Based on Euclidean metrics, Gutman put forward a novel vertex-degree-based topological index, named the Sombor index. Later, the modified version of it—the modified Sombor index—was introduced. For a simple undirected graph $ G $, the Sombor index and the modified Sombor index of $ G $ are defined as $ SO(G) = \sum\limits_{uv\in E(G)}\sqrt{d_G(u)^2+d_G(v)^2} $ and $ ^mSO(G) = \sum\limits_{uv\in E(G)}\frac{1}{\sqrt{d_G(u)^2+d_G(v)^2}} $, respectively, where $ d_G(w) $ denotes the degree of $ w $ in $ G $. Extremal values of $ SO $ have been intensively investigated. In this paper, we were concerned with the extremal values of the modified Sombor indices. First, we showed some graph transformations which can be used to compare the modified Sombor indices of two graphs. With these transformations, the first two maximum and minimum values of $ ^mSO $ among all trees of order $ n $ were determined. We also characterized the unique tree that minimizes $ ^mSO $ among all trees with a fixed number of pendant vertices. In addition, the molecular trees with the maximum and minimum modified Sombor indices were investigated.
Citation: Kun Wang, Wenjie Ning, Yuheng Song. Extremal values of the modified Sombor index in trees[J]. AIMS Mathematics, 2025, 10(5): 12092-12103. doi: 10.3934/math.2025548
Based on Euclidean metrics, Gutman put forward a novel vertex-degree-based topological index, named the Sombor index. Later, the modified version of it—the modified Sombor index—was introduced. For a simple undirected graph $ G $, the Sombor index and the modified Sombor index of $ G $ are defined as $ SO(G) = \sum\limits_{uv\in E(G)}\sqrt{d_G(u)^2+d_G(v)^2} $ and $ ^mSO(G) = \sum\limits_{uv\in E(G)}\frac{1}{\sqrt{d_G(u)^2+d_G(v)^2}} $, respectively, where $ d_G(w) $ denotes the degree of $ w $ in $ G $. Extremal values of $ SO $ have been intensively investigated. In this paper, we were concerned with the extremal values of the modified Sombor indices. First, we showed some graph transformations which can be used to compare the modified Sombor indices of two graphs. With these transformations, the first two maximum and minimum values of $ ^mSO $ among all trees of order $ n $ were determined. We also characterized the unique tree that minimizes $ ^mSO $ among all trees with a fixed number of pendant vertices. In addition, the molecular trees with the maximum and minimum modified Sombor indices were investigated.
| [1] | J. A. Bondy, U. S. R. Murty, Graph theory, New York: Springer, 2008. |
| [2] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
| [3] |
H. Y. Deng, Z. K. Tang, R. F. Wu, Molecular trees with extremal values of Smobor indices, Int. J. Quantum Chem., 121 (2021), e26622. https://doi.org/10.1002/qua.26622 doi: 10.1002/qua.26622
|
| [4] |
I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., 86 (2021), 445–457. https://doi.org/10.2298/jsc201215006r doi: 10.2298/jsc201215006r
|
| [5] |
H. C. Liu, I. Gutman, L. H. You, Y. F. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem., 60 (2022), 771–798. https://doi.org/10.1007/s10910-022-01333-y doi: 10.1007/s10910-022-01333-y
|
| [6] |
T. Réti, T. Došlić, A. Ali, On the Sombor index of graphs, Contrib. Math., 3 (2021), 11–18. https://doi.org/10.47443/cm.2021.0006 doi: 10.47443/cm.2021.0006
|
| [7] |
T. Došlić, T. Réti, A. Ali, On the structure of graphs with integer Sombor indices, Discrete Math. Lett., 7 (2021), 1–4. https://doi.org/10.47443/dml.2021.0012 doi: 10.47443/dml.2021.0012
|
| [8] |
M. R. Oboudi, Non-semiregular bipartite graphs with integer Sombor index, Discrete Math. Lett., 8 (2022), 38–40. https://doi.org/10.47443/dml.2021.0107 doi: 10.47443/dml.2021.0107
|
| [9] |
V. R. Kulli, I. Gutman, Computation of Sombor indices of certain networks, SSRG Int. J. Appl. Chem., 8 (2021), 1–5. https://doi.org/10.14445/23939133/ijac-v8i1p101 doi: 10.14445/23939133/ijac-v8i1p101
|
| [10] |
R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput., 399 (2021), 126018. https://doi.org/10.1016/j.amc.2021.126018 doi: 10.1016/j.amc.2021.126018
|
| [11] |
H. C. Liu, H. L. Chen, Q. Q. Xiao, X. N. Fang, Z. K. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quantum Chem., 121 (2021), e26689. https://doi.org/10.1002/qua.26689 doi: 10.1002/qua.26689
|
| [12] |
H. C. Liu, L. H. You, Y. F. Huang, Ordering chemical graphs by Sombor indices and its application, MATCH Commun. Math. Comput. Chem., 87 (2022), 5–22. https://doi.org/10.46793/match.87-1.005l doi: 10.46793/match.87-1.005l
|
| [13] |
H. C. Liu, L. H. You, Y. F. Huang, Extremal Sombor Indices of Tetracyclic (Chemical) Graphs, MATCH Commun. Math. Comput. Chem., 88 (2022), 573–581. https://doi.org/10.46793/match.88-3.573l doi: 10.46793/match.88-3.573l
|
| [14] |
I. Gutman, Spectrum and energy of the Sombor matrix, Military Tech. Courier, 69 (2021), 551–561. https://doi.org/10.5937/vojtehg69-31995 doi: 10.5937/vojtehg69-31995
|
| [15] |
K. J. Gowtham, N. Narahari, On Sombor energy of graphs, Nanosyst. Phys. Chem. Math., 12 (2021), 411–417. https://doi.org/10.17586/2220-8054-2021-12-4-411-417 doi: 10.17586/2220-8054-2021-12-4-411-417
|
| [16] |
N. Ghanbari, On the Sombor characteristic polynomial and Sombor energy of a graph, Comput. Appl. Math., 41 (2022), 242. https://doi.org/10.1007/s40314-022-01957-5 doi: 10.1007/s40314-022-01957-5
|
| [17] |
A. Ülker, A. Gürsoy, N. K. Gürsoy, The energy and Sombor index of graphs, MATCH Commun. Math. Comput. Chem., 87 (2022), 51–58. https://doi.org/10.46793/match.87-1.051u doi: 10.46793/match.87-1.051u
|
| [18] |
I. Redžepović, I. Gutman, Comparing energy and Sombor energy-An empirical study, MATCH Commun. Math. Comput. Chem., 88 (2022), 133–140. https://doi.org/10.46793/match.88-1.133r doi: 10.46793/match.88-1.133r
|
| [19] |
M. S. Reja, S. M. Abu Nayeem, On Sombor index and graph energy, MATCH Commun. Math. Comput. Chem., 89 (2023), 451–466. https://doi.org/10.46793/match.89-2.451r doi: 10.46793/match.89-2.451r
|
| [20] |
Z. Lin, T. Zhou, L. Y. Miao, On the spectral radius, energy and Estrada index of the Sombor matrix of graphs, Trans. Comb., 12 (2023), 191–205. https://doi.org/10.22108/TOC.2022.127710.1827 doi: 10.22108/TOC.2022.127710.1827
|
| [21] |
Y. F. Huang, H. C. Liu, Bounds of modified Sombor index, spectral radius and energy, AIMS Math., 6 (2021), 11263–11274. https://doi.org/10.3934/math.2021653 doi: 10.3934/math.2021653
|
| [22] |
H. Shooshtari, S. M. Sheikholeslami, J. Amjadi, Modified Sombor index of unicyclic graphs with a given diameter, Asian-Eur. J. Math., 16 (2023), 2350098. https://doi.org/10.1142/s1793557123500985 doi: 10.1142/s1793557123500985
|
| [23] |
X. W. Zuo, B. A. Rather, M. Imran, A. Ali, On some topological indices defined via the modified Sombor matrix, Molecules, 27 (2022), 6772. https://doi.org/10.3390/molecules27196772 doi: 10.3390/molecules27196772
|
| [24] |
A. M. Albalahi, A. Ali, Z. Du, A. A. Bhatti, T. Alraqad, N. Iqbal, et al., On bond incident degree indices of chemical graphs, Mathematics, 11 (2022), 27. https://doi.org/10.3390/math11010027 doi: 10.3390/math11010027
|