Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

A conserved Caginalp phase-field system with two temperatures and a nonlinear coupling term based on heat conduction

  • Received: 31 January 2023 Revised: 20 March 2023 Accepted: 29 March 2023 Published: 19 April 2023
  • MSC : 35B41, 35B45, 35K55

  • Our aim in this paper is to study generalizations of the Caginalp phase-field system based on a thermomechanical theory involving two temperatures and a nonlinear coupling. In particular, we prove well-posedness results. More precisely, the existence and uniqueness of solutions, the existence of the global attractor and the existence of an exponential attractor.

    Citation: Grace Noveli Belvy Louvila, Armel Judice Ntsokongo, Franck Davhys Reval Langa, Benjamin Mampassi. A conserved Caginalp phase-field system with two temperatures and a nonlinear coupling term based on heat conduction[J]. AIMS Mathematics, 2023, 8(6): 14485-14507. doi: 10.3934/math.2023740

    Related Papers:

    [1] Jean De Dieu Mangoubi, Mayeul Evrard Isseret Goyaud, Daniel Moukoko . Pullback attractor for a nonautonomous parabolic Cahn-Hilliard phase-field system. AIMS Mathematics, 2023, 8(9): 22037-22066. doi: 10.3934/math.20231123
    [2] Brice Landry Doumbé Bangola . Phase-field system with two temperatures and a nonlinear coupling term. AIMS Mathematics, 2018, 3(2): 298-315. doi: 10.3934/Math.2018.2.298
    [3] Franck Davhys Reval Langa, Armel Judice Ntsokongo . A conserved phase-field model based on type II heat conduction. AIMS Mathematics, 2018, 3(2): 288-297. doi: 10.3934/Math.2018.2.288
    [4] Joseph L. Shomberg . Well-posedness and global attractors for a non-isothermal viscous relaxationof nonlocal Cahn-Hilliard equations. AIMS Mathematics, 2016, 1(2): 102-136. doi: 10.3934/Math.2016.2.102
    [5] Armel Andami Ovono, Alain Miranville . On the Caginalp phase-field system based on the Cattaneo law with nonlinear coupling. AIMS Mathematics, 2016, 1(1): 24-42. doi: 10.3934/Math.2016.1.24
    [6] Armel Judice Ntsokongo, Daniel Moukoko, Franck Davhys Reval Langa, Fidèle Moukamba . On higher-order anisotropic conservative Caginalp phase-field type models. AIMS Mathematics, 2017, 2(2): 215-229. doi: 10.3934/Math.2017.2.215
    [7] Cyril Dennis Enyi, Soh Edwin Mukiawa . Dynamics of a thermoelastic-laminated beam problem. AIMS Mathematics, 2020, 5(5): 5261-5286. doi: 10.3934/math.2020338
    [8] Yang Wang, Jihui Wu . Long-time dynamics of nonlinear MGT-Fourier system. AIMS Mathematics, 2024, 9(4): 9152-9163. doi: 10.3934/math.2024445
    [9] Aymard Christbert Nimi, Daniel Moukoko . Global attractor and exponential attractor for a Parabolic system of Cahn-Hilliard with a proliferation term. AIMS Mathematics, 2020, 5(2): 1383-1399. doi: 10.3934/math.2020095
    [10] Feng Zhou, Hongfang Li, Kaixuan Zhu, Xin Li . Dynamics of a damped quintic wave equation with time-dependent coefficients. AIMS Mathematics, 2024, 9(9): 24677-24698. doi: 10.3934/math.20241202
  • Our aim in this paper is to study generalizations of the Caginalp phase-field system based on a thermomechanical theory involving two temperatures and a nonlinear coupling. In particular, we prove well-posedness results. More precisely, the existence and uniqueness of solutions, the existence of the global attractor and the existence of an exponential attractor.



    The Caginalp phase-field system

    tu+Δ2uΔf(u)=Δθ, (1.1)
    tαΔθ=tu, (1.2)

    has been proposed in [1] to model phase transition phenomena, e.g. melting-solidification phenomena, in certain classes of materials. In this context, u is the order parameter and θ the relative temperature (relative to the equilibrium melting temperature), f is a given function (precisely, the derivative of a doublewell potential F). This system has been studied, e.g., [2,6,7,8,9,10,11,13,15] and [17].

    Equations (1.1) and (1.2) are based on the total free energy

    Ψ(u,θ)=Ω(12|u|2+F(u)uθ12θ2)dx, (1.3)

    where Ω is the domain occupied by the material (we assume that it is a bounded and smooth domain of Rn, n=2 or 3 with boundary Γ).

    We then introduce the enthalpy H defined by

    H=θψ, (1.4)

    where denotes a variational derivative, so that

    H=u+θ. (1.5)

    The gouverning equations for u and θ are finally given by

    tu=Δuψ, (1.6)

    where u stands for the variational derivative with respect to u, which yields (1.1). Then, we have the energy equation

    tH=divq, (1.7)

    where q is the thermal flux vector. Assuming the classical Fourier law

    q=θ, (1.8)

    we obtain (1.1) and (1.2).

    Now, one drawback of the Fourier law is that it predicts that thermal signals propagate with an infinite speed, which violates causality (the so-called "paradox of heat conduction", see, e.g. [5]). Therefore, several modifications of (1.8) have been proposed in the literature to correct this unrealistic feature, leading to a second order in time equation for the temperature.

    A different approach to heat conduction was proposed in the Sixties (see, [14,16]), where it was observed that two temperatures are involved in the definition of the entropy: the conductive temperature θ, influencing the heat conduction contribution, and the thermodynamic temperature, appearing in the heat supply part. For time-independent models, it appears that these two temperatures coincide in absence of heat supply. Actually, they are generally different in time for example, [8] and references therein for more discussion on the subject. In particular, this happens for non-simple materials. In that case, the two temperatures are related as follows (see [4,5]).

    θ=αα, (1.9)

    Our aim in this paper is to study a generalization of the Caginalp phase-field system based on these two temperatures theory and the usual Fourier law with a nonlinear coupling. In particular, we obtain the existence and the uniqueness of the solutions and we prove the existence of the exponential attractors and, thus, of finite-dimensional global attractors.

    We consider the following initial and boundary value problem:

    tu+Δ2uΔf(u)=Δg(u)(αα), (2.1)
    tαΔtα+Δ2αΔα=g(u)tu, (2.2)
    u=Δu=α=Δα=0onΓ, (2.3)
    u|t=0=u0,α|t=0=α0, (2.4)

    where Γ is the boundary of the spatial domain Ω.

    We make the following assumptions on nonlinearities f and g:

    fisofclassC2(R),f(0)=0,gC2(R),g(0)=0, (2.5)
    G(s)∣<c1F(s)+c2,c0,c1,c20,sR, (2.6)
    g(s)s∣<c3(G(s)2+1),c30,sR, (2.7)
    c4sk+2c5F(s)f(s)s+c0c6sk+2c7,c4,c6>0,c5,c70,sR, (2.8)
    g(s)∣<c8(s+1),g(s)∣≤c9c8,c90,sR, (2.9)
    f(s)∣≤c10(sk+1),c100,sR, (2.10)

    where k is an integer, G(s)=s0g(τ)dτ,and,F(s)=s0f(τ)d(τ).

    We denote by . the usual L2-norm (with associated scalar product ((., .))) and set .1=(Δ)12., where Δ denotes the minus Laplace operator with Dirichlet boundary conditions. More generally, .X denotes the norm in the Banach space X. Throughout this paper, the same letters c, c and c denotes (generally positive) constants which may change from line to line, or even in a same line. Similarly, the same letter Q denotes monotone increasing (with respect to each argument) functions which may change from line to line, or even in a same line.

    Remark 2.1. In our case, to obtain equations (2.1) and (2.2), the total free energy reads in terms of the conductive temperature θ

    ψ(u,θ)=Ω(12|u|2+F(u)G(u)θ12θ2)dx, (2.11)

    where f=F and g=G, and (1.6) yields, in view of (1.9), the evolution equation for the order parameter (2.1). Furthermore, the enthalpy now reads

    H=G(u)+θ=G(u)+αα,

    which yields thanks to (1.7), the energy equation,

    αtαt+divq=g(u)ut.

    Considering the usual Fourier law (q=θ), we have (2.2).

    We can note that we still have an infinite speed of propagation here.

    The estimates derived in this section are formal, but they can easily be justified within a Galerkin scheme. In what follows, the Poincaré, Hölder and Young inequalities are extensively used, Without further referring to them.

    We rewrite (2.1) in the equivalent form:

    (Δ)1tuΔu+f(u)=g(u)(αΔα). (3.1)

    We multiply (3.1) by tu and integrate over Ω, we have

    ((Δ)1tu,tu)+(Δu,tu)+(f(u),tu)=(g(u)(αΔα),tu),

    which gives

    12ddt(u2+2ΩF(u)dx)+tu21=Ωg(u)tu(αΔα)dx. (3.2)

    We multiply (2.2) by (αΔα) and integrate over Ω, we have

    (tα,αΔα)+(Δ2α,αΔα)+(Δtα,αΔα)+(Δα,αΔα)=(g(u)tu,(αΔα)),

    which gives,

    12ddtαΔα2+α2+2Δα2+Δα2=Ωg(u)tu(αΔα)dx (3.3)

    (note that αΔα2=α2+2α2+Δα2).

    Summing (3.2) and (3.3), we find

    ddt(u2+αΔα2+2ΩF(u)dx)+2α2+4Δα2+2Δα2+2tu21=0, (3.4)

    which yields,

    dE1dt+c(α2+Δα2+Δα2+tu21)c. (3.5)

    where

    E1=u2+αΔα2+2ΩF(u)dx, (3.6)

    Owing to (2.8), we obtain

    \begin{eqnarray} c(\Vert u\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+\Vert u\Vert^{k+2}_{L^{k+2}(\Omega)})-c^{'}\leq E_{1} \\\leq c"(\Vert u\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+\Vert u\Vert^{k+2}_{L^{k+2}(\Omega)})-c^{'''}, \end{eqnarray} (3.7)

    We multiply (2.1) by u and integrate over \Omega , we have

    \begin{eqnarray} \frac{d}{dt}\Vert u\Vert^{2}_{-1}+c(\Vert u\Vert^{2}_{H^{1}(\Omega)}+ \int_{\Omega} F(u)dx)\leq \frac{c}{2}\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+2c_{0}. \end{eqnarray} (3.8)

    Summing (3.5) and \delta (3.8), where \delta > 0 is small enough, we have

    \begin{eqnarray} \frac{d}{dt}E_{2}+c(E_{2}+\Vert\nabla\Delta\alpha\Vert^{2}+\Vert\partial_{t}u\Vert^{2}_{-1})\leq c, \; c > 0, \end{eqnarray} (3.9)

    where

    \begin{eqnarray*} E_{2} = E_{1}+\delta \Vert u\Vert^{2}_{-1}, \end{eqnarray*}

    satifies

    \begin{eqnarray*} c(\Vert u\Vert^{2}_{H^{1}(\Omega)}+\Vert u\Vert^{k+2}_{L^{k+2}(\Omega)}+\Vert \alpha\Vert^{2}_{H^{2}(\Omega)})-c^{'}\leq \\\nonumber E_{2}\leq c^{''}(\Vert u\Vert^{2}_{H^{1}(\Omega)}+\Vert u\Vert^{k+2}_{L^{k+2}(\Omega)}+\Vert \alpha\Vert^{2}_{H^{2}(\Omega)})-c^{'''},\\ c, c^{''} > 0. \end{eqnarray*}

    In particular, we deduce from (3.9) and Gronwall's lemma the dissipative estimate

    \begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{1}(\Omega)}+\Vert u(t)\Vert^{k+2}_{L^{k+2}(\Omega)}+\Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)}+\int^{t}_{0}e^{-c(t-s)}(\Vert\nabla\Delta\alpha(s)\Vert^{2}+\Vert \partial_{t}u(s)\Vert^{2}_{-1})ds \\ \leq c (\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert u_{0}\Vert^{k+2}_{L^{k+2}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{H^{2}(\Omega)})e^{-ct}, c > 0,\; t\geq 0. \end{eqnarray} (3.10)

    We multiply (2.1) by \partial_{t}u and integrate over \Omega , we obtain

    \begin{eqnarray} && \frac{d}{dt}\Vert\Delta u\Vert^{2}+2\Vert\partial_{t}u\Vert^{2} = 2 \int_{\Omega}\Delta f(u) \partial_{t}u dx-2\int_{\Omega}\Delta g(u)(\alpha-\Delta\alpha)\partial_{t}u)dx. \end{eqnarray} (3.11)

    We multiply (2.2) by -\Delta(\alpha-\Delta\alpha) and integrate over \Omega , we obtain

    \begin{eqnarray} \frac{d}{dt}\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2}+2\Vert\Delta\alpha\Vert^{2}+4\Vert\nabla\Delta\alpha\Vert^{2}+2\Vert\Delta^{2}\alpha\Vert = 2 \int_{\Omega}g(u)\partial_{t}u.\Delta(\alpha-\Delta\alpha)dx. \end{eqnarray} (3.12)

    (note that \Vert \nabla(\alpha-\Delta\alpha)\Vert^{2} = \Vert\nabla\alpha \Vert^{2}+2\Vert\Delta\alpha\Vert^{2}+\Vert\nabla\Delta\alpha\Vert^{2} )

    Summing (3.11) and (3.12), we find

    \begin{eqnarray} &&\frac{d}{dt}(\Vert\Delta u\Vert^{2}+\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2})+2\Vert\Delta\alpha\Vert^{2}+4\Vert\nabla\Delta\alpha\Vert^{2}+2\Vert\Delta^{2}\alpha\Vert^{2}+2\Vert\partial_{t}u\Vert^{2} \\ && = 2(\Delta f(u), \partial_{t}u)-2(\Delta g(u)(\alpha-\Delta\alpha),\partial_{t}u)+2(g(u)\partial_{t}u,\Delta(\alpha-\Delta\alpha)). \end{eqnarray} (3.13)

    This, let find estimates of (3.13) right terms, using H \ddot{o} lder inequality, owing to \alpha \in H^{2}(\Omega) with continuous injection the H^{2}(\Omega)\subset L^{\infty}(\Omega) , we have

    \begin{eqnarray} 2\vert(\Delta f(u), \partial_{t}u)\vert \leq c\Vert f(u)\Vert^{2}_{H^{2}(\Omega)}+\frac{1}{3}\Vert\partial_{t}u\Vert^{2}. \end{eqnarray} (3.14)

    Furthermore,

    \begin{eqnarray} 2\vert(\Delta g(u)(\alpha-\Delta\alpha),\partial_{t}u)\vert &\leq & 2 \int_{\Omega}\vert\Delta g(u)\vert\vert(\alpha-\Delta\alpha)\vert_{L^{\infty}(\Omega)}\vert\partial_{t}u\vert dx \\ & \leq & 2c\Vert \Delta g(u)\Vert\Vert\partial_{t}u\Vert \\ & \leq & c\Vert \Delta g(u)\Vert^{2}+\frac{1}{3}\Vert\partial_{t}u\Vert^{2}, \end{eqnarray} (3.15)

    and,

    \begin{eqnarray} 2\vert (g(u)\partial_{t}u,\Delta(\alpha-\Delta\alpha))\vert & = & 2\vert((\alpha-\Delta\alpha)\Delta g(u),\partial_{t}u)\vert \\ & \leq & c_{1}\Vert \Delta g(u)\Vert^{2}+c_{3}\Vert\partial_{t}u\Vert^{2}. \end{eqnarray} (3.16)

    Inserting (3.14), (3.15) and (3.16) into (3.13), we find

    \begin{eqnarray} && \frac{d}{dt}(\Vert\Delta u\Vert^{2}+\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2})+2\Vert\Delta\alpha\Vert^{2}+4\Vert\nabla\Delta\alpha\Vert^{2}+2\Vert\Delta^{2}\alpha\Vert^{2}+c_{5}\Vert\partial_{t}u\Vert^{2} \\ &&\leq c \Vert f(u)\Vert^{2}_{H^{2}(\Omega)}+c\Vert\Delta g(u)\Vert^{2}. \end{eqnarray} (3.17)

    We recall that H^{2}(\Omega)\subset C(\overline{\Omega}) and owing to (2.5), we obtain

    \begin{eqnarray} \Vert f(u)\Vert^{2}_{H^{2}(\Omega)}+\Vert g(u)\Vert^{2}_{H^{2}(\Omega)}\leq Q(\Vert u\Vert_{H^{2}(\Omega)}). \end{eqnarray} (3.18)

    and inserting (3.18) into (3.17), we find

    \begin{eqnarray} &&\frac{d}{dt}(\Vert\Delta u\Vert^{2}+\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2})+2\Vert\Delta\alpha\Vert^{2}+4\Vert\nabla\Delta\alpha\Vert^{2}+\Vert\Delta^{2}\alpha\Vert^{2} \\ && +c_{5}\Vert\partial_{t}u\Vert^{2} \leq Q(\Vert u\Vert_{H^{2}(\Omega)}). \end{eqnarray} (3.19)

    In particular, we deduce

    \begin{eqnarray} \frac{d}{dt}(\Vert\Delta u\Vert^{2}+\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2}) \leq Q(\Vert u\Vert_{H^{2}(\Omega)}). \end{eqnarray} (3.20)

    We set

    \begin{eqnarray} y = \Vert\Delta u\Vert^{2}+\Vert \nabla(\alpha-\Delta\alpha)\Vert^{2}, \end{eqnarray} (3.21)

    we deduce from (3.20) an inequation of the form

    \begin{eqnarray} y^{'} \leq Q(y). \end{eqnarray} (3.22)

    Let z be the solution to the ordinary differential equation

    \begin{eqnarray} z' = Q(z),\quad z(0) = y(0). \end{eqnarray} (3.23)

    It follows from the comparison principle, that there exists a time

    T_{0} = T_{0}(\Vert u_{0}\Vert_{H^{2}(\Omega)}, \Vert\alpha_{0}\Vert_{H^{3}(\Omega)}) > 0 belonging to, say (0, \frac{1}{2}) such that

    \begin{eqnarray} y(t) \leq z(t),\quad \forall t \in [0, T_{0}], \end{eqnarray} (3.24)

    hence

    \begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)}+ \Vert\alpha(t)\Vert^{2}_{H^{3}(\Omega)} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}) , \forall t \leq T_{0}. \end{eqnarray} (3.25)

    We now differentiate (3.1) with respect to time, and have

    \begin{eqnarray} (-\Delta)^{-1}\partial^{2}_{t}u-\Delta\partial_{t}u+f'(u)\partial_{t}u = g'(u)\partial_{t}u(\alpha-\Delta\alpha)+g(u)(\partial_{t}\alpha-\Delta\partial_{t}\alpha). \end{eqnarray} (3.26)

    Owing to (2.2), we have

    \begin{eqnarray} (-\Delta)^{-1}\partial^{2}_{t}u-\Delta\partial_{t}u+f'(u)\partial_{t}u = g'(u)\partial_{t}u(\alpha-\Delta\alpha)-g^{2}(u)\partial_{t}u+g(u)\Delta\alpha. \end{eqnarray} (3.27)

    We multiply (3.27) by t\partial_{t}u and integrate over \Omega , we find for t \leq T_{0}

    \begin{eqnarray} &&\frac{d}{dt}(t\Vert\partial_{t}u\Vert^{2}_{-1})+2t\Vert\nabla\partial_{t}u\Vert^{2}+2(f'(u)\partial_{t}u, t\partial_{t}u) = 2 \int_{\Omega}g'(u)\partial_{t}u(\alpha-\Delta\alpha).t\partial_{t}u dx \\ &&-2\int_{\Omega}g^{2}(u)\partial_{t}u.t\partial_{t}u dx+2\int_{\Omega}g(u)\Delta\alpha. t\partial_{t}u dx. \end{eqnarray} (3.28)

    Owing to (2.9), (3.18) and (3.25), we obtain t \leq T_{0}

    \begin{eqnarray} \vert 2(f'(u)\partial_{t}u, t\partial_{t}u)\vert &\leq & 2t Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u\Vert^{2} \\ & \leq & Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(t\Vert\partial_{t}u\Vert^{2}_{-1})+\frac{t}{2}\Vert\nabla\partial_{t}u\Vert^{2}. \end{eqnarray} (3.29)

    Using to the interpolation inequality note that, \Vert\partial_{t}u\Vert^{2}\leq c\Vert\partial_{t}u\Vert_{-1}\Vert\nabla\partial_{t}u\Vert .

    Owing to (3.25) and that -\Delta\alpha \in L^{2}(\Omega) \subset H^{-1}(\Omega) , we have

    \begin{eqnarray} \vert 2(g(u)(\Delta\alpha, t\partial_{t}u)\vert & \leq & 2tQ(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\Delta\alpha\Vert\Vert\partial_{t}u\Vert \\ & \leq & Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(t\Vert\Delta\alpha\Vert^{2}+t\Vert\partial_{t}u\Vert^{2}) \\ & \leq & Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(t\Vert \alpha\Vert^{2}_{H^{2}(\Omega)}+t\Vert\nabla\partial_{t}u\Vert^{2}). \end{eqnarray} (3.30)

    Using the estimates (2.9) and owing to (3.25), we find

    \begin{eqnarray} \vert 2(g'(u)\partial_{t}u(\alpha-\Delta\alpha), t\partial_{t}u)\vert &\leq & 2tQ(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u\Vert^{2} \\ & \leq & tQ(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u\Vert^{2}_{-1}+\frac{t}{2}\Vert\nabla\partial_{t}u\Vert^{2}. \end{eqnarray} (3.31)

    Owing to (3.25), we have

    \begin{eqnarray} \vert 2(g^{2}(u)\partial_{t}u, t\partial_{t}u,)\vert \leq tQ(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u\Vert^{2}_{-1}+\frac{t}{2}\Vert\nabla\partial_{t}u\Vert^{2}. \end{eqnarray} (3.32)

    In inserting (3.29), (3.30), (3.31), (3.32) into (3.28) and owing to (3.25), we find

    \begin{eqnarray} && \frac{d}{dt}(t\Vert\partial_{t}u\Vert^{2}_{-1})+ct\Vert\nabla\partial_{t}u\Vert^{2} \\ &&\leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(t\Vert\partial_{t}u\Vert^{2}_{-1})+ct\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}. \end{eqnarray} (3.33)

    In particular, owing to (3.5), (3.10), (3.25) and (3.33), Gronwall's lemma and, we find

    \begin{eqnarray} \Vert\partial_{t}u\Vert^{2}_{-1} \leq \frac{1}{t}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}), \forall t \in (0, T_{0}]. \end{eqnarray} (3.34)

    We multiply (3.27) by \partial_{t}u and integrate over \Omega , we have

    \begin{eqnarray} \frac{d}{dt}\Vert\partial_{t}u\Vert^{2}_{-1}+ \Vert\nabla\partial_{t}u\Vert^{2} \leq c(\Vert\partial_{t}u\Vert^{2}_{-1}+\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}). \end{eqnarray} (3.35)

    Owing to (3.10), (3.25) and Granwall's lemma, then the estimates (3.35) becomes

    \begin{eqnarray} \Vert\partial_{t}u\Vert^{2}_{-1} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u(T_{0})\Vert^{2}_{-1}, \; c\geq 0, \; t\geq T_{0}, \end{eqnarray} (3.36)

    hence, owing to (3.34), we have

    \begin{eqnarray} \Vert\partial_{t}u\Vert^{2}_{-1} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}), \; c\geq 0, \; t\geq T_{0}. \end{eqnarray} (3.37)

    We now rewrite (3.1), for t\geq T_{0} fixed, in the form

    \begin{eqnarray} -\Delta u +f(u) = h_{u}(t), u = 0 \; {\rm{on}} \; \Gamma , \end{eqnarray} (3.38)

    where

    \begin{eqnarray} h_{u}(t) = -(-\Delta)^{-1}\partial_{t}u+g(u)(\alpha-\Delta\alpha). \end{eqnarray} (3.39)

    We multiply (3.39) by h_{u}(t) and integrate over \Omega , we have

    \begin{eqnarray} \Vert h_{u}(t)\Vert^{2} \leq c(\Vert\partial_{t}u\Vert^{2}_{-1}+\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}). \end{eqnarray} (3.40)

    Owing to (3.34)-(3.37), we obtain

    \begin{eqnarray} \Vert h_{u}(t)\Vert^{2} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}), \; c > 0, \; t\geq T_{0}. \end{eqnarray} (3.41)

    We multiply (3.38) by u , owing to (2.8) and integrate over \Omega , we find

    \begin{eqnarray} \Vert\nabla u\Vert^{2}+c \int_{\Omega}F(u)dx \leq c\Vert h_{u}(t)\Vert^{2}+c^{'}, c > 0. \end{eqnarray} (3.42)

    We multiply (3.38) by -\Delta u , owing to (3.9)-(3.25) and integrate over \Omega , we have

    \begin{eqnarray} \Vert \Delta u\Vert^{2} \leq \Vert h_{u}(t)\Vert^{2}+c\Vert\nabla u\Vert^{2} , \end{eqnarray} (3.43)

    we deduce the (3.41)-(3.43), we obtain

    \begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c^{'}, \; c\geq 0, \; t\geq T_{0}. \end{eqnarray} (3.44)

    Owing to (3.25), we find

    \begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}), \; c\geq 0, \; t\geq 0. \end{eqnarray} (3.45)

    Then the estimate (3.3) becomes

    \begin{eqnarray} && \frac{d}{dt}\Vert\alpha-\Delta\alpha\Vert^{2}+2\Vert\nabla\alpha\Vert^{2}+2\Vert\Delta\alpha\Vert^{2}+2\Vert\nabla\Delta\alpha\Vert^{2} \\ &&\leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(\Vert\alpha-\Delta\alpha\Vert^{2}+\Vert\partial_{t}u\Vert^{2}). \end{eqnarray} (3.46)

    Owing to (3.25) and (3.36), we have

    \begin{eqnarray} \Vert\alpha-\Delta\alpha\Vert^{2}+\Vert\partial_{t}u\Vert^{2}\leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}). \end{eqnarray} (3.47)

    Owing to (3.35)-(3.37) and we integrate over T_{0} to t , we deduce that

    \begin{eqnarray} \Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)}+ \int^{t}_{T_{0}}(\Vert\nabla\alpha(s)\Vert^{2}+\Vert\Delta\alpha(s)\Vert^{2}+\Vert\nabla\Delta\alpha(s)\Vert^{2})ds \\ \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}), \;t\geq T_{0}, \end{eqnarray} (3.48)

    which implies

    \begin{eqnarray} \Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}),\;c > 0\;, t\geq T_{0}. \end{eqnarray} (3.49)

    Combining (3.44) and (3.49), we have

    \begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c, c\geq 0,\;t\geq T_{0}. \end{eqnarray} (3.50)

    Finally, we deduce (3.35) and (3.50) that

    \begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)} \leq e^{ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c,\; c > 0,\; t\geq 0. \end{eqnarray} (3.51)

    Integrating (3.51) between 0 to 1 , we obtain

    \begin{eqnarray} \int^{1}_{0} \Vert\alpha(t)\Vert^{2}_{H^{2}(\Omega)}dt\leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c. \end{eqnarray} (3.52)

    We multiply (2.1) by u and integrate over \Omega , we have

    \begin{eqnarray} \frac{d}{dt}\Vert u \Vert^{2}+c\Vert \Delta u\Vert^{2} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})(\Vert \nabla u\Vert^{2}+\Vert \alpha\Vert^{2}_{H^{3}(\Omega)}) . \end{eqnarray} (3.53)

    Owing to (3.18) and (3.25), we find

    \begin{eqnarray} \frac{d}{dt}\Vert u \Vert^{2}+c\Vert \Delta u\Vert^{2} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}). \end{eqnarray} (3.54)

    We deduce the (3.54), we have

    \begin{eqnarray} \int^{1}_{0}\Vert u(t)\Vert^{2}_{H^{2}(\Omega)}dt\leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}). \end{eqnarray} (3.55)

    The estimates (3.52) and (3.55) conclude that there exists T \in (0, 1) such that

    \begin{eqnarray} \Vert u(T)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha (T)\Vert^{2} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c, \end{eqnarray} (3.56)

    which implies

    \begin{eqnarray} \Vert u(1)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha (1)\Vert^{2}_{H^{2}{(\Omega)}} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c. \end{eqnarray} (3.57)

    Owing to (3.10), (3.51) and (3.57), we have the estimate dissipative following

    \begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha (t)\Vert^{2}_{H^{2}{(\Omega)}} \leq e^{-ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})+c,\; c > 0 ,\; t\geq 0. \end{eqnarray} (3.58)

    We multiply (2.2) by \Delta\partial_{t}\alpha and integrate over \Omega , we have

    \begin{eqnarray} \frac{d}{dt}(\Vert\nabla\Delta\alpha\Vert^{2}+\Vert\Delta\alpha\Vert^{2})+\Vert\Delta\partial_{t}\alpha\Vert^{2}+\Vert\nabla\partial_{t}\alpha\Vert^{2} \leq Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)})\Vert\partial_{t}u\Vert^{2}_{-1}. \end{eqnarray} (3.59)

    Owing to (3.35)-(3.37) and integrate between T_{0} to t , we deduce that

    \begin{eqnarray} \int^{t}_{T_{0}}(\Vert\Delta\partial_{t}\alpha(s)\Vert^{2}+\Vert\nabla\partial_{t}\alpha(s)\Vert^{2})ds \leq e^{-ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}),\; t\geq T_{0}, \end{eqnarray} (3.60)

    Setting y = \Vert\nabla\Delta\alpha\Vert^{2}, g = 0 and h = \Vert\partial_{t}u\Vert^{2}_{-1} , we deduce from (3.60) that

    \begin{eqnarray} y' \leq gy+h, t\geq t_{0}, \end{eqnarray} (3.61)

    where, owing to the above estimates, y, g and h satisfy the assumptions of the uniform Gronwall's lemme (for t\geq t_{0} ), and for t\geq t_{0}+r ,

    \begin{eqnarray} \int^{t+r}_{t}\Vert\nabla\Delta\alpha\Vert^{2} ds \leq e^{-ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}, r)+c(r), c > 0, \;t\geq r, \end{eqnarray} (3.62)

    which implies

    \begin{eqnarray} \Vert \alpha(t)\Vert^{2}_{H^{3}(\Omega)} \leq e^{-ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}, r)+c(r), c > 0, \;t\geq r. \end{eqnarray} (3.63)

    We deduce owing to (3.58) and (3.63) that

    \begin{eqnarray} \Vert u(t)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha(t)\Vert^{2}_{H^{3}(\Omega)}\leq e^{-ct}Q(\Vert u_{0}\Vert_{H^{2}(\Omega)},\Vert u_{0}\Vert_{L^{k+2}(\Omega)},\Vert\alpha_{0}\Vert_{H^{3}(\Omega)}, r)+ c(r), c(r) > 0, \; t \geq r. \end{eqnarray} (3.64)

    Based on the a priori estimates, we have the

    Theorem 4.1. We assume that (u_{0}, \alpha_{0})\in (H^{2}(\Omega)\cap H^{1}_{0}(\Omega)\cap L^{K+2}(\Omega))\times(H^{3}(\Omega)\cap H^{1}_{0}(\Omega)) . Then, the system (2.1)-(2.4) possesses at least solution (u, \alpha) such that u \in L^{\infty}(0, T; H^{2}(\Omega)\cap H^{1}_{0}(\Omega)\cap L^{k+2}(\Omega)) , \alpha \in L^{\infty}(0, T; H^{3}(\Omega)\cap H^{1}_{0}(\Omega)) and \partial_{t}u \in L^{2}(0, T; H^{-1}(\Omega)), \; \forall\; T > 0 .

    Proof. The proof is based on the estimate (3.64) and, e.g., a standard Galerkin scheme.

    We have, concerning the uniqueness, the following.

    Theorem 4.2. We assume that the assumptions of Theorem 4.1 hold. Then, the solution obtained in Theorem 4.1 is unique.

    Proof. Let now (u_{1}, \alpha_{1}) and (u_{2}, \alpha_{2}) be two solutions to (2.1)-(2.4) with initial data (u_{1, 0}, \alpha_{1, 0}) et (u_{2, 0}, \alpha_{2, 0}) \in (H^{2}(\Omega)\cap H^{1}_{0}(\Omega)\cap L^{K+2}(\Omega))\times(H^{3}(\Omega)\cap H^{1}_{0}(\Omega)) respectively. We set (u, \alpha) = (u_{1}, \alpha_{1})-(u_{2}, \alpha_{2}) and (u_{0}, \alpha_{0}) = (u_{1, 0}, \alpha_{1, 0})-(u_{2, 0}, \alpha_{2, 0}) . Then (u, \alpha) verifies the following problem.

    \begin{eqnarray} (-\Delta)^{-1}\partial_{t}u-\Delta u-(f(u_{1})-f(u_{2})) = g(u_{1})(\alpha-\Delta\alpha)+(g(u_{1})- g(u_{2}))(\alpha_{2}-\Delta\alpha_{2}), \end{eqnarray} (4.1)
    \begin{eqnarray} \partial_{t}\alpha-\Delta\partial_{t}\alpha+\Delta^{2}\alpha -\Delta\alpha = -g(u_{1})\partial_{t}u-(g(u_{1})-g(u_{2}))\partial_{t}u_{2}, \end{eqnarray} (4.2)
    \begin{eqnarray} u = \Delta u = \alpha = \Delta\alpha = 0\quad {\rm{on}} \quad\Gamma, \end{eqnarray} (4.3)
    \begin{eqnarray} u\vert_{t = 0} = u_{0}, \alpha\vert_{t = 0} = \alpha_{0}. \end{eqnarray} (4.4)

    We multiply (4.1) by \partial_{t}u and integrate over \Omega , we have

    \begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}\Vert \nabla u\Vert^{2}+\Vert\partial_{t}u\Vert^{2}_{-1}+ \int_{\Omega}(f(u_{1})-f(u_{2}))\partial_{t}u dx \\ & = &\int_{\Omega}g(u_{1})(\alpha-\Delta\alpha)\partial_{t}u dx-\int_{\Omega}(g(u_{1})-g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})\partial_{t}u dx. \end{eqnarray} (4.5)

    We multiply (4.2) by (\alpha-\Delta\alpha) and integrate \Omega , we obtain

    \begin{eqnarray} && \frac{d}{dt}\Vert \alpha-\Delta\alpha\Vert^{2}+2\Vert\nabla \alpha\Vert^{2}+4\Vert\Delta\alpha\Vert^{2}+2\Vert\nabla\Delta\alpha\Vert^{2} \\ & = & -2 \int_{\Omega}g(u_{1})\partial_{t}u(\alpha-\Delta\alpha) dx-2\int_{\Omega}(g(u_{1})-g(u_{2}))\partial_{t}u_{2}(\alpha-\Delta\alpha) dx \\ & \leq & 2\int_{\Omega}\vert\nabla g(u_{1})\vert\vert(-\Delta)^{-1}\partial_{t}u\vert\vert\alpha-\Delta\alpha\vert dx+2\int_{\Omega}\vert g(u_{1})-g(u_{2})\vert\vert\partial_{t}u_{2}\vert\vert\alpha-\Delta\alpha\vert dx \\ & \leq & \frac{c}{4}\Vert\partial_{t}u\Vert^{2}_{-1}+c\Vert\partial_{t}u_{2}\Vert^{2}+c\Vert\alpha-\Delta\alpha\Vert^{2}. \end{eqnarray} (4.6)

    Summing (4.5) and (4.6) and integrate over \Omega , we find

    \begin{eqnarray} &&\frac{d}{dt}(\Vert\nabla u\Vert^{2}+\Vert\alpha-\Delta\alpha\Vert^{2})+2\Vert\nabla\alpha\Vert^{2}+4\Vert\Delta\alpha\Vert^{2}+2\Vert\nabla\Delta\alpha\Vert^{2}+2\Vert\partial_{t}u\Vert^{2}_{-1} \\ &&+2 \int_{\Omega}(f(u_{1})-f(u_{2}))\partial_{t}u dx \\ & = & c\Vert\alpha-\Delta\alpha\Vert^{2}+c\Vert\partial_{t}u_{2}\Vert^{2}+\frac{c}{4}\Vert\partial_{t}u\Vert^{2}_{-1}- 2\int_{\Omega}(g(u_{1})-g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})\partial_{t}u dx \\ && +2\int_{\Omega}g(u_{1})(\alpha-\Delta\alpha)\partial_{t}u dx, \end{eqnarray} (4.7)

    which implies

    \begin{eqnarray} &&\frac{d}{dt}E_{4}+2\Vert\nabla\alpha\Vert^{2}+4\Vert\Delta\alpha\Vert^{2}+2\Vert\nabla\Delta\alpha\Vert^{2}+c'\Vert\partial_{t}u\Vert^{2}_{-1}+2 \int_{\Omega}(f(u_{1})-f(u_{2}))\partial_{t}u dx \\ & = & +c\Vert\alpha-\Delta\alpha\Vert^{2}+ c\Vert\partial_{t}u_{2}\Vert^{2}-2\int_{\Omega}(g(u_{1})-g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})\partial_{t}u dx \\ &&+2\int_{\Omega} g(u_{1})(\alpha-\Delta\alpha)\partial_{t}u dx, \end{eqnarray} (4.8)

    where

    \begin{eqnarray*} E_{4} = \Vert\nabla u\Vert^{2}+\Vert\alpha-\Delta\alpha\Vert^{2}, \end{eqnarray*}

    satisfies

    \begin{eqnarray} E_{4}\geq c(\Vert u\Vert^{2}_{H^{1}(\Omega)}+\Vert \alpha\Vert^{2}_{H^{2}(\Omega)}). \end{eqnarray} (4.9)

    Find the estimates for (4.8),

    \begin{eqnarray} 2\vert((f(u_{1})-f(u_{2}), \partial_{t}u)\vert &\leq &2\vert\nabla(fu_{1})-f(u_{2}))\vert\vert(-\Delta)^{-\frac{1}{2}}\partial_{t}u\vert \\ & \leq & 2\Vert\nabla(fu_{1})-f(u_{2}))\Vert^{2}+\frac{1}{2}\Vert\partial_{t}u\Vert^{2}_{-1}. \end{eqnarray} (4.10)

    Besides

    \begin{eqnarray} 2\Vert\nabla(fu_{1})-f(u_{2}))\Vert^{2} & = 2& \int_{\Omega}\vert\nabla (f'((u_{1}s+(1-s)u_{2})u \vert^{2}dx \\ & \leq & 2\int_{\Omega}\vert(\int^{1}_{0}f'((u_{1}s+(1-s)u_{2})ds \nabla u \\ &&+\int^{1}_{0}f''((u_{1}s+(1-s)u_{2})(\vert u\vert\vert\nabla u_{1}\vert+\vert u\vert\vert\nabla u_{2}\vert)ds \vert^{2} dx \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\Vert \nabla u\Vert^{2} \\ &&+ Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\Vert u\Vert^{2} \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})(\Vert \nabla u\Vert^{2}+\Vert u\Vert^{2}) \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\Vert\nabla u\Vert^{2} . \end{eqnarray} (4.11)

    Inserting (4.11) into the estimates (4.10), we find

    \begin{eqnarray} && 2\vert((f(u_{1})-f(u_{2}), \partial_{t}u)\vert \\&\leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\Vert\nabla u\Vert^{2}+\frac{1}{2}\Vert\partial_{t}u\Vert^{2}_{-1}. \end{eqnarray} (4.12)

    Furthermore

    \begin{eqnarray} && 2\vert(g(u_{1})-g(u_{2})(\alpha_{2}-\Delta\alpha_{2}),\partial_{t}u_{2})\vert \\ & \leq & 2 \int_{\Omega}\vert\nabla(g(u_{1})-g(u_{2})\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(\Delta)^{-\frac{1}{2}}\partial_{t}u_{2}\vert dx \\ & \leq & \vert\alpha_{2}-\Delta\alpha_{2}\vert_{L^{\infty}(\Omega)}(\int_{\Omega}\vert u\vert\vert(-\Delta)^{-\frac{1}{2}}\partial_{t}u\Vert \times\int^{1}_{0}\vert g'(su_{1}2+(1-s)u_{2})\vert dsdx) \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\int_{\Omega}\vert u\vert\vert(-\Delta)^{-\frac{1}{2}}\partial_{t}u_{2}\vert dx \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})\times \Vert \nabla u\Vert^{2}+\frac{1}{2}\Vert\partial_{t}u\Vert^{2}_{-1} . \end{eqnarray} (4.13)

    and

    \begin{eqnarray} 2\vert(g(u_{1})(\alpha-\Delta\alpha),\partial_{t}u)\vert & \leq & 2\vert((-\Delta)^{\frac{1}{2}}(g(u_{1}))(\alpha-\Delta\alpha),(-\Delta)^{-\frac{1}{2}}\partial_{t}u)\vert \\ & \leq & 2 \int_{\Omega}\vert\nabla g(u_{1})\vert\vert\alpha-\Delta\alpha\vert\vert(-\Delta)^{-1}\partial_{t}u\vert dx \\ & \leq & \int_{\Omega}\vert\nabla g(u_{1})\vert_{L^{\infty}}\vert\alpha-\Delta\alpha\vert\vert\partial_{t}u\vert _{-1}dx \\ & \leq & 2c \Vert \alpha-\Delta\alpha\Vert\Vert\partial_{t}u\Vert_{-1} \\ & \leq & c\Vert \alpha-\Delta\alpha\Vert+\frac{c}{2}\Vert\partial_{t}u\Vert^{2}. \end{eqnarray} (4.14)

    Inserting (4.12), (4.13) and (4.14) into (4.8), owing (3.37), we find

    \begin{eqnarray} &&\frac{d}{dt}E_{4}+2\Vert\nabla\alpha\Vert^{2}+c\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+2\Vert\nabla\Delta\alpha\Vert^{2}+c\Vert\partial_{t}u\Vert^{2}_{-1} \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega))}) ( \Vert\nabla u\Vert^{2}), \end{eqnarray} (4.15)

    which gives

    \begin{eqnarray} &&\frac{d}{dt}E_{4}+2\Vert\nabla\alpha\Vert^{2}+c\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+2\Vert\nabla\Delta\alpha\Vert^{2}+c\Vert\partial_{t}u\Vert^{2}_{-1} \\ & \leq & Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)}) E_{4}. \end{eqnarray} (4.16)

    Applying Granwall's lemme, into (4.16), we find

    \begin{eqnarray} &&\Vert u(t)\Vert^{2}_{H^{1}(\Omega)}+\Vert \alpha(t)\Vert^{2}_{H^{2}(\Omega)} \\ &\leq & e^{ct}Q(\Vert u_{1,0}\Vert_{H^{2}(\Omega)},\Vert u_{2,0}\Vert_{H^{2}(\Omega)},\Vert\alpha_{1,0}\Vert_{H^{3}(\Omega)},\Vert\alpha_{2,0}\Vert_{H^{3}(\Omega)})(\Vert \alpha_{0}\Vert^{2}_{H^{2}(\Omega)}+\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}), \end{eqnarray} (4.17)

    hence the uniqueness, as well as continuous depending with respect to the initial data.

    We set \Psi = (H^{2}(\Omega)\cap H^{1}_{0}(\Omega)\cap L^{K+2}(\Omega))\times (H^{3}(\Omega)\cap H^{1}_{0}(\Omega)) . It follows from Theorem 4.2, that we have the continuous (with respect to the H^{1}(\Omega)\times H^{2}(\Omega) -norm) of the following semigroup

    \begin{eqnarray} S(t): \Psi \longrightarrow \Psi, (u_{0},\alpha_{0})\longrightarrow (u(t),\alpha(t)), \end{eqnarray}

    (i.e, S(0) = I, S(t)oS(s) = S(t+s), \; t, s\geq 0) . We then deduce from (3.47) the following theorem.

    Theorem 4.3. The semigroup S(t) is dissipative in \Psi , i.e., there exists a bounded set B\in \Psi (called absorbing set) such that, for every bounded B \in \Psi , there exists t_{0} = t_{0}(B)\geq 0 such that t\geq t_{0} implies S(t)B\subset {B}_{0} .

    Remark 4.1. It is easy to see that we can assume, without loss of generality, that B_{0} is positively invariant by S(t), i.e., S(t){B}_{0} \subset {B}_{0}, \forall t \geq 0 . Furthermore, it follows from (3.64) that S(t) is dissipative in H^{2}(\Omega)\times H^{3}(\Omega) and it follows from (3.63) that we can take {B}_{0} in H^{2}(\Omega)\times H^{3}(\Omega) .

    Corollary 4.1. The semigroup S(t) possesses the global attractor \mathcal{A} who is bounded in H^{2}(\Omega)\times H^{3}(\Omega) and compact in \Psi .

    The aim of this section is to prove the existence of exponential attractors for the semigroup S(t), t\geq 0 , associated to the problem (2.1)-(2.4). To do so, we need the semigroup that has to be Lipschitz continuous, satisfying the smoothing property and checking a Hölder continuous with respect to time. This is enough to conclude on the existence of exponential attractors.

    Lemma 5.1. Let (u_{1}, \alpha_{1}) and (u_{2}, \alpha_{2}) be two solutions to (2.1)-(2.4) with initial data (u_{1, 0}, \alpha_{1, 0}) and (u_{2, 0}, \alpha_{2, 0}) , respectively, belonging to {B}_{0} . Then, the corresponding solutions of the problem (2.1)-(2.4) satisfy the following estimate

    \begin{eqnarray} &&\Vert u_{1}(t)-u_{2}(t)\Vert^{2}_{H^{2}(\Omega)}+\Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert^{2}_{H^{3}(\Omega)} \\ & \leq & ce^{c't}(\Vert u_{1,0}-u_{2,0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{1,0}-\alpha_{2,0}\Vert^{2}_{H^{2}(\Omega)}),\; t\geq 1, \end{eqnarray} (5.1)

    where the constants only depend on {B}_{0}.

    Proof. We set (u, \alpha) = (u_{1}, \alpha_{1})-(u_{2}, \alpha_{2}) and (u_{0}, \alpha_{0}) = (u_{1, 0}, \alpha_{1, 0})-(u_{2, 0}, \alpha_{2, 0}) , then (u, \alpha) satisfies

    \begin{eqnarray} &&(-\Delta)^{-1}\partial_{t}u -\Delta u-(f(u_{1})-f(u_{2})) \\ && = g(u_{1})(\alpha-\Delta\alpha) -(g(u_{1})- g(u_{2}))(\alpha_{2}-\Delta\alpha_{2}), \end{eqnarray} (5.2)
    \begin{eqnarray} \partial_{t}\alpha-\Delta\partial_{t}\alpha+\Delta^{2}\alpha -\Delta\alpha = -g(u_{1})\partial_{t}u-(g(u_{1})-g(u_{2}))\partial_{t}u_{2}, \end{eqnarray} (5.3)
    \begin{eqnarray} u = \Delta u = \alpha = \Delta\alpha = 0\quad {\rm{on}} \quad\Gamma \end{eqnarray} (5.4)
    \begin{eqnarray} u|_{t = 0} = u_{0},\quad \alpha|_{t = 0} = \alpha_{0}. \end{eqnarray} (5.5)

    We first deduce from (4.16) that

    \begin{eqnarray} \Vert \nabla u(t)\Vert^{2}+\Vert \alpha(t)\Vert^{2}_{H^{2}(\Omega)} \leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{H^{2}(\Omega)}), c' > 0, t\geq 0, \end{eqnarray} (5.6)

    and

    \begin{eqnarray} \int^{t}_{0}(\Vert\nabla\alpha(s)\Vert^{2}+\Vert\nabla\Delta\alpha(s)\Vert^{2}+\Vert\partial_{t}u(s)\Vert^{2}_{-1})ds \leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{H^{2}(\Omega)}), c' > 0, t\geq 0, \end{eqnarray} (5.7)

    where the constants only depend on B_{0} .

    We differentiate (5.2) with respect to time and have, owing to (5.3), we obtain

    \begin{eqnarray} &&(-\Delta)^{-1}\partial_{t}\theta+\Delta\theta-f'(u_{1})\theta+(f'(u_{1})-f'(u_{2}))\partial_{t}u_{2} \\ && = g'(u_{1})\partial_{t}u_{1}(\alpha-\Delta\alpha)+g^{2}(u_{1})\theta-g(u_{1})(g(u_{1})-g(u_{2}))\partial_{t}u_{2}+g(u_{1})\Delta\alpha \\ && +g'(u_{1})\theta(\alpha_{2}-\Delta\alpha_{2})+(g'(u_{1})-g'(u_{2}))\partial_{t}u_{2}(\alpha_{2}-\Delta\alpha_{2}) \\ && +(g(u_{1})-g(u_{2}))(\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}), \end{eqnarray} (5.8)

    where \theta = \partial_{t}u and u_{1} = u+u_{2} .

    We multiply (5.8) by (t-T_{0})\theta and integrate over \Omega , where T_{0} is same as in one of previous section, we have

    \begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}((t-T_{0})\Vert\theta\Vert^{2}_{-1})+(t-T_{0})\Vert\nabla\theta\Vert^{2} \\ && \leq \vert(g^{2}(u_{1})\theta,(t-T_{0})\theta)\vert +\vert((f'(u_{1})-f'(u_{2}))\partial_{t}u_{2},(t-T_{0})\theta)\vert \\ &&+\vert(g'(u_{1})\partial_{t}u_{1}(\alpha-\Delta\alpha),(t-T_{0})\theta\vert+\vert(g(u_{1})(g(u_{1})-g(u_{2}))\partial_{t}u_{2},(t-T_{0})\theta)\vert \\ &&+\vert(g(u_{1})\Delta\alpha,(t-T_{0})\theta\vert+\vert(g'(u_{1})\theta(\alpha_{2}-\Delta\alpha_{2}),(t-T_{0})\theta)\vert \\ &&+ \vert((g'(u_{1})-g'(u_{2}))\partial_{t}u_{2}(\alpha_{2}-\Delta\alpha_{2}),(t-T_{0})\theta)\vert \\ &&+\vert((g(u_{1})-g(u_{2}))(\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}),(t-T_{0})\theta)\vert+\vert (f'(u_{1})\theta,(t-T_{0})\theta)\vert. \end{eqnarray} (5.9)

    We have,

    \begin{eqnarray} \vert(g^{2}(u)\theta,(t-T_{0})\theta)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g^{2}(u)\vert\vert\theta\vert^{2}dx \\ & \leq & c(t-T_{0})\Vert\theta\Vert^{2}\; ( {\rm{owing}}\;(2.9)\; {\rm{and }}\;H^{2}(\Omega)\subset L^{\infty}(\Omega)), \end{eqnarray} (5.10)

    Noting that u_{1}, u_{2}\in H^{2}(\Omega)\subset L^{\infty}(\Omega) , we have

    \begin{eqnarray} \vert((f'(u_{1})-f'(u_{2}))\partial_{t}u_{2},(t-T_{0})\theta)\vert &\leq & (t-T_{0}) \int_{\Omega}\vert f'(u_{1})-f'(u_{2})\vert\vert\theta\vert\vert\partial_{t}u_{2}\vert dx \\ & \leq & (t-T_{0})\int_{\Omega}\vert 3u^{2}_{1}-3u^{2}_{2}\vert\vert\theta\vert\vert\partial_{t}u_{2}\vert dx \\ & \leq & c(t-T_{0})(\Vert u_{1}\Vert_{L^{\infty}}+\Vert u_{2}\Vert_{L^{\infty}})\int_{\Omega}\vert u\vert\vert\theta\vert\vert\partial_{t}u_{2}\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert u\vert_{L^{4}}\vert\theta\vert_{L^{4}}\vert\partial_{t}u_{2}\vert dx \\ &\leq & c(t-T_{0})\Vert u\Vert_{L^{4}}\Vert\theta\Vert_{L^{4}}\Vert\partial_{t}u_{2}\Vert \\ & \leq & c(t-T_{0})\Vert \nabla u\Vert\Vert\nabla\theta\Vert\Vert\partial_{t}u_{2}\Vert, \end{eqnarray} (5.11)

    Furthermore,

    \begin{eqnarray} \vert((g'(u_{1})-g'(u_{2}))\partial_{t}u_{2}(\alpha_{2}-\Delta\alpha_{2}),(t-T_{0})\theta)\vert &\leq & (t-T_{0}) \int_{\Omega}\vert g'(u_{1})-g'(u_{2})\vert\vert\partial_{t}u_{2}\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert\partial_{t}u_{2}\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\Vert\alpha_{2}-\Delta\alpha_{2}\Vert_{L^{4}}\Vert\theta\Vert_{L^{4}}\Vert\partial_{t}u_{2}\Vert \\ &\leq & c(t-T_{0})\Vert\nabla(\alpha_{2}-\Delta\alpha_{2})\Vert\Vert\nabla\theta\Vert\Vert\partial_{t}u_{2}\Vert \\ & \leq & c(t-T_{0})\Vert\nabla\theta\Vert\Vert\partial_{t}u_{2}\Vert, \end{eqnarray} (5.12)

    Using (2.9) and (4.17), we find

    \begin{eqnarray} \vert(g'(u_{1})\partial_{t}u_{1}(\alpha-\Delta\alpha),(t-T_{0})\theta\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g'(u_{1})\vert\vert\partial_{t}u_{1}\vert\vert\alpha-\Delta\alpha\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert\partial_{t}u_{1}\vert\vert\alpha-\Delta\alpha\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert\partial_{t}u_{1}\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\Vert\partial_{t}u_{1}\Vert\Vert\theta\Vert, \end{eqnarray} (5.13)

    noting that u_{1}\in H^{2}(\Omega) and \alpha \in H^{3}(\Omega) , then

    \begin{eqnarray} \vert(g'(u_{1})\theta(\alpha_{2}-\Delta\alpha_{2}),(t-T_{0})\theta)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g'(u_{1})\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert\theta\vert^{2}dx \\ & \leq & c(t-T_{0})\Vert\theta\Vert^{2}, \end{eqnarray} (5.14)

    after Green, we have

    \begin{eqnarray} \vert(g(u)\Delta\alpha,(t-T_{0})\theta\vert & \leq & (t-T_{0})\int_{\Omega}\vert \nabla\alpha\vert\vert g'(u)\nabla u\vert\vert\theta\vert dx+(t-T_{0})\int_{\Omega}\vert \nabla\alpha\vert\vert g(u)\vert\vert\nabla\theta\vert dx \\ & \leq & c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\theta\Vert+c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\nabla\theta\Vert, \end{eqnarray} (5.15)

    we have that \alpha_{2}\in H^{2}(\Omega) , then

    \begin{eqnarray} \vert((g(u_{1})-g(u_{2}))(\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}),(t-T_{0})\theta)\vert &\leq & (t-T_{0}) \int_{\Omega}\vert g(u_{1})-g(u_{2})\vert\vert\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}\vert\vert\theta\vert dx \\ & \leq & (t-T_{0})\int_{\Omega}\vert u\vert_{L^{4}}\vert\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}\vert\vert\theta\vert_{L^{4}} dx \\ & \leq & (t-T_{0})\Vert u\Vert_{L^{4}}\Vert\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}\Vert\Vert\theta\Vert_{L^{4}} \\ & \leq & (t-T_{0})\Vert \nabla u\Vert\Vert\partial_{t}\alpha_{2}-\Delta\partial_{t}\alpha_{2}\Vert\Vert\nabla\theta\Vert \\ & \leq & c(t-T_{0})\Vert\nabla u\Vert\Vert\nabla\theta\Vert, \end{eqnarray} (5.16)

    moreover

    \begin{eqnarray} \vert(g(u_{1})(g(u_{1})-g(u_{2}))\partial_{t}u_{2},(t-T_{0})\theta)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g(u_{1})\vert\vert g(u_{1})-g(u_{2})\vert\vert\partial_{t}u_{2}\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert g(u_{1})\vert\vert\partial_{t}u_{2}\vert\vert\theta\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}(\vert u_{1}\vert_{L^{4}}+1)\vert\partial_{t}u_{2}\vert\vert\theta\vert_{L^{4}} dx \\ & \leq & c(t-T_{0})(\Vert u_{1}\Vert_{L^{4}}+1)\Vert\partial_{t}u_{2}\Vert\Vert\theta\Vert_{L^{4}} \\ & \leq & c(t-T_{0})\Vert\partial_{t}u_{2}\Vert\Vert\theta\Vert_{L^{4}}, \end{eqnarray} (5.17)

    and

    \begin{eqnarray} \vert (f'(u_{1})\theta,(t-T_{0})\theta)\vert\leq c(t-T_{0})\Vert\theta\Vert^{2}, \end{eqnarray} (5.18)

    where the constants only depend on B_{0} .

    By substituting (5.10), (5.11), (5.12), (5.13), (5.14), (5.15), (5.16), (5.17) and (5.18) into (5.9), we have, owing to the interpolation inequality,

    \begin{eqnarray} &&\frac{d}{dt}((t-T_{0})\Vert\theta\Vert^{2}_{-1})+\frac{3}{4}(t-T_{0})\Vert\nabla\theta\Vert^{2} \\ && \leq c(t-T_{0})\Vert\theta\Vert^{2}_{-1}+c(t-T_{0})\Vert\theta\Vert\Vert\partial_{t}u_{2}\Vert+2c(t-T_{0})\Vert\theta\Vert\Vert\partial_{t}u_{1}\Vert \\ &&+\frac{1}{4}c(t-T_{0})\Vert\nabla\alpha\Vert. \end{eqnarray} (5.19)

    We now multiply (5.3) by -(t-T_{0})\alpha and intégrate over \Omega , we obtain

    \begin{eqnarray*} &&(\partial_{t}\alpha,-(t-T_{0})\alpha)+(-\Delta\partial_{t}\alpha,-(t-T_{0})\alpha)+(-\Delta\alpha,-(t-T_{0})\alpha)+(\Delta^{2}\alpha,(t-T_{0})\alpha) \\ && = (-g(u_{1})\partial_{t}u,-(t-T_{0})\alpha)+((g(u_{1})-g(u_{2}))\partial_{t}u_{2},-(t-T_{0})\alpha), \end{eqnarray*}

    which implies

    \begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}((t-T_{0})\Vert\alpha\Vert^{2}+(t-T_{0})\Vert\nabla\alpha\Vert^{2})+(t-T_{0})\Vert\nabla\alpha\Vert^{2}+(t-T_{0})\Vert\Delta\alpha\Vert^{2} \\ &&\leq \vert(-g(u_{1})\partial_{t}u,-(t-T_{0})\alpha)\vert+\vert((g(u_{1})-g(u_{2}))\partial_{t}u_{2},-(t-T_{0})\alpha)\vert. \end{eqnarray} (5.20)

    For that, let find the estimates of (5.20) right terms, using Hölder inequality, we have

    \begin{eqnarray} \vert(-g(u_{1})\partial_{t}u,-(t-T_{0})\alpha)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g(u_{1})\vert\vert\partial_{t}u\vert\vert\alpha\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}(\vert u_{1}\vert_{L^{4}}+1)\vert\partial_{t}u\vert\vert\alpha\vert_{L^{4}} dx \\ & \leq & c(t-T_{0})(\Vert\nabla u_{1}\Vert_{L^{4}}+1)\Vert\partial_{t}u\Vert\Vert\alpha\Vert_{L^{4}} \\ & \leq & c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u\Vert, \end{eqnarray} (5.21)

    and

    \begin{eqnarray} \vert((g(u_{1})-g(u_{2}))\partial_{t}u_{2},-(t-T_{0})\alpha)\vert & \leq & (t-T_{0}) \int_{\Omega}\vert g(u_{1})-g(u_{2})\vert\vert\alpha\vert\vert\partial_{t}u_{2}\vert dx \\ & \leq & c(t-T_{0})\int_{\Omega}\vert u\vert_{L^{4}}\vert\alpha\vert_{L^{4}}\vert\partial_{t}u_{2}\vert dx \\ & \leq & c(t-T_{0})\Vert\nabla u\Vert\Vert\nabla\alpha\Vert\Vert\partial_{t}u_{2}\Vert \\ & \leq & c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u_{2}\Vert. \end{eqnarray} (5.22)

    Inserting (5.21) and (5.22) into (5.20), we find

    \begin{eqnarray} && \frac{d}{dt}[(t-T_{0})(\Vert\alpha\Vert^{2}+\Vert\nabla\alpha\Vert^{2})]+2(t-T_{0})\Vert\nabla\alpha\Vert^{2}+2(t-T_{0})\Vert\Delta\alpha\Vert^{2} \\ & \leq & 2c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u\Vert +2c(t-T_{0})\Vert\nabla\alpha\Vert\Vert\partial_{t}u_{2}\Vert. \end{eqnarray} (5.23)

    Noting that (u, \alpha) = (u_{2}, \alpha_{2}) = (u_{1}, \alpha_{1}) , then

    \begin{eqnarray} \int^{t}_{T_{0}}\Vert\partial_{t}u_{2}(s)\Vert^{2}dx \leq ce^{c't} , t\geq T_{0}, \end{eqnarray} (5.24)

    where the constants only depend on B_{0} .

    Combining (5.19) and (5.23), we find

    \begin{eqnarray} && \frac{d}{dt}E_{5}++2(t-T_{0})\Vert\Delta\alpha\Vert^{2}+c(t-T_{0})\Vert\nabla\theta\Vert^{2}+2(t-T_{0})\Vert\nabla\alpha\Vert^{2} \\ & \leq & c(t-T_{0})(\Vert\theta\Vert^{2}_{-1}+\Vert\alpha\Vert^{2}_{H^{1}(\Omega)})+c(t-T_{0})(\Vert\partial_{t}u_{1}\Vert^{2}+\Vert\partial_{t}u_{2}\Vert^{2}), \end{eqnarray} (5.25)

    where

    \begin{eqnarray} E_{5} = (t-T_{0})(\Vert\theta\Vert^{2}_{-1}+\Vert \nabla\alpha\Vert^{2}+\Vert\alpha\Vert^{2}). \end{eqnarray} (5.26)

    Applying Gronwall's lemma to (5.25) over [T_{0}, t] , we have

    \begin{eqnarray} && \Vert\theta(t)\Vert^{2}_{-1}+\Vert\alpha(t)\Vert^{2}_{H^{1}(\Omega)}+ \int^{t}_{T_{0}}(\Vert\nabla\alpha(s)\Vert^{2}+\Vert\Delta\alpha(s)\Vert^{2}+\Vert\nabla\theta(s)\Vert^{2})e^{-c(s-t)}ds \\ &\leq &\int^{t}_{T^{0}}(\Vert\partial_{t}u_{1}(s)\Vert^{2}+\Vert\partial_{t}u_{2}(s)\Vert^{2})e^{-c(s-t)}ds+E(0)e^{ct}, \end{eqnarray} (5.27)

    which implies

    \begin{eqnarray} \Vert\theta(t)\Vert^{2}_{-1}+\Vert\alpha(t)\Vert^{2}_{H^{1}(\Omega)}\leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{1}), c > 0, \end{eqnarray} (5.28)

    finally, we obtain

    \begin{eqnarray} \Vert\partial_{t}u(t)\Vert^{2}_{-1}+\Vert\alpha(t)\Vert^{2}_{H^{1}(\Omega)}\leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{0}\Vert^{2}_{H^{2}(\Omega)}), c > 0, t\geq 1, \end{eqnarray} (5.29)

    where the constants only depend on B_{0} .

    We rewrite (5.8) in the form

    \begin{eqnarray} -\Delta u = \tilde{h}_{u}(t),\quad u = 0\; on \;\Gamma. \end{eqnarray} (5.30)

    for t \geq 1 fixed, where

    \begin{eqnarray} \tilde{h}_{u}(t) & = & -(-\Delta)^{-1}\partial_{t}u-(f(u_{1})-f(u_{2}))+ g(u_{1})(\alpha-\Delta\alpha) \\ &&+(g(u_{1})- g(u_{2}))(\alpha_{2}-\Delta\alpha_{2}). \end{eqnarray} (5.31)

    We multiply (5.31) by \tilde{h}_{u}(t) and integrate over \Omega , we have

    \begin{eqnarray*} &&(\tilde{h}_{u}(t),\tilde{h}_{u}(t)) \\ && = -((-\Delta)^{-1}\partial_{t}u,\tilde{h}_{u}(t))-(f(u_{1})-f(u_{2}),\tilde{h}_{u}(t)) -(g(u_{1})(\alpha-\Delta\alpha),\tilde{h}_{u}(t)) \\ &&+((-\Delta)^{-1}[(\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})],\tilde{h}_{u}(t)), \end{eqnarray*}

    which implies

    \begin{eqnarray} \Vert\tilde{h}_{u}(t)\Vert^{2} &\leq & c\Vert\tilde{h}_{u}(t)\Vert\Vert\partial_{t}u\Vert_{-1}+\vert((f(u_{1})-f(u_{2}),\tilde{h}_{u}(t))\vert+\vert(g(u_{1})(\alpha-\Delta\alpha),\tilde{h}_{u}(t))\vert \\ &&+\vert((-\Delta)^{-1}[(\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})],\tilde{h}_{u}(t))\vert. \end{eqnarray} (5.32)

    Here

    \begin{eqnarray} \vert((f(u_{1})-f(u_{2}),\tilde{h}_{u}(t))\vert &\leq & \int_{\Omega}\vert f(u_{1})-f(u_{2})\vert\vert\tilde{h}_{u}(t)\vert dx \\ & \leq & \Vert f(u_{1})-f(u_{2})\Vert\Vert\tilde{h}_{u}(t)\Vert \\ & \leq & c \Vert f(u_{1})-f(u_{2})\Vert^{2}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} (5.33)

    furthermore u_{1}, u_{2} \in H^{2}(\Omega) \subset L^{\infty}(\Omega) , then

    \begin{eqnarray} \Vert f(u_{1})-f(u_{2})\Vert^{2} & \leq & \int_{\Omega}\vert f(u_{1})-f(u_{2})\vert^{2}dx \\ & \leq & \int_{\Omega}\int^{1}_{0}\vert f'(u_{1}s+(1-s)u_{2}\vert^{2}\vert u\vert^{2}ds dx \\ & \leq & \int^{1}_{0}\vert f'(u_{1}s+(1-s)u_{2}\vert^{2}ds\int_{\Omega}\vert u\vert^{2} dx \\ & \leq & c\int^{1}_{0}(\Vert su_{1}+(1-s)u_{2}\Vert^{2k}_{L^{\infty}}+1)ds\int_{\Omega}\vert u\vert^{2} dx \\ & \leq & c(\Vert u_{1}+u_{2}\Vert^{2k}_{L^{\infty}}+1)\Vert u\Vert^{2}, \end{eqnarray} (5.34)

    if n = 2 where n = 3 , for k\leq 1 (in particular k = 1 ), preceding estimate give

    \begin{eqnarray} \Vert f(u_{1})-f(u_{2})\Vert^{2} & \leq & c(\Vert u_{1}\Vert^{2}_{L^{\infty}}+\Vert u_{2}\Vert^{2}_{L^{\infty}}+1)\Vert u\Vert^{2}_{H^{1}_{0}}, \end{eqnarray} (5.35)

    if n = 2 where n = 3 with k > 1 , owing we have

    \begin{eqnarray} \Vert f(u_{1})-f(u_{2})\Vert^{2} & \leq &c((\Vert u_{1}\Vert^{2}_{L^{\infty}}+\Vert u_{2}\Vert^{2}_{L^{\infty}})^{k}+1)\Vert u\Vert^{2}_{H^{1}_{0}}, \end{eqnarray} (5.36)

    on the one hand,

    \begin{eqnarray} \vert(g(u_{1})(\alpha-\Delta\alpha),\tilde{h}_{u}(t))\vert & \leq & \int_{\Omega}\vert g(u_{1})\vert\vert\alpha-\Delta\alpha\vert\vert\tilde{h}_{u}(t)\vert dx \\ & \leq & \int_{\Omega} \vert g(u_{1})\vert_{L^{\infty}}\vert\alpha-\Delta\alpha\vert\vert\tilde{h}_{u}(t)\vert dx \\ & \leq & c\Vert\alpha-\Delta\alpha\Vert\Vert\tilde{h}_{u}(t)\Vert \\ & \leq &c\Vert\alpha-\Delta\alpha\Vert^{2}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2} \\ & \leq & c\Vert\alpha\Vert^{2}_{H^{2}(\Omega)}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} (5.37)

    on the other hand,

    \begin{eqnarray} \vert((-\Delta)^{-1}[(\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2})],\tilde{h}_{u}(t))\vert \\ & = & \vert((\Delta g(u_{1})-\Delta g(u_{2}))(\alpha_{2}-\Delta\alpha_{2}),\tilde{h}_{u}(t))\vert \\ & \leq & \int_{\Omega}\vert\Delta g(u_{1})-\Delta g(u_{2})\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ & \leq & \int_{\Omega}\vert\Delta u_{1}-\Delta u_{2}\vert\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ & \leq & \int_{\Omega}\vert\Delta u_{1}-\Delta u_{2}\vert_{L^{\infty}}\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ &\leq & c\int_{\Omega}\vert\alpha_{2}-\Delta\alpha_{2}\vert\vert(-\Delta)^{-1}\tilde{h}_{u}(t)\vert dx \\ & \leq & c\Vert\alpha_{2}-\Delta\alpha_{2}\Vert^{2}+\frac{1}{6}\Vert\tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} (5.38)

    combining (5.33), (5.36), (5.37) and (5.38), we find

    \begin{eqnarray} \Vert\tilde{h}_{u}(t)\Vert^{2} \leq c(\Vert\partial_{t}u\Vert^{2}_{-1}+\Vert\alpha\Vert^{2}_{H^{2}(\Omega)})+c\Vert\nabla u\Vert^{2}+c\Vert\alpha_{2}-\Delta\alpha_{2}\Vert^{2}. \end{eqnarray} (5.39)

    Using (5.29) and (5.6), we obtain

    \begin{eqnarray} \Vert\tilde{h}_{u}(t)\Vert^{2} \leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\theta_{0}\Vert^{2}_{H^{2}(\Omega)}), t\geq 1, \end{eqnarray} (5.40)

    where the constants only depend on {B}_{0}

    We multiply (5.30) by and intergrate over \Omega , we find

    \begin{eqnarray} \Vert\Delta u\Vert^{2}\leq \Vert \tilde{h}_{u}(t)\Vert^{2}, \end{eqnarray} (5.41)

    hence, owing to (5.40), we have

    \begin{eqnarray} \Vert\Delta u\Vert^{2}\leq ce^{c't}(\Vert u_{0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\theta_{0}\Vert^{2}_{H^{2}(\Omega)}), \;t\geq 1, \end{eqnarray} (5.42)

    we finally deduce from (5.29) and (5.42), the estimate (5.1) which concludes the proof

    Lemma 5.2. Let (u_{1}, \alpha_{1}) and (u_{2}, \alpha_{2}) be two solutions to (2.1)-(2.4) with initial data (u_{1, 0}, \alpha_{1, 0}) and (u_{2, 0}, \alpha_{2, 0}) , respectively, belonging to {B}_{0} . Then, the semigroup \lbrace S(t))\rbrace_{t\geq 0} is Lipschitz continuity with respect to space, i.e, there exists the constant c > 0 such that

    \begin{eqnarray} &&\Vert u_{1}(t)-u_{2}(t)\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert^{2}_{H^{2}(\Omega)} \\ & \leq & ce^{c't}(\Vert u_{1,0}-u_{2,0}\Vert^{2}_{H^{1}(\Omega)}+\Vert\alpha_{1,0}-\alpha_{2,0}\Vert^{2}_{H^{2}(\Omega)}), t\geq 1, \end{eqnarray} (5.43)

    where the constants only depend on {B}_{0} .

    Proof. The proof of the Lemma 5.2 is a direct consequence of the estimate (5.6).

    It just remains to prove the Hölder continuity with respect to time.

    Lemma 5.3. Let (u, \alpha) be the solution of (5.2)-(5.5) with intial data (u_{0}, \alpha_{0}) \; in {B}_{0} . Then, the semigroup \lbrace S(t))\rbrace_{t\geq 0} is Hölder continuous with respect to time, i.e, there exists the constant c > 0 such that \forall t_{1}, t_{2}\in [0, T]

    \begin{eqnarray} \Vert S(t_{1})(u_{0},\alpha_{0})-S(t_{2})(u_{0},\alpha_{0})\Vert_{\Psi}\leq c\vert t_{1}-t_{2}\vert^{\frac{1}{2}}, \end{eqnarray} (5.44)

    where the constants only depend on {B}_{0} and \Gamma .

    Proof.

    \begin{eqnarray} \Vert S(t_{1})(u_{0},\alpha_{0})-S(t_{2})(u_{0},\alpha_{0})\Vert_{\Psi} & = & \Vert (u(t_{1})-u(t_{2}),\alpha(t_{1})-\alpha_{2}))\Vert_{\Psi} \\ & \leq & \Vert u(t_{1})-u(t_{2})\Vert_{H^{1}(\Omega)}+\Vert \alpha(t_{1})-\alpha(t_{2})\Vert_{H^{2}(\Omega)} \\ & \leq & c(\Vert \nabla (u(t_{1})-u(t_{2}))\Vert+\Vert \alpha(t_{1})-\alpha(t_{2})\Vert_{H^{2}(\Omega)}) \\ & \leq & ( \Vert \int^{t_{2}}_{t_{1}}\nabla \partial_{t}u ds\Vert+\Vert \int^{t_{2}}_{t_{1}}\partial_{t}\alpha\Vert_{H^{2}}) \\ & \leq & c\vert t_{1}-t_{2})\vert^{\frac{1}{2}} \vert \int^{t^{2}}_{t_{1}}(\Vert\nabla \partial_{t}u\Vert^{2}+\Vert\partial_{t}\alpha\Vert^{2}_{H^{2}})ds\vert^{\frac{1}{2}}. \end{eqnarray} (5.45)

    Noting that, thanks to (3.5) and (3.37), we have

    \begin{eqnarray} \vert \int^{t_{2}}_{t_{1}}\Vert \nabla\partial_{t}u\Vert^{2}ds \vert \leq c, \end{eqnarray} (5.46)

    where the constant c depends only on {B}_{0} and T\geq T_{0} such that t_{1}, t_{2}\in [0, T] .

    Furthermore, multiplying (5.3) by (-\Delta)^{-1}\partial_{t}\alpha and integrate over \Omega , we obtain

    \begin{eqnarray} \frac{d}{dt}\Vert\alpha\Vert^{2}+c\Vert\partial_{t}\alpha\Vert^{2}_{-1}+2\Vert\nabla\partial_{t}\alpha\Vert^{2}+2\Vert\partial_{t}\alpha\Vert^{2} \leq c(\Vert\partial_{t}u_{2}\Vert^{2}+\Vert\partial_{t}u\Vert^{2}), \end{eqnarray} (5.47)

    and it follows from (3.60), (5.24), (5.46) and (5.47) that

    \begin{eqnarray} \vert \int^{t_{2}}_{t_{1}}\Vert\partial_{t}\alpha\Vert^{2}_{H^{2}(\Omega)}ds \vert \leq c, \end{eqnarray} (5.48)
    \begin{eqnarray} \Vert S(t_{1})(u_{0},\alpha_{0})-S(t_{2})(u_{0},\alpha_{0})\Vert_{\Psi}\leq c\vert t_{1}-t_{2}\vert^{\frac{1}{2}}, \end{eqnarray} (5.49)

    where c only depends on {B}_{0} and T such that t_{1}, t_{2}\in [0, T] .

    Finally, we obtain thanks to (5.46) and (5.48), the estimate (5.44). Thus, the Lemma is proved. We finally deduce from Lemma 5.1, Lemma 5.2 and Lemma 5.3 the following result (see, e.g. [12]).

    Theorem 5.1. The semigroup S(t) possesses an exponential attractor M \subset {B}_{0} , i.e.,

    (i) M is compact in H^{1}(\Omega)\times H^{2}(\Omega) ;

    (ii) M is positively invariant, S(t)M \subset M, t\geq 0 ;

    (iii) M has finite fractal dimension in H^{1}(\Omega)\times H^{2}(\Omega) ;

    (iv) M attracts exponentially fast the bounded subsets of \Psi

    \begin{eqnarray*} \forall B \in \Psi \;bounded, dist_{H^{1}(\Omega)\times H^{2}(\Omega)}(S(t)B,M) \leq Q(\Vert B\Vert_{\Psi})e^{-ct} ,\; c > 0, t\geq 0, \end{eqnarray*}

    where the constant c is independent of B and dist_{H^{1}(\Omega)\times H^{2}(\Omega)} denotes the Hausdorff semidistance between sets defined by

    \begin{eqnarray*} dist_{H^{1}(\Omega)\times H^{2}(\Omega)}(A,B) = \sup\limits_{a \in A}\inf\limits_{b \in B}\Vert a-b\Vert_{H^{1}(\Omega)\times H^{2}(\Omega)}. \end{eqnarray*}

    Remark 5.1. Setting \tilde{M} = S(1)M , we can prove that \tilde{M} is an exponential attractor for S(t) , but now in the topology of \Psi .

    Since M (or \tilde{M} ) is a compact attracting set, we deduce from Theorem 5.1 and standard results (see, e.g, [3,12]) the

    Corollary 5.1. The semigroup S(t) possesses the finite-dimensional global attractor {A}\subset {B}_{0} .

    Remark 5.2. We note that the global attractor {A} is the smallest (for the inclusion) compact set of the phase space which is invariant by the flow (i.e. S(t){A} = {A}, \; \forall t\geq 0) and attractors all bounded sets of initial data as time goes to infinity; thus, it appears as a suitable object in view of the study of asymptotic behaviour of the system. Furthermore, the finite dimensionality means, roughly speaking, that, even though the initial phase space is infinite dimensional, the reduced dynamics is, in some proper sense, finite dimensional and can be described by a finite number of parameters.

    The existence of the global attractor being established, one question is to know whether this attractor has a finite dimension in terms of the fractal or Hausdorff dimension. This is the aim of the final section.

    Remark 5.3. Comparing to the global attractor, an exponentiel attractor is expected to be more robust under perturbations. Indeed, the rate of attraction of trajectories to the global attractor may be slow and it is very difficult, if not impossible, to estimate this rate of attraction with respect to the physical parameters of the problem in general. As a consequence, global attractors may change drastically under small perturbations.

    This manuscript explains in a clear way, the context of dynamic system with two temperatures, when the relative solution exists. The existence of exponential attractor, associated to the problem (2.1)-(2.4) that we have proved, allow to assert that the existing solution of the problem (2.1)-(2.4) that we have shown in this work, belongs to the finite-dimensional subset called global attractor, from a certain time.

    The authors thank the referees for their careful reading of the paper and useful comments.

    The authors declare that there is no conflict of interests in this paper.



    [1] G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, phys. Rev. B., 38 (1988), 789–791. https://doi.org/10.1103/PhysRevB.38.789 doi: 10.1103/PhysRevB.38.789
    [2] M. Grasselli, A. Miranville, V. Pata, S. Zelik, Welle-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials, Math. Nachr., 280 (2007), 1475–1509. https://doi.org/10.1002/mana.200510560 doi: 10.1002/mana.200510560
    [3] L. Cherfils, A. Miranville, S. Peng, Higher-order generalized Cahn-Hilliard equations, Electronic Journal of Qualitative Theory of Differential Equations, 2017 (2017), 1–22. https://doi.org/10.14232/ejqtde.2017.1.9 doi: 10.14232/ejqtde.2017.1.9
    [4] B. L. Doumbé Bangola, Global and esponential attractors for a Caginalp type phase-field problem, Cent. Eur. J. Math., 11 (2013), 1651–1676. https://doi.org/10.2478/s11533-013-0258-0 doi: 10.2478/s11533-013-0258-0
    [5] B. L. Doumbé Bangola, Phase-field system with two temperatures and a nonlinear coupling term, AIMS Math., 3 (2018), 298–315. https://doi.org/10.3934/Math.2018.2.298 doi: 10.3934/Math.2018.2.298
    [6] A. Miranville, Some mathematical models in phase transition, Discrete Contin. Dyn. Systems Seres S, 7 (2014), 271–306. https://doi.org/10.3934/dcdss.2014.7.271 doi: 10.3934/dcdss.2014.7.271
    [7] A. Miranville, On higher-order anisotropic conservative Caginalp phase-field systems, Appl. Math. Optim., 77 (2018), 297–314. https://doi.org/10.1007/s00245-016-9375-z doi: 10.1007/s00245-016-9375-z
    [8] A. Miranville, R. Quintanilla, Some generalizations of Caginalp phase-field system, Appl. Anal., 88 (2009), 877–894. https://doi.org/10.1080/00036810903042182 doi: 10.1080/00036810903042182
    [9] A. Miranville, R. Quintanilla, A Caginalp phase-field system based on type Ⅲ heat conduction with two temperatures, Quart. Appl. Math., 74 (2016), 375–398. https://doi.org/10.1090/qam/1430 doi: 10.1090/qam/1430
    [10] A. Miranville, R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal. TMA, 71 (2009), 2278–2290. https://doi.org/10.1016/j.na.2009.01.061 doi: 10.1016/j.na.2009.01.061
    [11] A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, Handbook of differential equations: evolutionary equations, 4 (2008), 103–200. https://doi.org/10.1016/S1874-5717(08)00003-0 doi: 10.1016/S1874-5717(08)00003-0
    [12] A. Miranville, Asymptotic behaviour of a generalized Cahn-hilliard equation for with a proliferation term, Appl. Anal., 92 (2013), 1308–1321. https://doi.org/10.1080/00036811.2012.671301 doi: 10.1080/00036811.2012.671301
    [13] A. Miranville, S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545–582. https://doi.org/10.1002/mma.464 doi: 10.1002/mma.464
    [14] P. J. Chen, M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys. (ZAMP), 19 (1968), 614–627. https://doi.org/10.1007/BF01594969 doi: 10.1007/BF01594969
    [15] P. J. Chen, M. E. Gurtin, W. O. Williams, A note on non-simple heat conduction, Z. Angew. Math. Phys. (ZAMP), 19 (1968), 969–970. https://doi.org/10.1007/BF01602278 doi: 10.1007/BF01602278
    [16] P. J. Chen, M. E. Gurtin, W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, Z. Angew. Math. Phys. (ZAMP), 20 (1969), 107–112. https://doi.org/10.1007/BF01591120 doi: 10.1007/BF01591120
    [17] J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795–861.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1487) PDF downloads(30) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog