[1]
|
Civil Aviation Administration of China, CAAC Issues 2022 Statistical Bulletin of Civil Airport Production in China, 2023. Available from: https://www.caac.gov.cn/XXGK/XXGK/TJSJ/202303/t20230317_217609.html.
|
[2]
|
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 779–788. https://doi.org/10.1109/CVPR.2016.91
|
[3]
|
H. Law, J. Deng, Cornernet: Detecting objects as paired keypoints, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), 734–750. https://doi.org/10.1007/s11263-019-01204-1
|
[4]
|
Z. Tian, C. Shen, H. Chen, T. He, Fcos: Fully convolutional one-stage object detection, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 9626–9636. https://doi.org/10.1109/ICCV.2019.00972
|
[5]
|
J. Liu, M. Wang, X. Xie, Y. Song, L. Xu, Leather defect detection algorithm based on improved YOLOv5, Comput. Eng., 49 (2023), 240–249. https://doi.org/10.19678/j.issn.1000-3428.0064587 doi: 10.19678/j.issn.1000-3428.0064587
|
[6]
|
J. Choi, D. Chun, H. Kim, H. J. Lee, Gaussian yolov3: An accurate and fast object detector using localization uncertainty for autonomous driving, in Proceedings of the IEEE/CVF International Conference on Computer Vision, (2019), 502–511. https://doi.org/10.1109/ICCV.2019.00059
|
[7]
|
P. Li, H. Li, Research on fod detection for airport runway based on yolov3, in 2020 39th Chinese Control Conference (CCC), IEEE, (2020), 7096–7099. https://doi.org/10.23919/CCC50068.2020.9188724
|
[8]
|
X. Shi, J. Hu, X. Lei, S. Xu, Detection of flying birds in airport monitoring based on improved YOLOv5, in 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), IEEE, (2021), 1446–1451. https://doi.org/10.1109/ICSP51882.2021.9408797
|
[9]
|
F. H. Cai, Y. X. Zhang, J. Huang, A bridge surface crack detection algorithm based on YOLOv3 and attention mechanism, Pattern Recognit. Artif. Intell., 33 (2020), 926–933. https://doi.org/10.16451/j.cnki.issn1003-6059.202010007 doi: 10.16451/j.cnki.issn1003-6059.202010007
|
[10]
|
Y. M. Shi, K. B. Jia, The Research and implementation of moving object detecting and tracking in intelligence video monitor system, in 2011 International Conference on Multimedia and Signal Processing, IEEE, 2 (2011), 105–108. https://doi.org/10.1109/CMSP.2011.111
|
[11]
|
J. Ferryman, M. Borg, D. Thirde, F. Fusier, V. Valentin, F. Brémond, et al., Automated scene understanding for airport aprons, in AI 2005: Advances in Artificial Intelligence. AI 2005. Lecture Notes in Computer Science, Springer, Berlin, 3809 (2005), 593–603. https://doi.org/10.1007/11589990_62
|
[12]
|
N. Cai, G. He, Multi-cloud resource scheduling intelligent system with endogenous security, Electron. Res. Arch., 32 (2024), 1380–1405. https://doi/10.3934/era.2024064 doi: 10.3934/era.2024064
|
[13]
|
M. Kumar, S. Ray, D. K. Yadav, Moving human detection and tracking from thermal video through intelligent surveillance system for smart applications, Multimedia Tools Appl., 82 (2023), 39551–39570. https://doi.org/10.1007/s11042-022-13515-6 doi: 10.1007/s11042-022-13515-6
|
[14]
|
A. Raza, S. A. Chelloug, M. H. Alatiyyah, A. Jalal, J. Park, Multiple pedestrian detection and tracking in night vision surveillance systems, CMC-Comput. Mater. Continua, 75 (2023), 3275–3289. http://doi.org/10.32604/cmc.2023.029719 doi: 10.32604/cmc.2023.029719
|
[15]
|
S. Wilke, A. Majumdar, W. Y. Ochieng, Airport surface operations: A holistic framework for operations modeling and risk management, Saf. Sci., 63 (2014), 18–33. https://doi.org/10.1016/j.ssci.2013.10.015 doi: 10.1016/j.ssci.2013.10.015
|
[16]
|
H. L. Lu, S. Vaddi, V. Cheng, J. Tsai, Airport gate operation monitoring using computer vision techniques, in 16th AIAA Aviation Technology, Integration, and Operations Conference, (2016), 3912. https://doi.org/10.2514/6.2016-3912
|
[17]
|
Y. Zou, Q. Ying, R. Liu, M. Rong, Research on evaluation method for operation support capability of airport apron, in 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT, IEEE, (2020), 1043–1047. https://doi.org/10.1109/ICCASIT50869.2020.9368541
|
[18]
|
T. V. Phat, S. Alam, N. Lilith, P. N. Tran, B. T. Nguyen, Aircraft push-back prediction and turnaround monitoring by vision-based object detection and activity identification, in Proc. 10th SESAR Innov. Days., 2020.
|
[19]
|
M. Gorkow, Aircraft Turnaround Management Using Computer Vision, 2020. Available from: https://medium.com/@michaelgorkow/aircraft-turnaround-management-using-computer-vision-4bec29838c08.
|
[20]
|
S. Wang, Y. Che, H. Zhao, A. Lim, Accurate tracking, collision detection, and optimal scheduling of airport ground support equipment, IEEE Internet Things J., 8 (2020), 572–584. https://doi.org/10.1109/JIOT.2020.3004874 doi: 10.1109/JIOT.2020.3004874
|
[21]
|
S. Wang, C. Li, A. Lim, ROPHS: Determine real-time status of a multi-carriage logistics train at airport, IEEE Trans. Intell. Transp. Syst., 23 (2021), 6347–6356. https://doi.org/10.1109/TITS.2021.3055838 doi: 10.1109/TITS.2021.3055838
|
[22]
|
S. Yıldız, O. Aydemir, A. Memiş, S. Varlı, A turnaround control system to automatically detect and monitor the time stamps of ground service actions in airports: a deep learning and computer vision based approach, Eng. Appl. Artif. Intell., 114 (2022), 105032. https://doi.org/10.1016/j.engappai.2022.105032 doi: 10.1016/j.engappai.2022.105032
|
[23]
|
P. Thai, S. Alam, N. Lilith, B. T. Nguyen, A computer vision framework using Convolutional Neural Networks for airport-airside surveillance, Transp. Res. Part C Emerging Technol., 137 (2022), 103590. https://doi.org/10.1016/j.trc.2022.103590 doi: 10.1016/j.trc.2022.103590
|
[24]
|
S. Liu, R. Wu, J. Qu, Y. Li, HDA-Net: hybrid convolutional neural networks for small objects recognization at airports, IEEE Trans. Instrum. Meas., 71 (2022), 1–14. https://ieeexplore.ieee.org/abstract/document/9939036
|
[25]
|
MH/T 6125—2022, Technical specifications for airport collaborative decision making system, 2022. Available from: https://www.caac.gov.cn/XXGK/XXGK/BZGF/HYBZ/202202/P020220228396026654632.pdf.
|
[26]
|
R. Sunkara, T. Luo, No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Cham, Springer Nature Switzerland, (2022), 443–459. https://doi.org/10.1007/978-3-031-26409-2_27
|
[27]
|
S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks, Adv. Neural Inf. Process. Syst., (2015), 28.
|
[28]
|
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, et al., Ssd: Single shot multibox detector, in Computer Vision–ECCV 2016. ECCV 2016. Lecture Notes in Computer Science(), Springer, Cham, 9905 (2016), 21–37 https://doi.org/10.1007/978-3-319-46448-0_2
|
[29]
|
M. Tan, R. Pang, Q. V. Le, Efficientdet: Scalable and efficient object detection, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020), 10781–10790.
|
[30]
|
K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, et al., MMDetection: Open mmlab detection toolbox and benchmark, preprint, arXiv: 1906.07155. https://doi.org/10.48550/arXiv.1906.07155
|