)

    Then, we may have the following four cases:

    (a) If δ(ω1,vn) is the maximum term of {δ(ω1,vn),δ(μ2n+1,μ2n+2),δ(ω1,μ2n+2),δ(μ2n+1,vn)}, then, from (3.25) and the triangle inequality, we get that

    δ(μ2n+2,vn)b11b2δ(ω1,μ2n+1)+b21b2δ(ω1,μ2n+2). (3.26)

    (b) If δ(μ2n+1,μ2n+2) is the maximum term of {δ(ω1,vn),δ(μ2n+1,μ2n+2),δ(ω1,μ2n+2),δ(μ2n+1,vn)}, then, from (3.25) and the triangle inequality, we get that

    δ(μ2n+2,vn)(b1+b2)δ(ω1,μ2n+1)+b2δ(ω1,μ2n+2). (3.27)

    (c) If δ(ω1,μ2n+2) is the maximum term of {δ(ω1,vn),δ(μ2n+1,μ2n+2),δ(ω1,μ2n+2),δ(μ2n+1,vn)}, then, from (3.25), we get that

    δ(μ2n+2,vn)b1δ(ω1,μ2n+1)+b2δ(ω1,μ2n+2). (3.28)

    (d) If δ(μ2n+1,vn) is the maximum term of {δ(ω1,vn),δ(μ2n+1,μ2n+2),δ(ω1,μ2n+2),δ(μ2n+1,vn)}, then, from (3.25) and the triangle inequality, we get that

    δ(μ2n+2,vn)b1+b21b2δ(ω1,μ2n+1)+b21b2δ(ω1,μ2n+2). (3.29)

    Then, we define

    λ1:=max{b11b2,(b1+b2),b1,b1+b21b2}

    and

    λ2:=max{b21b2,b2}.

    Then, from (3.26)–(3.29), we have that

    δ(μ2n+2,vn)λ1δ(ω1,μ2n+1)+λ2δ(ω1,μ2n+2).

    Now, by taking the limit as n+, we get that

    limn+δ(μ2n+2,vn)=θ.

    As in the proof of Theorem (3.1), this implies that

    limn+vn=ω1.

    Since Sω1 is closed, sequentially we deduce that ω1Sω1. Similarly, we can prove that ω1Tω1. Hence, it is proved that the mappings S and T have a CFP in U, that is, ω1Sω1Tω1.

    By reducing the maximum term in Theorem 3.7, we get the following corollaries:

    Corollary 3.8. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings satisfying

    b1δ(μ,ν)+b2max{δ(μ,Sμ),δ(ν,Tν)}s(Sμ,Tν) (3.30)

    for all μ,νU, b1(0,1) and b20 with (b1+b2)<1. Then S and T have a CFP in U.

    Corollary 3.9. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings satisfying

    b1δ(μ,ν)+b2max{δ(ν,Sμ),δ(μ,Tν)}s(Sμ,Tν) (3.31)

    for all μ,νU, b1(0,1) and b20 with (b1+2b2)<1. Then S and T have a CFP in U.

    If we put S=T in Theorem 3.7, we get the following corollary:

    Corollary 3.10. Let (U,δ) be a complete CM-space. Let S: UCB(U) be a multi-valued mapping such that

    (b1δ(μ,ν)+b2max{δ(μ,Sμ),δ(ν,Sν),δ(ν,Sμ),δ(μ,Sν)})s(Sμ,Sν) (3.32)

    for all μ,νU, b1(0,1) and b20 with (b1+2b2)<1. Then S has an FP in U.

    In the sense of Nadler's multi-valued concept [26], Theorem 3.7 can be stated as follows:

    Corollary 3.11. Let (U,δ) be a complete CM-space. Let S,T: UCB(U) be a pair of multi-valued mappings so that

    Hδ(Sμ,Tν)b1δ(μ,ν)+b2max{δ(μ,Sμ),δ(ν,Tν),δ(ν,Sμ),δ(μ,Tν)} (3.33)

    for all μ,νU, b1(0,1) and b20 with (b1+2b2)<1. Then S and T have a CFP in U.

    Example 3.12. Let U=[0,1] and the cone

    P:={uE:u(t)0, for t[0,1]}

    on E where

    E=C([0,1],R)

    denoting continuous functions on [0, 1]. Then P is a normal cone with respect to the norm of the space E with the constant K=1. A cone metric δ: U×UE is defined as

    δ(u1,u2)=|u1u2|

    for all u1,u2U. Let B be a family of nonempty closed and bounded subsets of U of the form

    B={[0,u]:uU}.

    Now, we define a pair of multi-valued mappings S,T:UB by

    Su=Tu=[0,2u7].

    Moreover, for u1,u2U(u1u2) and u1,u20, let

    b1=27  and  b2=b3=221.

    Then, we have that

    (27δ(μ,ν)+221[δ(μ,Sμ)+δ(ν,Tν)]+221[δ(ν,Sμ)+δ(μ,Tν)])s(Sμ,Tν)62147(μ+ν)s(Sμ,Tν)62147(μ+ν)(xSμyTνs(δ(x,y)))(yTνxSμs(δ(x,y)))(xSμ)(yTν)62147(μ+ν)s(δ(x,y))s(δ(x,y))62147(μ+ν)=(b1δ(μ,ν)+b2[δ(μ,Sμ)+δ(ν,Tν)]+b3[δ(ν,Sμ)+δ(μ,Tν)]).

    Now, by taking

    x=27μ, y=27ν

    and

    (b1+2b2+2b3)=23<1,

    all hypothesis of Theorem 3.1 are satisfied, and the pair of multi-valued mappings S and T have a CFP in U, that is, "0".

    In this section, we present a supportive application of integral equations for this new theory. A number of researchers have used various applications in differential and integral equations in the context of M-spaces for FP results. Some of their works can be found in [4,41,42,43] and the references therein. Here in this section, we develop an approach for solving the nonlinear integral type problems represented by the following integral equations:

    μ(ξ)=a0K1(ξ,s,μ(s))ds,  and  ν(ξ)=a0K2(ξ,s,ν(s))ds, (4.1)

    where K1,K2: [0,a]×[0,a]×RR are continuous with a>0. Let U=C([0,a],R) be the Banach space of all continuous functions defined on [0,a] and endowed with the usual supremum norm:

    μ=maxξ[0,a]|μ(ξ)|, where μC([0,a],R),

    and the induced metric (U,δ) is defined by

    δ(μ,ν)=μν

    for all μ,νU. Now, we are in the position to present the integral type application to support our work.

    Theorem 4.1. Suppose that the following hypotheses are satisfied:

    (1) Let K1,K2: [0,a]×[0,a]×RR be continuous; for μ,νU let Bμ,BνU be defined as

    Bμ(ξ)=a0K1(ξ,s,μ(s))dsandBν(ξ)=a0K2(ξ,s,ν(s))ds. (4.2)

    Suppose that there exists a mapping

    Γ:[0,a]×[0,a][0,+) with  Γ(ξ,)L1([0,a])

    for all ξ[0,a] such that

    |K1(ξ,s,μ(s))K2(ξ,s,ν(s))|Γ(ξ,s)N(μ,ν),μ,νU, and ξ,s[0,a],

    where

    N(μ(s),ν(s))=N(μ,ν)=min{μν,max{Bμμ,Bνν,Bμν,Bνμ}}. (4.3)

    (2) Suppose also that

    |Kμ(ξ,s,μ(s))|Γ(ξ,s)|μ(s)|, and  |Kν(ξ,s,ν(s))|Γ(ξ,s)|ν(s)|, μ,νU.

    (3) Suppose further that there exists β(0,1) such that

    βN(μ,ν)s(A,B)for μA, νB,and A,BCB(U) (4.4)

    where supξ[0,a]ξ0Γ(ξ,s)ds=β<1.

    (4) Finally, suppose that there exists μ0U such that

    μ0a0K1(ξ,s,μ0(s))ds,  ξ[0,a].

    Then the integral equations in (4.1) have a common solution in U.

    Proof. Define the integral operators S,T: UCB(U) by

    Bμ(ξ)Sμ(ξ)=A  and  Bν(ξ)Tν(ξ)=B, (4.5)

    for μ(ξ)A, ν(ξ)B and A,BCB(U). Notice that S and T are well defined and the equations of (4.1) have a common solution if and only if S and T have a common solution, that is the CFP of the mappings S and T in U. Precisely, we have to prove that Theorem 3.7 is applicable to the operators defined in (4.5). Then, we may have the following two main cases:

    (1) If μν is the minimum term in (4.3), then N(μ,ν)=μν. Now, from (4.4) and (4.5), we have

    βμν=βδ(μ,ν)s(A,B)=s(Sμ,Tν)  for μA, νB and A,BCB(U). (4.6)

    The integral operators defined in (4.5) satisfy all of the hypotheses of Theorem 3.7 with β=b1 and b2=0 in (3.11). Thus, the integral equations in (4.1) have a common solution in U.

    (2) If max{Bμμ,Bνν,Bμν,Bνμ} is the minimum term in (4.3), then

    N(μ,ν)=max{Bμμ,Bνν,Bμν,Bνμ}. (4.7)

    Then again we may have the following four subcases:

    (ⅰ) If Bμμ is the maximum term in (4.7), then N(μ,ν)=Bμμ. Now, from (4.4) and (4.5), we have

    βBμμs(δ(μ,A))s(A,B)=s(Sμ,Tν)  for μA, νB and A,BCB(U). (4.8)

    (ⅱ) If Bνν is the maximum term in (4.7), then N(μ,ν)=Bνν. Now, from (4.4) and (4.5), we have

    βBννs(δ(ν,B))s(A,B)=s(Sμ,Tν)  for μA, νB and A,BCB(U). (4.9)

    (ⅲ) If Bμν is the maximum term in (4.7), then N(μ,ν)=Bμν. Now, from (4.4) and (4.5), we have

    βBμνs(δ(ν,A))s(A,B)=s(Sμ,Tν)  for μA, νB and A,BCB(U). (4.10)

    (ⅳ) If Bνμ is the maximum term in (4.7), then N(μ,ν)=Bνμ. Now, from (4.4) and (4.5), we have

    βBνμs(δ(μ,A))s(A,B)=s(Sμ,Tν)  for μA, νB and A,BCB(U). (4.11)

    Hence, from (4.8)–(4.11), the integral operators S and T, satisfy all of the hypotheses of Theorem 3.7 with β=b2 and b1=0 in (3.11). Thus, the integral equations in (4.1) have a common solution in U.

    In this paper, we have proved some new types of multi-valued contraction results for a pair of multi-valued mappings on CM-spaces. In support of our work, we presented an illustrative example. Our main results improved and modified many results published in the last few decades. In addition, we established a supportive application of nonlinear integral equations to unify our work. This new theory will play a very good role in the theory of FPs. This new concept has a potency to modify in different directions and prove different types of multi-valued contraction results for FPs, CFPs and coincidence points in the context of different types of M-spaces with different types of nonlinear integral equations and differential equations. Furthermore, we shall present a problem, i.e., whether the said theory in this paper is applicable or not to the theory of fractional derivatives (especially in the sense of Abu-Shady and Kaabar [44,45]).

    This work was supported by the Basque Government under Grant IT1555-22.

    The authors declare that they have no conflicts of interest.



    [1] T. Aktosun, F. Demontis, C. Der Mee, Exact solutions to the sine-Gordon equation, J. Math. Phys., 51 (2010), 123521. https://doi.org/10.1063/1.3520596 doi: 10.1063/1.3520596
    [2] J. Argyris, M. Haase, J. Heinrich, Finite element approximation to two-dimensional sine-Gordon solitons, Comput. Method. Appl. M., 86 (1991), 1–26. https://doi.org/10.1016/0045-7825(91)90136-T doi: 10.1016/0045-7825(91)90136-T
    [3] Z. Asgari, S. M. Hosseini, Numerical solution of two-dimensional sine-Gordon and MBE models using Fourier spectral and high order explicit time stepping methods, Comput. Phys. Commun., 184 (2013), 565–572. https://doi.org/10.1016/j.cpc.2012.10.009 doi: 10.1016/j.cpc.2012.10.009
    [4] R. Sassaman, A. Biswas, Soliton perturbation theory for phi-four model and nonlinear Klein-Gordon equations, Commun. Nonlinear Sci., 14 (2009), 3239–3249. https://doi.org/10.1016/j.cnsns.2008.12.020 doi: 10.1016/j.cnsns.2008.12.020
    [5] L. Brugnano, F. Iavernaro, Line integral methods for conservative problems, 1 Ed., New York: Chapman and Hall/CRC, 2016. https://doi.org/10.1201/b19319
    [6] L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods), JNAIAM, 5 (2010), 17–37.
    [7] L. Brugnano, G. Caccia, F. Iavernaro, Energy conservation issues in the numerical solution of the semilinear wave equation, Appl. Math. Comput., 270 (2015), 842–870. https://doi.org/10.1016/j.amc.2015.08.078 doi: 10.1016/j.amc.2015.08.078
    [8] L. Brugnano, F. Iavernaro, D. Trigiante, Energy and quadratic invariants preserving integrators based upon gauss collocation formulae, SIAM J. Numer. Anal., 50 (2012), 2897–2916. https://doi.org/10.1137/110856617 doi: 10.1137/110856617
    [9] H. Y. Cao, Z. Z. Sun, G. H. Gao, A three‐level linearized finite difference scheme for the Camassa-Holm equation, Numer. Meth. Part. D. E., 30 (2014), 451–471. https://doi.org/10.1002/num.21819 doi: 10.1002/num.21819
    [10] J. Chabassier, P. Joly, Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: application to the vibrating piano string, Comput. Method. Appl. M., 199 (2010), 2779–2795. https://doi.org/10.1016/j.cma.2010.04.013 doi: 10.1016/j.cma.2010.04.013
    [11] M. Dehghan, A. Shokri, A numerical method for one-dimensional nonlinear Sine-Gordon equation using collocation and radial basis functions, Numer. Meth. Part. D. E., 24 (2008), 687–698. https://doi.org/10.1002/num.20289 doi: 10.1002/num.20289
    [12] D. Duncan, Sympletic finite difference approximations of the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 34 (1997), 1742–1760. https://doi.org/10.1137/S0036142993243106 doi: 10.1137/S0036142993243106
    [13] Y. Gong, Q. Wang, Y. Wang, J. Cai, A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation, J. Comput. Phys., 328 (2017), 354–370. https://doi.org/10.1016/j.jcp.2016.10.022 doi: 10.1016/j.jcp.2016.10.022
    [14] P. Guyenne, A. Kairzhan, C. Sulem, Hamiltonian Dysthe equation for three-dimensional deep-water gravity waves, Multiscale Model. Sim., 20 (2022), 349–378. https://doi.org/10.1137/21m1432788 doi: 10.1137/21m1432788
    [15] E. Hairer, Energy-preserving variant of collocation methods, JNAIAM, 5 (2010), 73–84.
    [16] E. Hairer, G. Wanner, C. Lubich, Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, 2 Eds., Berlin: Springer, 2006. https://doi.org/10.1007/3-540-30666-8
    [17] B. Hou, D. Liang, Energy-preserving time high-order AVF compact finite difference schemes for nonlinear wave equations with variable coefficients, J. Comput. Phys., 421 (2020), 109738. https://doi.org/10.1016/j.jcp.2020.109738 doi: 10.1016/j.jcp.2020.109738
    [18] B. Hou, D. Liang, The energy-preserving time high-order AVF compact finite difference scheme for nonlinear wave equations in two dimensions, Appl. Numer. Math., 170 (2021), 298–320. https://doi.org/10.1016/j.apnum.2021.07.026 doi: 10.1016/j.apnum.2021.07.026
    [19] D. Kaya, S. El-Sayed, A numerical solution of the Klein-Gordon equation and convergence of the decomposition method, Appl. Math. Comput., 156 (2004), 341–353. https://doi.org/10.1016/j.amc.2003.07.014 doi: 10.1016/j.amc.2003.07.014
    [20] J. Li, Z. Sun, X. Zhao, A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci. China Math., 55 (2012), 805–826. https://doi.org/10.1007/s11425-011-4290-x doi: 10.1007/s11425-011-4290-x
    [21] S. Li, L. Vu-Quoc, Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 32 (1995), 1839–1875. https://doi.org/10.1137/0732083 doi: 10.1137/0732083
    [22] C. Liu, J. Li, Z. Yang, Y. Tang, K. Liu, Two high-order energy-preserving and symmetric Gauss collocation integrators for solving the hyperbolic Hamiltonian systems, Math. Comput. Sim., 205 (2023), 19–32. https://doi.org/10.1016/j.matcom.2022.09.016 doi: 10.1016/j.matcom.2022.09.016
    [23] C. Liu, K. Liu, A fourth-order energy-preserving and symmetric average vector field integrator with low regularity assumption, J. Comput. Appl. Math., 439 (2024), 115605. https://doi.org/10.1016/j.cam.2023.115605 doi: 10.1016/j.cam.2023.115605
    [24] C. Liu, A. Iserles, X. Wu, Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their long-time behaviour for solving nonlinear Klein-Gordon equations, J. Comput. Phys., 356 (2018), 1–30. https://doi.org/10.1016/j.jcp.2017.10.057 doi: 10.1016/j.jcp.2017.10.057
    [25] W. J. Liu, J. B. Sun, B. Y. Wu, Space-time spectral method for the two-dimensional generalized sine-Gordon equation, J. Math. Anal. Appl., 427 (2015), 787–804. https://doi.org/10.1016/j.jmaa.2015.02.057 doi: 10.1016/j.jmaa.2015.02.057
    [26] C. Liu, Y. Tang, J. Yu, Y. Fang, High-order symmetric and energy-preserving collocation integrators for the second-order Hamiltonian system, J. Math. Chem., 62 (2024), 330–355. https://doi.org/10.1007/s10910-023-01536-x doi: 10.1007/s10910-023-01536-x
    [27] C. Y. Liu, X. Y. Wu, Continuous trigonometric collocation polynomial approximations with geometric and superconvergence analysis for efficiently solving semi-linear highly oscillatory hyperbolic systems, Calcolo, 58 (2021), 6. https://doi.org/10.1007/s10092-020-00394-2 doi: 10.1007/s10092-020-00394-2
    [28] C. Liu, X. Wu, Nonlinear stability and convergence of ERKN integrators for solving nonlinear multi-frequency highly oscillatory second-order ODEs with applications to semi-linear wave equations, Appl. Numer. Math., 153 (2020), 352–380. https://doi.org/10.1016/j.apnum.2020.02.020 doi: 10.1016/j.apnum.2020.02.020
    [29] C. Y. Liu, X. Y. Wu, Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein-Gordon equations, J. Comput. Phys., 340 (2017), 243–275. https://doi.org/10.1016/j.jcp.2017.03.038 doi: 10.1016/j.jcp.2017.03.038
    [30] C. Y. Liu, X. Y. Wu, The boundness of the operator-valued functions for multidimensional nonlinear wave equations with applications, Appl. Math. Lett., 74 (2017), 60–67. https://doi.org/10.1016/j.aml.2017.04.026 doi: 10.1016/j.aml.2017.04.026
    [31] C. Y. Liu, X. Y. Wu, W. Shi, New energy-preserving algorithms for nonlinear Hamiltonian wave equation equipped with Neumann boundary conditions, Appl. Math. Comput., 339 (2018), 588–606. https://doi.org/10.1016/j.amc.2018.07.059 doi: 10.1016/j.amc.2018.07.059
    [32] C. Liu, W. Shi, X. Wu, Numerical analysis of an energy-conservation scheme for two-dimensional hamiltonian wave equations with Neumann boundary conditions, Int. J. Numer. Anal. Mod., 16 (2019), 319–339. https://doi.org/2019-IJNAM-12806 doi: 2019-IJNAM-12806
    [33] W. Shi, K. Liu, X. Wu, C. Liu, An energy-preserving algorithm for nonlinear Hamiltonian wave equations with Neumann boundary conditions, Calcolo, 54 (2017), 1379–1402. https://doi.org/10.1007/s10092-017-0232-5 doi: 10.1007/s10092-017-0232-5
    [34] W. Tang, J. Zhang, Symplecticity-preserving continuous-stage Runge-Kutta-Nyström methods, Appl. Math. Comput., 323 (2018), 204–219. https://doi.org/10.1016/j.amc.2017.11.054 doi: 10.1016/j.amc.2017.11.054
    [35] W. Tang, J. Zhang, Symmetric integrators based on continuous-stage Runge-Kutta-Nyström methods for reversible systems, Appl. Math. Comput., 361 (2019), 1–12. https://doi.org/10.1016/j.amc.2019.05.013 doi: 10.1016/j.amc.2019.05.013
    [36] W. Tang, Y. Sun, J. Zhang, High order symplectic integrators based on continuous-stage Runge-Kutta-Nyström methods, Appl. Math. Comput., 361 (2019), 670–679. https://doi.org/10.1016/j.amc.2019.06.031 doi: 10.1016/j.amc.2019.06.031
    [37] R. Teman, Infinite-dimensional dynamical systems in mechanics and physics, New York: Springer, 1997. http://doi.org/10.1007/978-1-4684-0313-8
    [38] B. Wang, X. Y. Wu, The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein-Gordon equations, IMA J. Numer. Anal., 39 (2019), 2016–2044. https://doi.org/10.1093/imanum/dry047 doi: 10.1093/imanum/dry047
    [39] A. Wazwaz, Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations, Chaos Soliton. Fract., 28 (2006), 127–135. https://doi.org/10.1016/j.chaos.2005.05.017 doi: 10.1016/j.chaos.2005.05.017
    [40] L. Xu, P. Guyenne, Numerical simulation of three-dimensional nonlinear water waves, J. Comput. Phys., 228 (2009), 8446–8466. https://doi.org/10.1016/j.jcp.2009.08.015 doi: 10.1016/j.jcp.2009.08.015
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(292) PDF downloads(18) Cited by(0)

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog