Research article

Besicovitch almost periodic solutions to Clifford-valued high-order Hopfield fuzzy neural networks with a $ D $ operator

  • Received: 18 January 2025 Revised: 18 April 2025 Accepted: 08 May 2025 Published: 26 May 2025
  • MSC : 34K14, 34K20

  • This paper investigated the almost periodic dynamics of a class of Clifford-valued high-order Hopfield fuzzy neural networks with time-varying delays and $ D $ operators. Based on the Banach fixed point theorem, inequality techniques, and the definition of Besicovitch almost periodicity, we obtained the existence of Besicovitch almost periodic solutions for the considered neural network. The results of this paper are novel, and the method proposed in this paper can be used to study the existence of generalized almost periodic solutions and almost automorphic solutions to high-order neural networks. Finally, we provided a numerical example and computer simulation to demonstrate the effectiveness of the results obtained in this paper.

    Citation: Bing Li, Yuan Ning, Yongkun Li. Besicovitch almost periodic solutions to Clifford-valued high-order Hopfield fuzzy neural networks with a $ D $ operator[J]. AIMS Mathematics, 2025, 10(5): 12104-12134. doi: 10.3934/math.2025549

    Related Papers:

  • This paper investigated the almost periodic dynamics of a class of Clifford-valued high-order Hopfield fuzzy neural networks with time-varying delays and $ D $ operators. Based on the Banach fixed point theorem, inequality techniques, and the definition of Besicovitch almost periodicity, we obtained the existence of Besicovitch almost periodic solutions for the considered neural network. The results of this paper are novel, and the method proposed in this paper can be used to study the existence of generalized almost periodic solutions and almost automorphic solutions to high-order neural networks. Finally, we provided a numerical example and computer simulation to demonstrate the effectiveness of the results obtained in this paper.



    加载中


    [1] C. Huang, X. Long, J. Cao, Stability of antiperiodic recurrent neural networks with multiproportional delays, Math. Methods Appl. Sci., 43 (2020), 6093–6102. https://doi.org/10.1002/mma.6350 doi: 10.1002/mma.6350
    [2] G. Tan, Z. Wang, Stability analysis of recurrent neural networks with time-varying delay based on a flexible negative-determination quadratic function method, IEEE Trans. Neural Netw. Learn. Syst., 36 (2025), 1933–1938. https://doi.org/10.1109/TNNLS.2023.3327318 doi: 10.1109/TNNLS.2023.3327318
    [3] W. Wang, W. Zeng, W. Chen, Global exponential stability of periodic solutions for inertial delayed BAM neural networks, Commun. Nonlinear Sci. Numer. Simulat., 145 (2025), 108728. https://doi.org/10.1016/j.cnsns.2025.108728 doi: 10.1016/j.cnsns.2025.108728
    [4] S. Chang, Y. Wang, X. Zhang, X. Wang, A new method to study global exponential stability of inertial neural networks with multiple time-varying transmission delays, Math. Comput. Simul., 211 (2023), 329–340. https://doi.org/10.1016/j.matcom.2023.04.008 doi: 10.1016/j.matcom.2023.04.008
    [5] W. Wang, J. Wu, W. Chen, The characteristics method to study global exponential stability of delayed inertial neural networks, Math. Comput. Simul., 232 (2025), 91–101. https://doi.org/10.1016/j.matcom.2024.12.021 doi: 10.1016/j.matcom.2024.12.021
    [6] Q. Wan, Z. Yan, F. Li, J. Liu, S. Chen, Multistable dynamics in a Hopfield neural network under electromagnetic radiation and dual bias currents, Nonlinear Dyn., 109 (2022), 2085–2101. https://doi.org/10.1007/s11071-022-07544-x doi: 10.1007/s11071-022-07544-x
    [7] M. Akhmet, M. Tleubergenova, A. Zhamanshin, Cohen-Grossberg neural networks with unpredictable and Poisson stable dynamics, Chaos Soliton. Fract., 178 (2024), 114307. https://doi.org/10.1016/j.chaos.2023.114307 doi: 10.1016/j.chaos.2023.114307
    [8] A. M. Alimi, C. Aouiti, F. Chérif, F. Dridi, M. S. M'hamdi, Dynamics and oscillations of generalized high-order Hopfield neural networks with mixed delays, Neurocomputing, 321 (2018), 274–295. https://doi.org/10.1016/j.neucom.2018.01.061 doi: 10.1016/j.neucom.2018.01.061
    [9] C. Aouiti, E. A. Assali, Stability analysis for a class of impulsive high-order hopfield neural networks with leakage time-varying delays, Neural Comput. Appl., 31 (2019), 7781–7803. https://doi.org/10.1007/s00521-018-3585-z doi: 10.1007/s00521-018-3585-z
    [10] Y. Li, J. Xiang, B. Li, Almost periodic solutions of quaternion-valued neutral type high-order hopfield neural networks with state-dependent delays and leakage delays, Appl. Intell., 50 (2020), 2067–2078. https://doi.org/10.1007/s10489-020-01634-2 doi: 10.1007/s10489-020-01634-2
    [11] B. Li, Y. Cao, Y. Li, The dynamics of octonion-valued neutral type high-order Hopfield neural networks with D operator, J. Intell. Fuzzy Syst., 44 (2023), 9599–9613. https://doi.org/10.3233/JIFS-223766 doi: 10.3233/JIFS-223766
    [12] Y. Wang, X. Yang, X. Chen, C. Liu, Positivity and semi-global polynomial stability of high-order Cohen-Grossberg BAM neural networks with multiple proportional delays, Inform. Sci., 689 (2025), 121512. https://doi.org/10.1016/j.ins.2024.121512 doi: 10.1016/j.ins.2024.121512
    [13] S. K. Panda, A. M. Nagy, V. Vijayakumar, B. Hazarika, Stability analysis for complex-valued neural networks with fractional order, Chaos Soliton. Fract., 175 (2023), 114045. https://doi.org/10.1016/j.chaos.2023.114045 doi: 10.1016/j.chaos.2023.114045
    [14] W. Yang, J. Huang, X. He, S. Wen, Fixed-time synchronization of complex-valued neural networks for image protection and 3D point cloud information protection, Neural Netw., 172 (2024), 106089. https://doi.org/10.1016/j.neunet.2023.12.043 doi: 10.1016/j.neunet.2023.12.043
    [15] Y. Chen, Y. Xue, X. Yang, X. Zhang, A direct analysis method to Lagrangian global exponential stability for quaternion memristive neural networks with mixed delays, Appl. Math. Comput., 439 (2023), 127633. https://doi.org/10.1016/j.amc.2022.127633 doi: 10.1016/j.amc.2022.127633
    [16] X. Wu, Z. Tu, T. Peng, D. Wang, Global attractive set for quaternion-valued neural networks with neutral items, Sci. Rep. UK, 14 (2024), 17975. https://doi.org/10.1038/s41598-024-68763-3 doi: 10.1038/s41598-024-68763-3
    [17] S. Baluni, I. Sehgal, V. K. Yadav, S. Das, Exponential synchronization of a class of quaternion-valued neural network with time-varying delays: A Matrix Measure Approach, Chaos Soliton. Fract., 182 (2024), 114794. https://doi.org/10.1016/j.chaos.2024.114794 doi: 10.1016/j.chaos.2024.114794
    [18] Y. Wu, Z. Tu, N. Dai, L. Wang, N. Hu, T. Peng, Stability analysis of quaternion-valued neutral neural networks with generalized activation functions, Cognitive Comput., 16 (2024), 392–403. https://doi.org/10.1007/s12559-023-10212-w doi: 10.1007/s12559-023-10212-w
    [19] Q. Shao, Y. Li, Almost periodic solutions for Clifford-valued stochastic shunting inhibitory cellular neural networks with mixed delays, AIMS Math., 9 (2024), 13439–13461. https://doi.org/10.3934/math.2024655 doi: 10.3934/math.2024655
    [20] N. Zhao, Y. Qiao, Stability analysis of Clifford-valued memristor-based neural networks with impulsive disturbances and its application to image encryption, Appl. Math. Comput., 475 (2024), 128710. https://doi.org/10.1016/j.amc.2024.128710 doi: 10.1016/j.amc.2024.128710
    [21] J. Li, H. Zhao, Y. Zhang, S. Zhu, Y. Zhang, Multistability of equilibrium points and periodic solutions for Clifford-valued memristive Cohen-Grossberg neural networks with mixed delays, Math. Methods Appl. Sci., 47 (2024), 2679–2701. https://doi.org/10.1002/mma.9772 doi: 10.1002/mma.9772
    [22] N. Huo, Y. Li, Pseudo almost periodic solution of fractional-order Clifford-valued high-order hopfield neural networks, J. Appl. Anal. Comput., 14 (2024), 2488–2504. https://www.jaac-online.com/article/doi/10.11948/20220447 doi: 10.11948/20220447
    [23] Y. Li, N. Huo, B. Li, On $\mu$-pseudo almost periodic solutions for Clifford-valued neutral type neural networks with delays in the leakage term, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 1365–1374. DOI: 10.1109/TNNLS.2020.2984655 doi: 10.1109/TNNLS.2020.2984655
    [24] C. A. Popa, Global exponential stability of neutral-type octonion-valued neural networks with time-varying delays, Neurocomputing, 309 (2018), 117–133. https://doi.org/10.1016/j.neucom.2018.05.004 doi: 10.1016/j.neucom.2018.05.004
    [25] N. Huo, Y. Li, $\mathcal{B}$-almost periodic solutions in finite-dimensional distributions for octonion-valued stochastic shunting inhibitory cellular neural networks, Math. Methods Appl. Sci., 47 (2024), 5136–5160. https://doi.org/10.1002/mma.9858 doi: 10.1002/mma.9858
    [26] C. A. Popa, Stability and synchronization of octonion-valued neural networks with leakage and mixed delays on time scales, Comput. Appl. Math., 43 (2024), 300. https://doi.org/10.1007/s40314-024-02820-5 doi: 10.1007/s40314-024-02820-5
    [27] S. Buchholz, A Theory of Neural Computation with Clifford Algebras, PhD thesis, University of Kiel, 2005. https://macau.uni-kiel.de/receive/macau_mods_00001896
    [28] S. Buchholz, G. Sommer, On Clifford neurons and Clifford multi-layer perceptrons, Neural Netw., 21 (2008), 925–935. https://doi.org/10.1016/j.neunet.2008.03.004 doi: 10.1016/j.neunet.2008.03.004
    [29] E. Hitzer, T. Nitta, Y. Kuroe, Applications of Clifford's geometric algebra, Adv. Appl. Clifford Al., 23 (2013), 377–404. https://doi.org/10.1007/s00006-013-0378-4 doi: 10.1007/s00006-013-0378-4
    [30] S. Breuils, K. Tachibana, E. Hitzer, New applications of Clifford's geometric algebra, Adv. Appl. Clifford Al., 32 (2022), 17. https://doi.org/10.1007/s00006-021-01196-7 doi: 10.1007/s00006-021-01196-7
    [31] M. Ayachi, Measure-pseudo almost periodic dynamical behaviors for BAM neural networks with D operator and hybrid time-varying delays, Neurocomputing, 486 (2022), 160–173. https://doi.org/10.1016/j.neucom.2021.11.020 doi: 10.1016/j.neucom.2021.11.020
    [32] F. Kong, Q. Zhu, Finite-time stabilization of discontinuous fuzzy neutral-type neural networks with D operator and multiple time-varying delays, Fuzzy Sets Syst., 449 (2022), 32–55. https://doi.org/10.1016/j.fss.2022.02.006 doi: 10.1016/j.fss.2022.02.006
    [33] B. Li, Y. Cao, Y. Li, Almost periodic oscillation in distribution for octonion-valued neutral-type stochastic recurrent neural networks with D operator, Nonlinear Dyn., 111 (2023), 11371–11388. https://doi.org/10.1007/s11071-023-08411-z doi: 10.1007/s11071-023-08411-z
    [34] C. Huang, B. Liu, H. Yang, J. Cao, Positive almost periodicity on SICNNs incorporating mixed delays and D operator, Nonlinear Anal. Model., 27 (2022), 719–739. https://orcid.org/0000-0002-0732-226X
    [35] S. Subramaniam, P. Mani, Sampled-data synchronization for fuzzy inertial cellular neural networks and its application in secure communication, Neural Netw., 180 (2024), 106671. https://doi.org/10.1016/j.neunet.2024.106671 doi: 10.1016/j.neunet.2024.106671
    [36] P. V. de C. Souza, Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used in the literature, Appl. Soft Comput., 92 (2020), 106275. https://doi.org/10.1016/j.asoc.2020.106275 doi: 10.1016/j.asoc.2020.106275
    [37] C. H. Lee, C. C. Teng, Identification and control of dynamic systems using recurrent fuzzy neural networks, IEEE Trans. Fuzzy Syst., 8 (2000), 349–366. https://doi.org/10.1109/91.868943 doi: 10.1109/91.868943
    [38] Y. Wang, H. Ishibuchi, M. J. Er, J. Zhu, Unsupervised multilayer fuzzy neural networks for image clustering, Inform. Sci., 622 (2023), 682–709. https://doi.org/10.1016/j.ins.2022.11.149 doi: 10.1016/j.ins.2022.11.149
    [39] M. Alateeq, W. Pedrycz, Logic-oriented fuzzy neural networks: A survey, Expert Syst. Appl., 257 (2024), 125120. https://doi.org/10.1016/j.eswa.2024.125120 doi: 10.1016/j.eswa.2024.125120
    [40] C. Corduneanu, Almost periodic oscillations and waves, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-09819-7
    [41] F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, Boston: Pitman Books Limited, 1982. Available from: http://hdl.handle.net/1854/LU-697713
    [42] S. Shen, Y. Li, $S^{p}$-Almost periodic solutions of Clifford-valued fuzzy cellular neural networks with time-varying delays, Neural Process. Lett., 51 (2020), 1749–1769. https://doi.org/10.1007/s11063-019-10176-9 doi: 10.1007/s11063-019-10176-9
    [43] B. Li, Y. Zhang, Y. Li, Besicovitch-like almost periodic solutions of Clifford-valued fuzzy cellular neural networks with time-varying delays, Franklin Open, 2 (2023), 100011. https://doi.org/10.1016/j.fraope.2023.100011 doi: 10.1016/j.fraope.2023.100011
    [44] X. Huang, Y. Li, Weyl almost periodic solutions of octonion-valued high-order fuzzy neural networks with delays, Comp. Appl. Math., 42 (2023), 155. https://doi.org/10.1007/s40314-023-02294-x doi: 10.1007/s40314-023-02294-x
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(726) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog