This paper deals with the properties of the generalized Gutman–Milovanović index, generalized elliptic–Sombor index, generalized Zagreb–Sombor index, and general Euler–Sombor index. These include, as special cases, several previously studied molecular descriptors and most of their general versions; for instance, the general Randić index, the general sum-connectivity index, the general Sombor index, etc. The aforementioned descriptors are examined for their applicability in predicting 13 properties of octane isomers, and the results are compared with the ones generated by a benchmark data set (proposed by the International Academy of Mathematical Chemistry), containing 102 descriptors of octane isomers, and also with variable and discrete Adriatic indices. Although these descriptors slightly outperform the descriptors considered for comparison in several cases, a considerable improvement is detected in the case of boiling point. Several fundamental bounds and optimal results of the above-said descriptors are also reported.
Citation: Akbar Ali, Ivan Gutman, Boris Furtula, Abeer M. Albalahi, Amjad E. Hamza. On chemical and mathematical characteristics of generalized degree–based molecular descriptors[J]. AIMS Mathematics, 2025, 10(3): 6788-6804. doi: 10.3934/math.2025311
This paper deals with the properties of the generalized Gutman–Milovanović index, generalized elliptic–Sombor index, generalized Zagreb–Sombor index, and general Euler–Sombor index. These include, as special cases, several previously studied molecular descriptors and most of their general versions; for instance, the general Randić index, the general sum-connectivity index, the general Sombor index, etc. The aforementioned descriptors are examined for their applicability in predicting 13 properties of octane isomers, and the results are compared with the ones generated by a benchmark data set (proposed by the International Academy of Mathematical Chemistry), containing 102 descriptors of octane isomers, and also with variable and discrete Adriatic indices. Although these descriptors slightly outperform the descriptors considered for comparison in several cases, a considerable improvement is detected in the case of boiling point. Several fundamental bounds and optimal results of the above-said descriptors are also reported.
| [1] | A. Ali, B Furtula, I. Gutman, Inverse sum indeg index: bounds and extremal results, Rocky Mountain J. Math., in press. |
| [2] |
A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem., 60 (2022), 2081–2093. https://doi.org/10.1007/s10910-022-01403-1 doi: 10.1007/s10910-022-01403-1
|
| [3] | S. C. Basak, Mathematical descriptors of molecules and biomolecules: applications in chemistry, drug design, chemical toxicology, and computational biology, Springer, Cham, 2024. https://doi.org/10.1007/978-3-031-67841-7 |
| [4] | B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem., 78 (2017), 17–100. |
| [5] |
M. Eliasi, A. Iranmanesh, On ordinary generalized geometric-arithmetic index, Appl. Math. Lett., 24 (2011), 582–587. https://doi.org/10.1016/j.aml.2010.11.021 doi: 10.1016/j.aml.2010.11.021
|
| [6] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
| [7] |
I. Gutman, Relating Sombor and Euler indices, Vojnoteh. Glas., 72 (2024), 1–12. https://doi.org/10.5937/vojtehg72-48818 doi: 10.5937/vojtehg72-48818
|
| [8] |
I. Gutman, B. Furtula, M. S. Oz, Geometric approach to vertex-degree-based topological indices–Elliptic Sombor index, theory and application, Int. J. Quantum Chem., 124 (2024), e27346. https://doi.org/10.1002/qua.27346 doi: 10.1002/qua.27346
|
| [9] | I. Gutman, E. Milovanović, I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb., 17 (2020), 74–85. https://doi.org/10.1016/j.akcej.2018.05.002 |
| [10] |
A. Granados, A. Portilla, Y. Quintana, E. Tourís, Bounds for the Gutman–Milovanović index and some applications, J. Math. Chem., 63 (2024), 406–418. https://doi.org/10.1007/s10910-024-01677-7 doi: 10.1007/s10910-024-01677-7
|
| [11] |
S. Hafeez, R. Farooq, On generalized inverse sum indeg index and energy of graphs, AIMS Math., 5 (2020), 2388–2411. https://doi.org/10.3934/math.2020158 doi: 10.3934/math.2020158
|
| [12] | X. Hu, L. Zhong, On the general Sombor index of connected unicyclic graphs with given diameter, arXiv, 2022. https://doi.org/10.48550/arXiv.2208.00418 |
| [13] | Wolfram Mathematica. Available from: https://www.wolfram.com/mathematica/. |
| [14] |
H. Liu, I. Gutman, L. You, Y. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem., 60 (2022), 771–798. https://doi.org/10.1007/s10910-022-01333-y doi: 10.1007/s10910-022-01333-y
|
| [15] |
F. Qi, Z. Lin, Maximal elliptic Sombor index of bicyclic graphs, Contrib. Math., 10 (2024), 25–29. https://doi.org/10.47443/cm.2024.030 doi: 10.47443/cm.2024.030
|
| [16] |
J. Rada, J. M. Rodríguez, J. M. Sigarreta, Optimization problems for variable Randić type lodeg index and other indices, MATCH Commun. Math. Comput. Chem., 91 (2024), 741–767. https://doi.org/10.46793/match.91-3.741r doi: 10.46793/match.91-3.741r
|
| [17] |
J. Rada, J. M. Rodríguez, J. M. Sigarreta, Optimization problems for general elliptic Sombor index, MATCH Commun. Math. Comput. Chem., 93 (2025), 819–838. https://doi.org/10.46793/match.93-3.819R doi: 10.46793/match.93-3.819R
|
| [18] |
M. C. Shanmukha, A. Usha, V. R. Kulli, K. C. Shilpa, Chemical applicability and curvilinear regression models of vertex-degree-based topological index: elliptic Sombor index, Int. J. Quantum. Chem., 124 (2024), e27376. https://doi.org/10.1002/qua.27376 doi: 10.1002/qua.27376
|
| [19] |
E. Swartz, T. Vetrík, Survey on the general Randić index: extremal results and bounds, Rocky Mountain J. Math., 52 (2022), 1177–1203. https://doi.org/10.1216/rmj.2022.52.1177 doi: 10.1216/rmj.2022.52.1177
|
| [20] |
Z. Tang, Y. Li, H. Deng, Elliptic Sombor index of trees and unicyclic graphs, Electron. J. Math., 7 (2024), 19–34. https://doi.org/10.47443/ejm.2024.009 doi: 10.47443/ejm.2024.009
|
| [21] |
Z. Tang, Y. Li, H. Deng, The Euler Sombor index of a graph, Int. J. Quantum Chem., 124 (2024), e27387. https://doi.org/10.1002/qua.27387 doi: 10.1002/qua.27387
|
| [22] | R. Todeschini, V. Consonni, Handbook of molecular descriptors, Wiley-VCH, Weinheim, 2000. https://doi.org/10.1002/9783527613106 |
| [23] | N. Trinajstić, Chemical graph theory, CRC Press, Boca Raton, Florida, 1992. https://doi.org/10.1201/9781315139111 |
| [24] | D. Vukičević, Bond additive modeling 4. QSPR and QSQR studies of the variable adriatic indices, Croat. Chem. Acta, 84 (2011), 87–91. |
| [25] | D. Vukičević, M. Gašperov, Bond aditive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010), 243–260. |
| [26] | S. Wagner, H. Wang, Introduction to chemical graph theory, CRC Press, Boca Raton, 2018. https://doi.org/10.1201/9780429450532 |
| [27] | Molecular Descriptors. Available from: https://web.archive.org/web/20071119140640if_/http://www.moleculardescriptors.eu/dataset/dataset.htm. |
| [28] |
B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47 (2010), 210–218. https://doi.org/10.1007/s10910-009-9542-4 doi: 10.1007/s10910-009-9542-4
|