Research article Topical Sections

Some new characterizations of the normality for group invertible matrices

  • Received: 30 March 2025 Revised: 06 May 2025 Accepted: 13 May 2025 Published: 27 May 2025
  • MSC : 16B99, 16W10

  • Normal matrices are an important class of matrices; many authors discuss the normality of matrices. In terms of projection matrices, the inverse of matrices, one-sided $ X $-equality, and $ X $-idempotency of matrices, many new characterizations of normal matrices are obtained in this paper. It may be the first time that the projection, one-sided $ X $-equality, and one-sided $ X $-idempotency are used to characterize the normality of matrices.

    Citation: Zhirong Guo, Qianglian Huang. Some new characterizations of the normality for group invertible matrices[J]. AIMS Mathematics, 2025, 10(5): 12135-12148. doi: 10.3934/math.2025550

    Related Papers:

  • Normal matrices are an important class of matrices; many authors discuss the normality of matrices. In terms of projection matrices, the inverse of matrices, one-sided $ X $-equality, and $ X $-idempotency of matrices, many new characterizations of normal matrices are obtained in this paper. It may be the first time that the projection, one-sided $ X $-equality, and one-sided $ X $-idempotency are used to characterize the normality of matrices.



    加载中


    [1] A. Ben-Israel, T. Greville, Generalized inverses: theory and applications, Springer Science & Business Media, 2003.
    [2] O. Baksalary, G. Trenkler, Characterizations of EP, normal and Hermitian matrices, Linear Multilinear A., 56 (2008), 299–304. https://doi.org/10.1080/03081080600872616 doi: 10.1080/03081080600872616
    [3] E. Boasso, On the Moore-Penrose inverse in $C^*$-algebras, Extracta Math., 21 (2006), 93–106. https://doi.org/10.48550/arXiv.1308.3429 doi: 10.48550/arXiv.1308.3429
    [4] R. Bru, N. Thome, Group inverse and group involutory matrices, Linear Multilinear A., 45 (1998), 207–218. https://doi.org/10.1080/03081089808818587 doi: 10.1080/03081089808818587
    [5] D. Mosi$\acute{c}$, Generalized inverses, Faculty of Sciences and Mathematics, University of Ni$\breve{s}$, 2018.
    [6] W. Chen, On EP elements, normal elements and paritial isometries in rings with involution, Electron. J. Linear Al., 23 (2012), 553–561. https://doi.org/10.13001/1081-3810.1540 doi: 10.13001/1081-3810.1540
    [7] C. Peng, H. Zhou, J. Wei, Some new characterizations of normal matrices, Filomat, 38 (2024), 393–404. https://doi.org/10.2298/FIL2402393P doi: 10.2298/FIL2402393P
    [8] Y. Tao, X. Ji, J. Wei, Equation characterizations of normal matrices, Georgian Math. J., 2025, accepted.
    [9] Y. Qu, J. Wei, H. Yao, Characterizations of normal elements in rings with involution, Acta. Math. Hungar., 156 (2018), 459–464. https://doi.org/10.1007/s10474-018-0874-z doi: 10.1007/s10474-018-0874-z
    [10] D. Mosić, D. Djordjević, New characterizations of EP, generalized normal and generalized Hermitian elements in rings. Appl. Math. Comput., 218 (2012), 6702–6710. https://doi.org/10.1016/j.amc.2011.12.030
    [11] L. Shi, J. Wei, Some new characterizations of normal elements, Filomat, 33 (2019), 4115–4120. https://doi.org/10.2298/FIL1913115S doi: 10.2298/FIL1913115S
    [12] Y. Qu, S. Fan, J. Wei, Projections, one-sided idempotents and SEP elements in a ring with involution, Georgian Math. J., 2025. https://doi.org/10.1515/gmj-2024-2080
    [13] B. Gadelseeda, J. Wei, One sided $x$-projection, one sided $x$-idempotent and strongly $EP$ elements in a $*$-ring, Filomat., 39 (2025), 1539–1550. http://doi.org/10.2298/FIL2505539G doi: 10.2298/FIL2505539G
    [14] D. Zhao, J. Wei, Strongly EP elements in rings with involution, J. Algebra Appl., 21 (2022), 2250088. https://doi.org/10.1142/S0219498822500888 doi: 10.1142/S0219498822500888
    [15] W. Ramirez, C. Cesarano, Some new classes of degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Carpathian Math. Publ., 14 (2022), 354–363. https://doi.org/10.15330/cmp.14.2.354-363 doi: 10.15330/cmp.14.2.354-363
    [16] F. Al-Askar, C. Cesarano, W. Mohammed, Multiplicative Brownian motion stabilizes the exact stochastic solutions of the Davey-Stewartson equations, Symmetry, 14 (2022), 2176. https://doi.org/10.3390/sym14102176 doi: 10.3390/sym14102176
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(547) PDF downloads(26) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog