This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and multiple distributed time-varying delays. The exponential stability of such neural systems has not been given much attention in the past literature because this type of neural systems cannot be transformed into the vector forms and it is difficult to derive the easily verified stability conditions expressed in terms of the linear matrix inequality. Therefore, this paper tries to establish the easily verified sufficient conditions of the linear matrix inequality forms to ensure the mean-square exponential stability and the almost sure exponential stability for this type of neural systems by constructing a suitable Lyapunov-Krasovskii functional and inequality techniques. Four examples are provided to demonstrate the effectiveness of the proposed theoretical results and compare the established stability conditions to the previous results.
Citation: Qinghua Zhou, Li Wan, Hongbo Fu, Qunjiao Zhang. Exponential stability of stochastic Hopfield neural network with mixed multiple delays[J]. AIMS Mathematics, 2021, 6(4): 4142-4155. doi: 10.3934/math.2021245
[1] | Ming Wei, Congxin Yang, Bo Sun, Binbin Jing . A multi-objective optimization model for green demand responsive airport shuttle scheduling with a stop location problem. Electronic Research Archive, 2023, 31(10): 6363-6383. doi: 10.3934/era.2023322 |
[2] | Gang Cheng, Changliang He . Analysis of bus travel characteristics and predictions of elderly passenger flow based on smart card data. Electronic Research Archive, 2022, 30(12): 4256-4276. doi: 10.3934/era.2022217 |
[3] | Ming Wei, Shaopeng Zhang, Bo Sun . Comprehensive operating efficiency measurement of 28 Chinese airports using a two-stage DEA-Tobit method. Electronic Research Archive, 2023, 31(3): 1543-1555. doi: 10.3934/era.2023078 |
[4] | Xiaojie Huang, Gaoke Liao . Identifying driving factors of urban digital financial network—based on machine learning methods. Electronic Research Archive, 2022, 30(12): 4716-4739. doi: 10.3934/era.2022239 |
[5] | Jiaqi Chang, Xuhan Xu . Network structure of urban digital financial technology and its impact on the risk of commercial banks. Electronic Research Archive, 2022, 30(12): 4740-4762. doi: 10.3934/era.2022240 |
[6] | Jian Wan, Peiyun Yang, Wenbo Zhang, Yaxing Cheng, Runlin Cai, Zhiyuan Liu . A taxi detour trajectory detection model based on iBAT and DTW algorithm. Electronic Research Archive, 2022, 30(12): 4507-4529. doi: 10.3934/era.2022229 |
[7] | Gang Cheng, Yijie He . Enhancing passenger comfort and operator efficiency through multi-objective bus timetable optimization. Electronic Research Archive, 2024, 32(1): 565-583. doi: 10.3934/era.2024028 |
[8] | Zhenghui Li, Jinhui Zhu, Jiajia He . The effects of digital financial inclusion on innovation and entrepreneurship: A network perspective. Electronic Research Archive, 2022, 30(12): 4697-4715. doi: 10.3934/era.2022238 |
[9] | Jie Ren, Shiru Qu, Lili Wang, Yu Wang, Tingting Lu, Lijing Ma . Research on en route capacity evaluation model based on aircraft trajectory data. Electronic Research Archive, 2023, 31(3): 1673-1690. doi: 10.3934/era.2023087 |
[10] | Yaxi Xu, Yi Liu, Ke Shi, Xin Wang, Yi Li, Jizong Chen . An airport apron ground service surveillance algorithm based on improved YOLO network. Electronic Research Archive, 2024, 32(5): 3569-3587. doi: 10.3934/era.2024164 |
This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and multiple distributed time-varying delays. The exponential stability of such neural systems has not been given much attention in the past literature because this type of neural systems cannot be transformed into the vector forms and it is difficult to derive the easily verified stability conditions expressed in terms of the linear matrix inequality. Therefore, this paper tries to establish the easily verified sufficient conditions of the linear matrix inequality forms to ensure the mean-square exponential stability and the almost sure exponential stability for this type of neural systems by constructing a suitable Lyapunov-Krasovskii functional and inequality techniques. Four examples are provided to demonstrate the effectiveness of the proposed theoretical results and compare the established stability conditions to the previous results.
[1] | J. J. Hopfield, Neural networks and physical systems with emergent collect computational abilities, Proc. Natl. Acad. Sci. USA, 79 (1982), 2254–2558. |
[2] |
P. N. Suganthan, E. K. Teoh, D. P. Mital, Pattern recognition by homomorphic graph matching using Hopfield neural networks, Image Vis. Comput., 13 (1995), 45–60. doi: 10.1016/0262-8856(95)91467-R
![]() |
[3] |
T. Deb, A. K. Ghosh, A. Mukherjee, Singular value decomposition applied to associative memory of Hopfield neural network, Mater. Today: Proc., 5 (2018), 2222–2228. doi: 10.1016/j.matpr.2017.09.222
![]() |
[4] |
V. Donskoy, BOMD: building optimization models from data (neural networks based approach), Quant. Finance Econ., 3 (2019), 608–623. doi: 10.3934/QFE.2019.4.608
![]() |
[5] |
L. H. Huang, C. X. Huang, B. W. Liu, Dynamics of a class of cellular neural networks with time-varying delays, Phys. Lett. A, 345 (2005), 330–344. doi: 10.1016/j.physleta.2005.07.039
![]() |
[6] |
W. R. Zhao, Q. Zhu, New results of global robust exponential stability of neural networks with delays, Nonlinear Anal. Real World Appl., 11 (2010), 1190–1197. doi: 10.1016/j.nonrwa.2009.01.008
![]() |
[7] |
T. Li, A. G. Song, M. X. Xue, H. T. Zhang, Stability analysis on delayed neural networks based on an improved delay-partitioning approach, J. Comput. Appl. Math., 235 (2011), 3086–3095. doi: 10.1016/j.cam.2010.10.002
![]() |
[8] |
X. D. Li, S. J. Song, Impulsive control for existence, uniqueness, and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays, IEEE Trans. Neural Netw. Learn. Syst., 24 (2013), 868–877. doi: 10.1109/TNNLS.2012.2236352
![]() |
[9] |
B. Y. Zhang, J. Lam, S. Y. Xu, Stability analysis of distributed delay neural networks based on relaxed Lyapunov-Krasovskii functionals, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1480–1492. doi: 10.1109/TNNLS.2014.2347290
![]() |
[10] | H. W. Zhang, Q. H. Shan, Z. S. Wang, Stability analysis of neural networks with two delay components based on dynamic delay interval method, IEEE Trans. Neural Netw. Learn. Syst., 28 (2015), 259–267. |
[11] |
Q. K. Song, H. Yan, Z. J. Zhao, Y. R. Liu, Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects, Neural Netw., 79 (2016), 108–116. doi: 10.1016/j.neunet.2016.03.007
![]() |
[12] |
C. J. Xu, P. L. Li, Global exponential convergence of neutral-type Hopfield neural networks with multi-proportional delays and leakage delays, Chaos Soliton. Fract., 96 (2017), 139–144. doi: 10.1016/j.chaos.2017.01.012
![]() |
[13] |
N. Cui, H. J. Jiang, C. Hu, A. Abdurahman, Global asymptotic and robust stability of inertial neural networks with proportional delays, Neurocomputing, 272 (2018), 326–333. doi: 10.1016/j.neucom.2017.07.001
![]() |
[14] |
H. F. Li, N. Zhao, X. Wang, X. Zhang, P. Shi, Necessary and sufficient conditions of exponential stability for delayed linear discrete-time systems, IEEE T. Automat. Contr., 64 (2019), 712–719. doi: 10.1109/TAC.2018.2830638
![]() |
[15] |
S. Arik, A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays, J. Franklin I., 356 (2019), 276–291. doi: 10.1016/j.jfranklin.2018.11.002
![]() |
[16] |
F. X. Wang, X. G. Liu, M. L. Tang, L. F. Chen, Further results on stability and synchronization of fractional-order Hopfield neural networks, Neurocomputing, 346 (2019), 12–19. doi: 10.1016/j.neucom.2018.08.089
![]() |
[17] |
W. Q. Shen, X. Zhang, Y. T. Wang, Stability analysis of high order neural networks with proportional delays, Neurocomputing, 372 (2020), 33–39. doi: 10.1016/j.neucom.2019.09.019
![]() |
[18] |
O. Faydasicok, A new Lyapunov functional for stability analysis of neutral-type Hopfield neural networks with multiple delays, Neural Netw., 129 (2020), 288–297. doi: 10.1016/j.neunet.2020.06.013
![]() |
[19] |
H. M. Wang, G. L. Wei, S. P. Wen, T. W. Huang, Generalized norm for existence, uniqueness and stability of Hopfield neural networks with discrete and distributed delays, Neural Netw., 128 (2020), 288–293. doi: 10.1016/j.neunet.2020.05.014
![]() |
[20] | S. Haykin, Neural networks: a comprehensive foundation, Englewood Cliffs, NJ, USA: Prentice-Hall, 1998. |
[21] |
S. Blythe, X. R. Mao, X. X. Liao, Stability of stochastic delay neural networks, J. Franklin I., 338 (2001), 481–495. doi: 10.1016/S0016-0032(01)00016-3
![]() |
[22] |
L. Wan, J. H. Sun, Mean square exponential stability of stochastic delayed Hopfield neural networks, Phys. Lett., 343 (2005), 306–318. doi: 10.1016/j.physleta.2005.06.024
![]() |
[23] |
W. H. Chen, X. M. Lu, Mean square exponential stability of uncertain stochastic delayed neural networks, Phys. Lett. A, 372 (2008), 1061–1069. doi: 10.1016/j.physleta.2007.09.009
![]() |
[24] | Q. H. Zhou, L. Wan, Exponential stability of stochastic delayed Hopfield neural networks, Appl. Math. Comput., 199 (2008), 84–89. |
[25] |
C. X. Huang, Y. G. He, H. N. Wang, Mean square exponential stability of stochastic recurrent neural networks with time-varying delays, Comput. Math. Appl., 56 (2008), 1773–1778. doi: 10.1016/j.camwa.2008.04.004
![]() |
[26] |
R. N. Yang, H. J. Gao, P. Shi, Novel robust stability criteria for stochastic Hopfield neural networks with time delays, IEEE Trans. Syst. Man Cybern. Part B (Cybern.), 39 (2009), 467–474. doi: 10.1109/TSMCB.2008.2006860
![]() |
[27] |
R. N. Yang, Z. X. Zhang, P. Shi, Exponential stability on stochastic neural networks with discrete interval and distributed delays, IEEE Trans. Neural Netw., 21 (2010), 169–175. doi: 10.1109/TNN.2009.2036610
![]() |
[28] | G. Nagamani, P. Balasubramaniam, Robust passivity analysis for Takagi-Sugeno fuzzy stochastic Cohen-Grossberg interval neural networks with time-varying delays, Phys. Scripta, 83 (2010), 015008. |
[29] |
L. Wan, Q. H. Zhou, Almost sure exponential stability of stochastic recurrent neural networks with time-varying delays, Int. J. Bifurcat. Chaos, 20 (2010), 539–544. doi: 10.1142/S0218127410025594
![]() |
[30] |
P. Balasubramaniam, M. Syed Ali, Stochastic stability of uncertain fuzzy recurrent neural networks with Markovian jumping parameters, Int. J. Comput. Math., 88 (2011), 892–902. doi: 10.1080/00207161003716827
![]() |
[31] |
X. D. Li, P. Balasubramaniam, R. Rakkiyappan, Stability results for stochastic bidirectional associative memory neural networks with multiple discrete and distributed time-varying delays, Int. J. Comput. Math., 88 (2011), 1358–1372. doi: 10.1080/00207160.2010.500374
![]() |
[32] | T. Senthilkumar, P. Balasubramaniam, Delay-dependent robust stabilization and control for uncertain stochastic TS fuzzy systems with multiple time delays, Iran. J. Fuzzy. Syst., 9 (2012), 89–111. |
[33] | L. Wan, Q. H. Zhou, Z. G. Zhou, P. Wang, Dynamical behaviors of the stochastic Hopfield neural networks with mixed time delays, Abstr. Appl. Anal., 2013 (2013), 384981. |
[34] |
R. Krishnasamy, P. Balasubramaniam, Stochastic stability analysis for switched genetic regulatory networks with interval time-varying delays based on average dwell time approach, Stoch. Anal. Appl., 32 (2014), 1046–1066. doi: 10.1080/07362994.2014.962044
![]() |
[35] | L. Liu, Q. X. Zhu, Almost sure exponential stability of numerical solutions to stochastic delay Hopfield neural networks, Appl. Math. Comput., 266 (2015), 698–712. |
[36] |
B. Song, Y. Zhang, Z. Shu, F. N. Hu, Stability analysis of Hopfield neural networks perturbed by Poisson noises, Neurocomputing, 196 (2016), 53–58. doi: 10.1016/j.neucom.2016.02.034
![]() |
[37] |
Q. Yao, L. S. Wang, Y. F. Wang, Existence-uniqueness and stability of reaction-diffusion stochastic Hopfield neural networks with S-type distributed time delays, Neurocomputing, 275 (2018), 470–477. doi: 10.1016/j.neucom.2017.08.060
![]() |
[38] | A. Rathinasamy, J. Narayanasamy, Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks, Appl. Math. Comput., 348 (2019), 126–152. |
1. | Ming Wei, Shaopeng Zhang, Tao Liu, Bo Sun, The adjusted passenger transportation efficiency of nine airports in China with consideration of the impact of high-speed rail network development: A two-step DEA-OLS method, 2023, 109, 09696997, 102395, 10.1016/j.jairtraman.2023.102395 | |
2. | Zhen Wu, Po-Lin Lai, Fei Ma, Keun-Sik Park, Suthep Nimsai, Determining Spatial Relationships between Airports and Local Economy from Competitiveness Perspective: A Case Study of Airports in China, 2023, 10, 2226-4310, 138, 10.3390/aerospace10020138 | |
3. | Luigi dell’Olio, Andrés Rodríguez, Silvia Sipone, Modeling Airport Choice Using a Latent Class Logit Model, 2023, 10, 2226-4310, 703, 10.3390/aerospace10080703 | |
4. | Ming Wei, Yu Xiong, Bo Sun, Spatial effects of urban economic activities on airports’ passenger throughputs: A case study of thirteen cities and nine airports in the Beijing-Tianjin-Hebei region, China, 2025, 125, 09696997, 102765, 10.1016/j.jairtraman.2025.102765 | |
5. | Wolfgang Dupeyrat Luque, Chunyan Yu, Evolution of the Airport Industry and Regional Growth in the Pacific Alliance Member Countries, 2025, 127, 09696997, 102811, 10.1016/j.jairtraman.2025.102811 |