
Citation: Brice Landry Doumbé Bangola. Phase-field system with two temperatures and a nonlinear coupling term[J]. AIMS Mathematics, 2018, 3(2): 298-315. doi: 10.3934/Math.2018.2.298
[1] | Jin Li, Yongling Cheng . Barycentric rational interpolation method for solving time-dependent fractional convection-diffusion equation. Electronic Research Archive, 2023, 31(7): 4034-4056. doi: 10.3934/era.2023205 |
[2] | Jin Li, Yongling Cheng . Barycentric rational interpolation method for solving KPP equation. Electronic Research Archive, 2023, 31(5): 3014-3029. doi: 10.3934/era.2023152 |
[3] | Xiumin Lyu, Jin Li, Wanjun Song . Numerical solution of a coupled Burgers' equation via barycentric interpolation collocation method. Electronic Research Archive, 2025, 33(3): 1490-1509. doi: 10.3934/era.2025070 |
[4] | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Abdulrahman Khalid Al-Harbi, Mohammed H. Alharbi, Ahmed Gamal Atta . Generalized third-kind Chebyshev tau approach for treating the time fractional cable problem. Electronic Research Archive, 2024, 32(11): 6200-6224. doi: 10.3934/era.2024288 |
[5] | Li Tian, Ziqiang Wang, Junying Cao . A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195 |
[6] | Sahar Albosaily, Wael Mohammed, Mahmoud El-Morshedy . The exact solutions of the fractional-stochastic Fokas-Lenells equation in optical fiber communication. Electronic Research Archive, 2023, 31(6): 3552-3567. doi: 10.3934/era.2023180 |
[7] | Ziqing Yang, Ruiping Niu, Miaomiao Chen, Hongen Jia, Shengli Li . Adaptive fractional physical information neural network based on PQI scheme for solving time-fractional partial differential equations. Electronic Research Archive, 2024, 32(4): 2699-2727. doi: 10.3934/era.2024122 |
[8] | Nelson Vieira, M. Manuela Rodrigues, Milton Ferreira . Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives. Electronic Research Archive, 2022, 30(10): 3595-3631. doi: 10.3934/era.2022184 |
[9] | Ping Zhou, Hossein Jafari, Roghayeh M. Ganji, Sonali M. Narsale . Numerical study for a class of time fractional diffusion equations using operational matrices based on Hosoya polynomial. Electronic Research Archive, 2023, 31(8): 4530-4548. doi: 10.3934/era.2023231 |
[10] | Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev . The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28(3): 1161-1189. doi: 10.3934/era.2020064 |
Lots of physical phenomena can be expressed by the FC equation, including, inter alia, dissipative and dispersive partial differential equations (PDEs). In this paper, we consider the FC equation
∂ϕ(t,s)∂t=−μ0 0C1−α1tϕ(t,s)+ 0C1−α2t∂2ϕ(t,s)∂s2+f(t,s),0≤s≤1,0≤t≤T, | (1.1) |
ϕ(0,s)=0,ϕ(1,s)=0,s∈[0,T], | (1.2) |
ϕ(t,0)=φ(t),t∈[0,1] | (1.3) |
where μ0∈R,0 <α1,α2<1 are constants. There are some definitions of fractional derivatives, such as the Caputo type, Riemann-Liouville type and so on. In the following, we adopt the Caputo type time fractional-order partial derivative as
0Cαtϕ(t)=1Γ(1−α)∫t0ϕ′(t)(t−τ)αdτ, | (1.4) |
and Γ(α) is the Γ function.
In [1], a scheme combining the finite difference method in the time direction and a spectral method in the space direction was proposed. In [2], two implicit compact difference schemes for the FC equation were studied, this scheme was proved to be stable, and the convergence order O(τ+h4) was given. In [3], a two-dimensional FC equation was solved by orthogonal spline collocation (OSC) methods for space discretization and finite difference method for time, which was proved to be unconditionally stable. In[4], the FC equation with two time Riemann-Liouville derivatives was solved by an explicit numerical method; and the accuracy, stability and convergence of this method were studied. In [5], FC equation with two fractional time derivatives were considered, and two new implicit numerical methods for the FC equation were proposed, respectively. The stability and convergence of these methods were also investigated. In [6], nonlinear FC equation was solved by a two-grid algorithm with the finite element (FE) method. A time second-order fully discrete two-grid FE scheme and the space direction were approximated. In [7], the discrete Crank-Nicolson (CN) finite element method was obtained by the finite difference in time and the finite element in space to approximate the FC equation, the stability and error estimate were analyzed in detail and the optimal convergence rate was obtained. In [8], the FC equation involving two integro-differential operators was solved by semi-discrete finite difference approximation, and the scheme was proved unconditionally stable. In reference [9], numerical integration with the reproducing kernel gradient smoothing integration are constructed. In reference [10], recursive moving least squares (MLS) approximation was constructed.
Like the above methods to solve the FC equation by finite difference approach or finite element method, the time direction and space direction were solved separatively. In the following, we presented the BRIM to solve the time direction and space direction of FC equation at the same time. Lagrange interpolation has been presented by mathematician Lagrange to fitting data to be a certain function. When the number n increases, there are Runge phenomenon that the interpolation result deviates from the original function. In order to avoid the Runge phenomenon, among them, barycentric interpolation was developed in 1960s to overcome it. In recent years, linear rational interpolation (LRI) was proposed by Floater [14,15,16] and error of linear rational interpolation [11,12,13] is also proved. The barycentric interpolation collocation method (BICM) has developed by Wang et al.[25,26] and the algorithm of BICM has used for linear/non-linear problems [27,28]. In recent research, Volterra integro-differential equation (VIDE) [17,21], heat equation (HE) [18], biharmonic equation (BE) [19], telegraph equation (TE) [20], generalized Poisson equations [22], fractional reaction-diffusion equation [23] and KPP equation [24] have been studied by the linear barycentric rational interpolation method (LBRIM) and their convergence rate are also proved.
In this paper, BRIM has been used to solve the FC equation. As the fractional derivative is the nonlocal operator, the spectral method is developed to solve the FC equation and the coefficient matrix is the full matrix. The fractional derivative of the FC equation is changed to nonsingular integral by the order of density function plus one. New Gauss formula is constructed to compute it simply and matrix equation of discrete FC equation is obtained by the unknown function replaced by barycentric rational interpolation basis function. Then, the convergence rate of BRIM is proved.
As there is singularity in Eq (1.1), the numerical methods cannot get high accuracy, by fractional integration to second part of (1.1) to overcome the difficulty of singularity. We get
0Cαtϕ(t,s)=1Γ(ξ−α)∫t0∂ξϕ(τ,s)∂τξdτ(τ−t)α+1−ξ=1(ξ−α)Γ(ξ−α)[∂ξϕ(0,s)∂tξtξ−α+∫t0∂ξ+1ϕ(τ,s)∂τξ+1dτ(t−τ)α−ξ]=Γξα[∂ξϕ(0,s)∂tξtξ−α+∫t0∂ξ+1ϕ(τ,s)∂τξ+1dτ(t−τ)α−ξ], | (2.1) |
where Γξα=1(ξ−α)Γ(ξ−α).
Combining (2.1) and (1.1), we have
∂ϕ∂t+μ0Γξα1[∂ξϕ(0,s)∂tξtξ−α1+∫t0∂ξ+1ϕ(τ,s)∂τξ+1dτ(t−τ)α1−ξ]=Γξα2[∂ξ+2ϕ(0,s)∂tξ∂s2sξ−α2+∫t0∂ξ+3ϕ(τ,s)∂τξ+1∂s2dτ(s−τ)α2−ξ]+f(t,s). | (2.2) |
In the following, we give the discrete formula of FC equation and to get the matrix equation from BRIM.
Let
ϕ(t,s)=m∑j=1Rj(t)ϕj(s) | (2.3) |
where
ϕ(ti,s)=ϕi(s),i=1,2,⋯,m |
and
Rj(t)=λjt−tjn∑k=1λkt−tk | (2.4) |
where
λk=∑j∈Jk(−1)jj+dt∏i=j,j≠k1tk−ti, Jk={j∈{0,1,⋯,l−dt}:k−dt≤j≤k} |
is the basis function [18]. Taking (2.3) into Eq (2.2),
m∑j=1R′j(t)ϕj(s)+μ0Γξα1m∑j=1[R(ξ)j(0)ϕj(s)tξ−α1+∫t0ϕj(s)R(ξ+1)j(τ)dτ(t−τ)α1−ξ]=Γξα2m∑j=1[R(ξ)j(0)ϕ(2)j(s)tξ−α2+∫t0ϕ(2)j(s)R(ξ+1)j(τ)dτ(t−τ)α2−ξ]+f(t,s). | (2.5) |
By taking 0=t1<t2<⋯<tm=T,a=s1<s2<⋯<sn=b with ht=T/m,hs=(b−s)/n or uninform as Chebychev point s=cos((0:m)′π/m),t=cos((0:n)′π/n), we get
m∑j=1R′j(ti)ϕj(s)+μ0Γξα1m∑j=1[R(ξ)j(0)ϕj(s)tξ−α1i+∫ti0ϕj(s)R(ξ+1)j(τ)dτ(ti−τ)α1−ξ]=Γξα2m∑j=1[R(ξ)j(0)ϕ(2)j(s)tξ−α2i+∫ti0ϕ(2)j(s)R(ξ+1)j(τ)dτ(ti−τ)α2−ξ]+f(ti,s), | (2.6) |
by noting the notation, Rj(ti)=δij,R′j(ti)=R(1,0)ij, where R(1,0)ij is the first order derivative of barycentric matrix. Equation (2.6) can be written as
m∑j=1R(1,0)ijϕj(s)+μ0Γξα1m∑j=1[R(ξ)j(0)ϕj(s)tξ−α1i+∫ti0ϕj(s)R(ξ+1)j(τ)dτ(ti−τ)α1−ξ]=Γξα2m∑j=1[R(ξ)j(0)ϕ(2)j(s)tξ−α2i+∫ti0ϕ(2)j(s)R(ξ+1)j(τ)dτ(ti−τ)α2−ξ]+f(ti,s). | (2.7) |
Similarly as the discrete t for s, we get
ϕj(s)=n∑k=1Rk(s)ϕik | (2.8) |
where ϕi(sj)=ϕ(ti,sj)=ϕij,i=1,⋯,m;j=1,⋯,n and
Ri(s)=wis−sim∑k=1wks−sk | (2.9) |
where
wi=∑j∈Ji(−1)jj+ds∏k=j,j≠i1si−sk, Ji={j∈{0,1,⋯,m−ds}:i−ds≤j≤i}, |
is the basis function [18].
Taking (2.8) into Eq (2.7), we get
m∑j=1n∑k=1R(1,0)ijRk(s)ϕik+μ0Γξα1m∑j=1n∑k=1[R(ξ)j(0)Rk(s)tξ−α1i+∫ti0Rk(s)R(ξ+1)j(τ)dτ(ti−τ)α1−ξ]ϕik=Γξα2m∑j=1n∑k=1[R(ξ)j(0)R(2)k(s)tξ−α2i+∫ti0R(2)k(s)R(ξ+1)j(τ)dτ(ti−τ)α2−ξ]ϕik+f(ti,s). | (2.10) |
By taking s1,s2,⋯,sn at the mesh-point, we get
m∑j=1n∑k=1R(1,0)ijRk(sl)ϕik+μ0Γξα1m∑j=1n∑k=1[R(ξ)j(0)Rk(sl)tξ−α1i+∫ti0Rk(sl)R(ξ+1)j(τ)dτ(ti−τ)α1−ξ]ϕik=Γξα2m∑j=1n∑k=1[R(ξ)j(0)R(2)k(sl)tξ−α2i+∫ti0R(2)k(sl)R(ξ+1)j(τ)dτ(ti−τ)α2−ξ]ϕik+f(ti,sl). | (2.11) |
By noting the notation, Rk(sl)=δkl,R″k(sl)=R(0,2)ij, where R(0,2)ij is the second order derivative of barycentrix matrix.
m∑j=1n∑k=1R(1,0)ijδklϕik+μ0Γξα1m∑j=1n∑k=1[R(ξ)j(0)δkltξ−α1i+δkl∫ti0R(ξ+1)j(τ)dτ(ti−τ)α1−ξ]ϕik=Γξα2m∑j=1n∑k=1[R(ξ)j(0)R(0,2)ijtξ−α2i+R(0,2)ij∫ti0R(ξ+1)j(τ)dτ(ti−τ)α2−ξ]ϕik+f(ti,sl), | (2.12) |
where
Rk(τ)=λkτ−τkn∑k=0λkτ−τk |
and
{R′i(τ)=Ri(τ)[−1τ−τk+l∑s=0λk(τ−τk)2l∑s=0λkτ−τk],⋮R(ξ+1)i(τ)=[R(ξ)i(τ)]′,ξ∈N+. |
The integral term of (2.12) can be written as
∫ti0R(ξ+1)j(τ)dτ(ti−τ)α1−ξ=Qα1j(ti)=Qα1ji, | (2.13) |
∫ti0R(ξ+1)j(τ)dτ(ti−τ)α2−ξ=Qα2j(ti)=Qα2ji, | (2.14) |
then we get
m∑j=1n∑k=1R(1,0)ijδklϕik+μ0Γξα1m∑j=1n∑k=1[R(ξ)j(0)δkltξ−α1i+δklQα2j(ti)]ϕik=Γξα2m∑j=1n∑k=1[R(ξ)j(0)R(0,2)ijtξ−α2i+R(0,2)ijQα1j(ti)]ϕik+f(ti,sl). | (2.15) |
The integral (2.12) is calculated by
Qα1j(ti)=∫ti0R(ξ+1)j(τ)dτ(ti−τ)α1−ξ:=g∑i=1R(ξ+1)i(τθ,α1i)Gθ,α1i, | (2.16) |
and
Qα2j(ti)=∫ti0R(ξ+1)j(τ)dτ(ti−τ)α2−ξ:=g∑i=1R(ξ+1)i(τθ,α2i)Gθ,α2i, | (2.17) |
where Gθ,α1i,Gθ,α2i are Gauss weights and τθ,α1i,τθ,α2i are Gauss points with weights (ti−τ)ξ−α1,(ti−τ)ξ−α2, see reference [22].
Equation systems (2.15) can be written as
[R(01)⊗In+Γξα2(M(ξ0)1⊗In+Im⊗Qα2)][ϕ11⋮ϕ1nϕn1⋮ϕmn]−[μ0Γξα1(M(ξ0)1⊗In+Im⊗Qα1)][ϕ11⋮ϕ1nϕn1⋮ϕmn]=[f11⋮f1nfn1⋮fmn], | (2.18) |
Im and In are identity matrices, ⊗ is Kronecker product.
Then Eq (2.18) can be noted as
[R(01)⊗In+Γξα2(M(ξ0)1⊗In+Im⊗Qα2)−μ0Γξα1(M(ξ0)1⊗In+Im⊗Qα1)]Φ=F | (2.19) |
and
RΦ=F, | (2.20) |
with R=R(01)⊗In+Γξα2(M(ξ0)1⊗In+Im⊗Qα2)−μ0Γξα1(M(ξ0)1⊗In+Im⊗Qα1) and Φ=[ϕ11…ϕ1n…ϕn1…ϕmn]T,F=[f11…f1n…fn1…fmn]T.
The boundary condition can be solved by substitution method, additional method or elimination method, see [26]. We adopt substitution method and additional method to deal with boundary condition.
In this part, error estimate of the FC equation is given with rn(s)=n∑i=1ri(s)ϕi to replace ϕ(s), where ri(s) is defined as (2.9) and ϕi=ϕ(si). We also define
e(s):=ϕ(s)−rn(s)=(s−si)⋯(s−si+d)ϕ[si,si+1,…,si+d,s], | (3.1) |
see reference [18].
Then we have
Lemma 1. For e(s) be defined by (3.1) and ϕ(s)∈Cd+2[a,b],d=1,2,⋯, there
|e(k)(s)|≤Chd−k+1,k=0,1,⋯. | (3.2) |
For the FC equation, rational interpolation function of ϕ(t,s) is defined as rmn(t,s)
rmn(t,s)=m+ds∑i=1n+dt∑j=1wi,j(s−si)(t−tj)ϕi,jm+ds∑i=1n+dt∑j=1wi,j(s−si)(t−tj) | (3.3) |
where
wi,j=(−1)i−ds+j−dt∑k1∈Jik1+ds∏h1=k1,h1≠j1|si−sh1|∑k2∈Jik2+dt∏h2=k2,h2≠j1|tj−th2|. | (3.4) |
We define e(t,s) be the error of ϕ(t,s) as
e(t,s):=ϕ(t,s)−rmn(t,s)=(s−si)⋯(s−si+ds)ϕ[si,si+1,…,si+d1,s;t]+(t−tj)⋯(t−tj+dt)ϕ[s;tj,tj+1,…,tj+d2,t]−(s−si)⋯(s−si+ds)(t−tj)⋯(t−tj+dt)ϕ[si,si+1,…,si+d1,s;tj,tj+1,…,tj+d2,t]. | (3.5) |
With similar analysis of Lemma 1, we have
Theorem 1. For e(t,s) defined as (3.5) and ϕ(t,s)∈Cds+2[a,b]×Cdt+2[0,T], then we have
|e(k1,k2)(s,t)|≤C(hds−k1+1s+hdt−k2+1t),k1,k2=0,1,⋯. | (3.6) |
Let ϕ(sm,tn) be the approximate function of ϕ(t,s) and L to be bounded operator, there holds
Lϕ(tm,sn)=f(tm,sn) | (3.7) |
and
limm,n→∞Lϕ(tm,sn)=ϕ(t,s). | (3.8) |
Then we get
Theorem 2. For ϕ(tm,sn):Lϕ(tm,sn)=ϕ(t,s) and L defined as (3.7), there
|ϕ(t,s)−ϕ(tm,sn)|≤C(hds−1+τdt−1). |
Proof. By
Lϕ(t,s)−Lϕ(tm,sn)=∂ϕ(t,s)∂t− 0C1−α1t∂2ϕ(t,s)∂s2+μ0 0C1−α2tϕ(t,s)−f(t,s)−[∂ϕ(tm,sn)∂t− 0C1−α1t∂2ϕ(tm,sn)∂s2+μ0 0C1−α2tϕ(tm,sn)−f(tm,sn)]=∂ϕ∂t−∂ϕ∂t(tm,sn)−[0C1−α1t∂2ϕ∂s2− 0C1−α1t∂2ϕ∂s2(sm,tn)]+μ0[0C1−α2tϕ(t,s)− 0C1−α2t(tm,sn))]−[f(t,s)−f(tm,sn)]:=E1(t,s)+E2(t,s)+E3(t,s)+E4(t,s), | (3.9) |
here
E1(t,s)=∂ϕ∂t−∂ϕ∂t(tm,sn), |
E2(t,s)=0C1−α1t∂2ϕ∂s2− 0C1−α1t∂2ϕ∂s2(tm,sn), |
E3(t,s)=μ0[0C1−α2tϕ(t,s)− 0C1−α2t(tm,sn))], |
E4(t,s)=f(t,s)−f(tm,sn). |
As for E1(t,s), we get
E1(t,s)=|∂ϕ∂t(t,s)−∂ϕ∂t(tm,sn)|=|∂ϕ∂t(t,s)−∂ϕ∂t(tm,s)+∂ϕ∂t(tm,s)−∂ϕ∂t(tm,sn)|≤|∂ϕ∂t(t,s)−∂ϕ∂t(tm,s)|+|∂ϕ∂t(tm,s)−∂ϕ∂t(tm,sn)|=|m−ds∑i=1(−1)i∂ϕ∂t[si,si+1,…,si+d1,sn,t]m−ds∑i=1λi(s)|+|n−dt∑j=1(−1)j∂ϕ∂t[tj,tj+1,…,tj+d2,sn,tm]n−dt∑j=1λj(t)|=|∂e∂t(tm,s)|+|∂e∂t(tm,sn)|, |
we get
|E1(t,s)|≤C(hds+τdt). | (3.10) |
As E2(t,s), we have
E2(t,s)=0C1−α1t∂2ϕ∂s2− 0C1−α1t∂2ϕ∂s2(tm,sn)=Γξα2[∂ξ+2ϕ(0,s)∂tξ∂s2sξ−α2+∫t0∂ξ+3ϕ(τ,s)∂τξ+1∂s2dτ(t−τ)α2−ξ]−Γξα2[∂ξ+2ϕ(0,sn)∂tξ∂s2sξ−α2n+∫tm0∂ξ+3ϕ(τ,sn)∂τξ+1∂s2dτ(tm−τ)α2−ξ]=Γξα2[∂ξ+2ϕ(0,s)∂tξ∂s2sξ−α2−∂ξ+2ϕ(0,sn)∂tξ∂s2sξ−α2n]+Γξα2[∫t0∂ξ+3ϕ(τ,s)∂τξ+1∂s2dτ(t−τ)α2−ξ−∫tm0∂ξ+3ϕ(τ,sn)∂τξ+1∂s2dτ(tm−τ)α2−ξ] | (3.11) |
and
|E2(t,s)|≤|Γξα2[∂ξ+2ϕ(0,s)∂tξ∂s2sξ−α2−∂ξ+2ϕ(0,sn)∂tξ∂s2sξ−α2n]|+|Γξα2[∫t0∂ξ+3ϕ(τ,s)∂τξ+1∂s2dτ(t−τ)α2−ξ−∫tm0∂ξ+3ϕ(τ,sn)∂τξ+1∂s2dτ(tm−τ)α2−ξ]|≤|Γξα2||∂ξ+2ϕ∂tξ∂s2(0,s)−∂ξ+2ϕ∂tξ∂s2(0,sn)|+|Γξα2||∂ξ+3ϕ∂tξ+1∂s2(t,s)−∂ξ+3ϕ∂tξ+1∂s2(tm,sn)|:=E21(t,s)+E22(t,s) | (3.12) |
where
E21(t,s)=|Γξα2||∂ξ+2ϕ∂tξ∂s2(0,s)−∂ξ+2ϕ∂tξ∂s2(0,sn)|,E22(t,s)=|Γξα2||∂ξ+3ϕ∂tξ+1∂s2(t,s)−∂ξ+3ϕ∂tξ+1∂s2(tm,sn)|. | (3.13) |
Now we estimate E21(t,s) and E22(t,s) part by part, for the second part we have
E22(t,s)=|Γξα2||∂ξ+3ϕ∂tξ+1∂s2(t,s)−∂ξ+3ϕ∂tξ+1∂s2(tm,sn)|=|Γξα2||∂ξ+3ϕ∂tξ+1∂s2(t,s)−∂ξ+3ϕ∂tξ+1∂s2(tm,s)+∂ξ+3ϕ∂tξ+1∂s2(tm,s)−∂ξ+3ϕ∂tξ+1∂s2(tm,sn)|≤|Γξα2||∂ξ+3ϕ∂tξ+1∂s2(t,s)−∂ξ+3ϕ∂tξ+1∂s2(tm,s)|+|Γξα2||∂ξ+3ϕ∂tξ+1∂s2(tm,s)−∂ξ+3ϕ∂tξ+1∂s2(tm,sn)|=|Γξα2||m−ds∑i=1(−1)i∂ξ+3ϕ∂tξ+1∂s2[si,si+1,…,si+d1,sn,t]m−ds∑i=1λi(s)|+|Γξα2||n−dt∑j=1(−1)j∂ξ+3ϕ∂tξ+1∂s2[tj,tj+1,…,tj+d2,sn,tm]n−dt∑j=1λj(t)|=|Γξα2||∂ξ+3e∂tξ+1∂s2(tm,s)|+|Γξα2||∂ξ+3e∂tξ+1∂s2(tm,sn)|, |
then we have
|E22(t,s)|≤|∂ξ+3e∂tξ+1∂s2(tm,s)|+|∂ξ+3e∂tξ+1∂s2(tm,sn)|≤C(hds−ξ+τdt−1). | (3.14) |
For E21(t,s), we get
|E21(t,s)|≤C(hds+1−ξ+τdt−1). | (3.15) |
Similarly as E2(t,s), for E3(t,s) we have
|E3(t,s)|≤C(hds+τdt). | (3.16) |
Combining (3.9), (3.14), (3.16) together, proof of Theorem 2 is completed.
In this part, one example is presented to test the theorem. The nonuniform partition in this experiment defined as second kind of Chybechev point s=cos((0:m)′π/m),t=cos((0:n)′π/n).
Example 1. Consider the FC equation
∂ϕ∂t= 0C1−α1t∂2ϕ∂s2ϕ(t,s)−μ0 0C1−α2tϕ(t,s)+f(t,s),0≤s≤1,0≤t≤T, |
with the analysis solutions is
ϕ(t,s)=t2sin(πs), |
with the initial condition
ϕ(s,0)=0, |
and boundary condition
ϕ(0,t)=ϕ(1,t)=0, |
and
f(t,s)=2(t+π2t1+α1Γ(2+α1)+t1+α2Γ(2+α2))sin(πs). |
In Figures 1 and 2, errors of m=n=10, [a,b]=[0,1] and m=n=10,dt=ds=7, [a,b]=[0,1] in Example 1. (a) uniform; (b) nonuniform for FC equation by rational interpolation collocation methods are presented, respectively. From the figure, we know that the precision can reach to 10−6 for both uniform and nonuniform partition.
In Table 1, errors of the FC equation with m=n=10,α1=α2=0.2 for substitution methods and additional methods are presented, there are nearly no difference for the two methods. Additional method is more simple than substitution methods to add the boundary condition. In the following, we choosing the substitution method to deal with the boundary condition.
method of substitution | method of additional | |||
uniform | nonuniform | uniform | nonuniform | |
Larange | 1.4662e-06 | 2.1919e-08 | 2.7900e-07 | 1.4310e-07 |
Rational | 1.3038e-05 | 2.4541e-07 | 4.9788e-06 | 1.4310e-07 |
Errors of the FC equation for α1=0.4,α2=0.6,dt=ds=5 with t=0.1,0.9,1,5,10,15 are presented under the uniform and nonuniform in Table 2. As the time variable become from 0.5 to 15, there are high accuracy for our methods. We can improve the accuracy by increasing m,n or choosing the parameter dt,ds approximately which means our methods is useful.
uniform | nonuniform | uniform | nonuniform | |
t | (12,12) | (12,12) | (12,12)dt=ds=5 | (12,12)dt=ds=5 |
0.5 | 2.1021e-11 | 3.8250e-09 | 6.8506e-06 | 1.6436e-06 |
1 | 9.0394e-13 | 4.4206e-10 | 4.6667e-06 | 7.8141e-07 |
5 | 6.1833e-12 | 5.6655e-08 | 2.3777e-04 | 4.2230e-05 |
10 | 1.0094e-12 | 8.5622e-07 | 1.9813e-04 | 1.5634e-05 |
15 | 3.5397e-12 | 1.8827e-05 | 8.5498e-04 | 8.2551e-05 |
In Table 3, errors of α1=0.01,0.1,0.3,0.5,0.9,0.99 under uniform with m=n=10,dt=5,ds=5 with α2=0.1,0.4,0.6,0.8,0.99 are presented under the uniform partition. From the table, we know that for different α1,α2 our methods have high accuracy with little number m and n. In the following table, numerical results are presented to test our theorem. From Tables 4 and 5, error of uniform for α1=α2=0.2,ds=5 with different dt are given, the convergence rate is O(hdt). From Table 5, with space variable uniform for α1=α2=0.2,dt=5, the convergence rate is O(h7), we will investigate in future paper. For Tables 6 and 7, the errors of Chebyshev partition for s and t are presented. For dt=5, the convergence rate is O(hds) in Table 6, while in Table 7, the convergence rate is O(hdt) which agrees with our theorem.
α1 | α2=0.1 | α2=0.4 | α2=0.6 | α2=0.8 | α2=0.99 |
0.01 | 1.0153e-04 | 1.0246e-04 | 1.0300e-04 | 1.0346e-04 | 1.0384e-04 |
0.1 | 1.2753e-05 | 1.2865e-05 | 1.2930e-05 | 1.2987e-05 | 1.3033e-05 |
0.3 | 2.7464e-05 | 2.7704e-05 | 2.7845e-05 | 2.7971e-05 | 2.8074e-05 |
0.5 | 4.5746e-06 | 4.6152e-06 | 4.6399e-06 | 4.6609e-06 | 4.6794e-06 |
0.9 | 9.0295e-06 | 9.1193e-06 | 9.1240e-06 | 9.2142e-06 | 9.2479e-06 |
0.99 | 1.8981e-06 | 1.8247e-06 | 1.5293e-06 | 1.9193e-06 | 2.0670e-06 |
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 1.3626e-02 | 6.9619e-03 | 2.0708e-03 | 9.8232e-04 | ||||
10 | 9.6780e-03 | 1.5332 | 3.4354e-03 | 3.1653 | 6.9542e-04 | 4.8900 | 3.2829e-04 | 4.9117 |
12 | 7.0485e-03 | 1.7389 | 1.9408e-03 | 3.1320 | 2.9186e-04 | 4.7621 | 1.3132e-04 | 5.0255 |
14 | 5.4466e-03 | 1.6725 | 1.2017e-03 | 3.1097 | 1.4211e-04 | 4.6686 | 6.0148e-05 | 5.0654 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 4.9495e-04 | 4.9492e-04 | 4.9486e-04 | |||
10 | 1.0051e-04 | 7.1443 | 1.0053e-04 | 7.1431 | 1.0053e-04 | 7.1426 |
12 | 2.7700e-05 | 7.0690 | 2.7711e-05 | 7.0679 | 2.7714e-05 | 7.0673 |
14 | 9.4272e-06 | 6.9921 | 9.4315e-06 | 6.9917 | 9.4314e-06 | 6.9925 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 2.8113e-05 | 2.8110e-05 | 2.8108e-05 | |||
10 | 2.1197e-05 | 1.2654 | 2.1196e-05 | 1.2652 | 2.1195e-05 | 1.2651 |
12 | 6.6990e-06 | 6.3180 | 6.6989e-06 | 6.3178 | 6.6988e-06 | 6.3176 |
14 | 1.6712e-06 | 9.0069 | 1.6712e-06 | 9.0068 | 1.6712e-06 | 9.0067 |
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 3.1539e-02 | 8.7995e-03 | 2.1930e-03 | 3.3004e-04 | ||||
10 | 2.4329e-02 | 1.1632 | 4.0288e-03 | 3.5010 | 2.7133e-04 | 9.3648 | 2.2278e-04 | 1.7613 |
12 | 1.5223e-02 | 2.5716 | 1.9127e-03 | 4.0859 | 9.5194e-05 | 5.7449 | 5.1702e-05 | 8.0116 |
14 | 1.1407e-02 | 1.8721 | 1.1143e-03 | 3.5049 | 3.5772e-05 | 6.3493 | 1.1369e-05 | 9.8255 |
In the following table, α1=0.4,α2=0.6 is chosen to present numerical results. From Tables 8 and 9, error of uniform partition dt=5 with different ds are given, the convergence rate is O(h7). From Table 8, with space variable s,ds=5, the convergence rate is O(hdt) which agrees with our theorem.
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 4.9427e-04 | 4.9426e-04 | 4.9414e-04 | |||
10 | 1.0035e-04 | 7.1455 | 1.0041e-04 | 7.1427 | 1.0041e-04 | 7.1413 |
12 | 2.7639e-05 | 7.0720 | 2.7674e-05 | 7.0684 | 2.7684e-05 | 7.0669 |
14 | 9.3984e-06 | 6.9977 | 9.4153e-06 | 6.9942 | 9.4254e-06 | 6.9895 |
m,n | dt=1 | dt=2 | dt=3 | dt=4 | ||||
8 | 1.3587e-02 | 6.9513e-03 | 2.0677e-03 | 9.8084e-04 | ||||
10 | 9.6497e-03 | 1.5334 | 3.4314e-03 | 3.1637 | 6.9462e-04 | 4.8884 | 3.2791e-04 | 4.9102 |
12 | 7.0259e-03 | 1.7404 | 1.9389e-03 | 3.1311 | 2.9157e-04 | 4.7613 | 1.3118e-04 | 5.0249 |
14 | 5.4269e-03 | 1.6752 | 1.2005e-03 | 3.1096 | 1.4198e-04 | 4.6682 | 6.0090e-05 | 5.0648 |
For Tables 10 and 11, the errors of Chebyshev partition for non-uniform with α1=0.4,α2=0.6 are presented. For dt=5, the convergence rate is O(h7) in Table 11, while in Table 10, the convergence rate is O(hdt) which agrees with our theorem.
m,n | dt=1 | dt=2 | dt=3 | dt=4 | ||||
8 | 3.1481e-02 | 8.7825e-03 | 2.1876e-03 | 3.2930e-04 | ||||
10 | 2.4263e-02 | 1.1671 | 4.0219e-03 | 3.5000 | 2.7124e-04 | 9.3553 | 2.2231e-04 | 1.7606 |
12 | 1.5185e-02 | 2.5704 | 1.9076e-03 | 4.0912 | 9.5106e-05 | 5.7481 | 5.1649e-05 | 8.0057 |
14 | 1.1373e-02 | 1.8751 | 1.1117e-03 | 3.5026 | 3.5733e-05 | 6.3504 | 1.1365e-05 | 9.8211 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 2.8065e-05 | 2.8059e-05 | 2.8056e-05 | |||
10 | 2.1156e-05 | 1.2665 | 2.1154e-05 | 1.2660 | 2.1153e-05 | 1.2656 |
12 | 6.6875e-06 | 6.3168 | 6.6874e-06 | 6.3164 | 6.6873e-06 | 6.3161 |
14 | 1.6693e-06 | 9.0033 | 1.6693e-06 | 9.0031 | 1.6693e-06 | 9.0030 |
In this paper, BRIM was used to solve the (1+1) dimensional FC equation that is presented. For fractional-order PDEs, the convergence order is seriously affected by the orders of fractional derivatives. By fractional integration, the singularity of the fractional derivative of the FC equation can be changed to nonsingular integral, with adding one order to the derivatives of density function. So there are no effects on the orders of fractional derivatives. The singularity of fractional derivative is overcome by the integral to density function from the singular kernel. For the arbitrary fractional derivative, the new Gauss formula is constructed to calculated it simply. For the Diriclet boundary condition, the FC equation is changed to the discrete FC equation and the matrix equation of it is given. In the future, the FC equation with Nuemann condition can be solved by BRIM, and high dimensional FC equation can also be studied by our methods.
The work of Jin Li was supported by Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003).
The authors declare that they have no conflicts of interest.
[1] | G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Ration. Mech. An., 92 (1986), 205–245. |
[2] | S. Aizicovici, E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, J. Evol. Equ., 1 (2001), 69–84. |
[3] | S. Aizicovici, E. Feireisl, F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Math. Methods Appl. Sci., 24 (2001), 277–287. |
[4] | D. Brochet, X. Chen, D. Hilhorst, Finite-dimensional exponential attractors for the phase-field model, Appl. Anal., 49 (1993), 197–212. |
[5] | M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996. |
[6] | L. Cherfils, A. Miranville, Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 17 (2007), 107–129. |
[7] | L. Cherfils, A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89–115. |
[8] | R. Chill, E. Fasangová, J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448–1462. |
[9] | C. I. Christov, P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 94 (2005), 154301. |
[10] | J. N. Flavin, R. J. Knops, L. E. Payne, Decay estimates for the constrained elastic cylinder of variable cross-section, Quart. Appl. Math., 47 (1989), 325–350. |
[11] | S. Gatti, A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, in: Differential Equations: Inverse and Direct Problems (Proceedings of the workshop "Evolution Equations: Inverse and Direct Problems ", Cortona, June 21–25, 2004), in A. Favini, A. Lorenzi (Eds), A Series of Lecture Notes in Pure and Applied Mathematics, Chapman Hall, 251 (2006), 149–170. |
[12] | C. Giorgi, M. Grasselli, V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana U. Math. J., 48 (1999), 1395–1445. |
[13] | M. Grasseli, A. Miranville, V. Pata, et al. Well-posedness and long time behavior of a parabolichyperbolic phase-field system with singular potentials, Math. Nachr., 280 (2007), 1475–1509. |
[14] | M. Grasselli, On the large time behavior of a phase-field system with memory, Asymptotic Anal., 56 (2008), 229–249. |
[15] | M. Grasselli, A. Miranville, G. Shimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67–98. |
[16] | M. Grasselli, V. Pata, Exstence of a universal attractor for a fully hyperbolic phase-field system, J. Evol. Equ., 4 (2004), 27–51. |
[17] | A. Miranville, Some mathematical models in phase transition, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 271–306. |
[18] | A. Miranville and S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Differential Equations, 2002. |
[19] | Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Commun. Pure Appl. Anal., 4 (2005), 683–693. |
[20] | A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type Ⅲ heat conduction with two temperatures, Q. Appl. Math., 74 (2016), 375–398. |
[21] | A. Andami Ovono, B. L. Doumbé Bangola and M. A. Ipopa, On the Caginalp phase-field system based on type Ⅲ with two temperatures and nonlinear coupling, to appear. |
[22] | M. Grasselli, V. Pata, Robust exponential attractors for a phase-field system with memory, J. Evol. Equ., 5 (2005), 465–483. |
[23] | M. Grasselli, H. Petzeltová, G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potentials, Z. Anal. Anwend., 25 (2006), 51–73. |
[24] | M. Grasselli, H.Wu, S. Zheng, Asymptotic behavior of a nonisothermal Ginzburg-Landau model, Q. Appl. Math., 66 (2008), 743–770. |
[25] | A. E. Green, P. M. Naghdi, A new thermoviscous theory for fluids, J. Non-Newtonian Fluid Mech., 56 (1995), 289–306. |
[26] | A. E. Green, P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. Lond. A, 432 (1991), 171–194. |
[27] | A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264. |
[28] | J. Jiang, Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law, J. Math. Anal. Appl., 341 (2008), 149–169. |
[29] | J. Jiang, Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law, Math. Methods Appl. Sci., 32 (2009), 1156–1182. |
[30] | Ph. Laurencçot, Long-time behaviour for a model of phase-field type, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 167–185. |
[31] | A. Miranville, R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl. Anal., 88 (2009), 877–894. |
[32] | A. Miranville, R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal-Theor, 71 (2009), 2278–2290. |
[33] | A. Miranville, R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling, Nonlinear Anal-Real, 11 (2010), 2849–2861. |
[34] | A. Miranville, S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Differ. Eq., 2002 (2002), 1–28. |
[35] | A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in: C. M. Dafermos, M. Pokorny (Eds. ), Handbook of Differential Equations, Evolutionary Partial Differential Equations, Elsevier, Amsterdam, 2008. |
[36] | A. Novick-Cohen, A phase field system with memory: Global existence, J. Int. Equ. Appl., 14 (2002), 73–107. |
[37] | R. Quintanilla, On existence in thermoelasticity without energy dissipation, J. Thermal Stresses, 25 (2002), 195–202. |
[38] | R. Quintanilla, End effects in thermoelasticity Math. Methods Appl. Sci., 24 (2001), 93–102. |
[39] | R. Quintanilla, R. Racke, Stability in thermoelasticity of type Ⅲ, Discrete Cont. Dyn-B, 3 (2003), 383–400. |
[40] | R. Quintanilla, Phragmén-Lindelöf alternative for linear equations of the anti-plane shear dynamic problem in viscoelasticity, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 423–435. |
[41] | R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, in: Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. |
[42] | Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Commun. Pure Appl. Anal., 4 (2005), 683–693. |
[43] | B. L. Doumbé Bangola, Global and esponential attractors for a Caginalp type phase-field problem, Cent. Eur. J. Math., 11 (2013), 1651–1676. |
[44] | B. L. Doumbé Bangola, Etude de mod`eles de champ de phase de type Caginalp, PhD Thesis, Université de Poitiers, 2013. |
[45] | A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Appl. Math. Opt., 63 (2011), 133–150. |
[46] | A. Miranville and R. Quintanilla, A type Ⅲ phase-field system with a logarithmic potential, Appl. Math. Lett., 24 (2011), 1003–1008. |
[47] | A. Miranville and R. Quintanilla, A generalization of Allen-Cahn equation, IMA J. Appl. Math., 80 (2015), 410–430. |
[48] | P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys. (ZAMP), 19 (1968), 614–627. |
[49] | P. J. Chen, M. E. Gurtin and W. O. Williams, A note on non-simple heat conduction, Z. Angew. Math. Phys. (ZAMP), 19 (1968), 969–970. |
[50] | P. J. Chen, M. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, Z. Angew. Math. Phys. (ZAMP), 20 (1969), 107–112. |
1. | Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106 | |
2. | Jin Li, Yongling Cheng, Spectral collocation method for convection-diffusion equation, 2024, 57, 2391-4661, 10.1515/dema-2023-0110 |
method of substitution | method of additional | |||
uniform | nonuniform | uniform | nonuniform | |
Larange | 1.4662e-06 | 2.1919e-08 | 2.7900e-07 | 1.4310e-07 |
Rational | 1.3038e-05 | 2.4541e-07 | 4.9788e-06 | 1.4310e-07 |
uniform | nonuniform | uniform | nonuniform | |
t | (12,12) | (12,12) | (12,12)dt=ds=5 | (12,12)dt=ds=5 |
0.5 | 2.1021e-11 | 3.8250e-09 | 6.8506e-06 | 1.6436e-06 |
1 | 9.0394e-13 | 4.4206e-10 | 4.6667e-06 | 7.8141e-07 |
5 | 6.1833e-12 | 5.6655e-08 | 2.3777e-04 | 4.2230e-05 |
10 | 1.0094e-12 | 8.5622e-07 | 1.9813e-04 | 1.5634e-05 |
15 | 3.5397e-12 | 1.8827e-05 | 8.5498e-04 | 8.2551e-05 |
α1 | α2=0.1 | α2=0.4 | α2=0.6 | α2=0.8 | α2=0.99 |
0.01 | 1.0153e-04 | 1.0246e-04 | 1.0300e-04 | 1.0346e-04 | 1.0384e-04 |
0.1 | 1.2753e-05 | 1.2865e-05 | 1.2930e-05 | 1.2987e-05 | 1.3033e-05 |
0.3 | 2.7464e-05 | 2.7704e-05 | 2.7845e-05 | 2.7971e-05 | 2.8074e-05 |
0.5 | 4.5746e-06 | 4.6152e-06 | 4.6399e-06 | 4.6609e-06 | 4.6794e-06 |
0.9 | 9.0295e-06 | 9.1193e-06 | 9.1240e-06 | 9.2142e-06 | 9.2479e-06 |
0.99 | 1.8981e-06 | 1.8247e-06 | 1.5293e-06 | 1.9193e-06 | 2.0670e-06 |
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 1.3626e-02 | 6.9619e-03 | 2.0708e-03 | 9.8232e-04 | ||||
10 | 9.6780e-03 | 1.5332 | 3.4354e-03 | 3.1653 | 6.9542e-04 | 4.8900 | 3.2829e-04 | 4.9117 |
12 | 7.0485e-03 | 1.7389 | 1.9408e-03 | 3.1320 | 2.9186e-04 | 4.7621 | 1.3132e-04 | 5.0255 |
14 | 5.4466e-03 | 1.6725 | 1.2017e-03 | 3.1097 | 1.4211e-04 | 4.6686 | 6.0148e-05 | 5.0654 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 4.9495e-04 | 4.9492e-04 | 4.9486e-04 | |||
10 | 1.0051e-04 | 7.1443 | 1.0053e-04 | 7.1431 | 1.0053e-04 | 7.1426 |
12 | 2.7700e-05 | 7.0690 | 2.7711e-05 | 7.0679 | 2.7714e-05 | 7.0673 |
14 | 9.4272e-06 | 6.9921 | 9.4315e-06 | 6.9917 | 9.4314e-06 | 6.9925 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 2.8113e-05 | 2.8110e-05 | 2.8108e-05 | |||
10 | 2.1197e-05 | 1.2654 | 2.1196e-05 | 1.2652 | 2.1195e-05 | 1.2651 |
12 | 6.6990e-06 | 6.3180 | 6.6989e-06 | 6.3178 | 6.6988e-06 | 6.3176 |
14 | 1.6712e-06 | 9.0069 | 1.6712e-06 | 9.0068 | 1.6712e-06 | 9.0067 |
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 3.1539e-02 | 8.7995e-03 | 2.1930e-03 | 3.3004e-04 | ||||
10 | 2.4329e-02 | 1.1632 | 4.0288e-03 | 3.5010 | 2.7133e-04 | 9.3648 | 2.2278e-04 | 1.7613 |
12 | 1.5223e-02 | 2.5716 | 1.9127e-03 | 4.0859 | 9.5194e-05 | 5.7449 | 5.1702e-05 | 8.0116 |
14 | 1.1407e-02 | 1.8721 | 1.1143e-03 | 3.5049 | 3.5772e-05 | 6.3493 | 1.1369e-05 | 9.8255 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 4.9427e-04 | 4.9426e-04 | 4.9414e-04 | |||
10 | 1.0035e-04 | 7.1455 | 1.0041e-04 | 7.1427 | 1.0041e-04 | 7.1413 |
12 | 2.7639e-05 | 7.0720 | 2.7674e-05 | 7.0684 | 2.7684e-05 | 7.0669 |
14 | 9.3984e-06 | 6.9977 | 9.4153e-06 | 6.9942 | 9.4254e-06 | 6.9895 |
m,n | dt=1 | dt=2 | dt=3 | dt=4 | ||||
8 | 1.3587e-02 | 6.9513e-03 | 2.0677e-03 | 9.8084e-04 | ||||
10 | 9.6497e-03 | 1.5334 | 3.4314e-03 | 3.1637 | 6.9462e-04 | 4.8884 | 3.2791e-04 | 4.9102 |
12 | 7.0259e-03 | 1.7404 | 1.9389e-03 | 3.1311 | 2.9157e-04 | 4.7613 | 1.3118e-04 | 5.0249 |
14 | 5.4269e-03 | 1.6752 | 1.2005e-03 | 3.1096 | 1.4198e-04 | 4.6682 | 6.0090e-05 | 5.0648 |
m,n | dt=1 | dt=2 | dt=3 | dt=4 | ||||
8 | 3.1481e-02 | 8.7825e-03 | 2.1876e-03 | 3.2930e-04 | ||||
10 | 2.4263e-02 | 1.1671 | 4.0219e-03 | 3.5000 | 2.7124e-04 | 9.3553 | 2.2231e-04 | 1.7606 |
12 | 1.5185e-02 | 2.5704 | 1.9076e-03 | 4.0912 | 9.5106e-05 | 5.7481 | 5.1649e-05 | 8.0057 |
14 | 1.1373e-02 | 1.8751 | 1.1117e-03 | 3.5026 | 3.5733e-05 | 6.3504 | 1.1365e-05 | 9.8211 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 2.8065e-05 | 2.8059e-05 | 2.8056e-05 | |||
10 | 2.1156e-05 | 1.2665 | 2.1154e-05 | 1.2660 | 2.1153e-05 | 1.2656 |
12 | 6.6875e-06 | 6.3168 | 6.6874e-06 | 6.3164 | 6.6873e-06 | 6.3161 |
14 | 1.6693e-06 | 9.0033 | 1.6693e-06 | 9.0031 | 1.6693e-06 | 9.0030 |
method of substitution | method of additional | |||
uniform | nonuniform | uniform | nonuniform | |
Larange | 1.4662e-06 | 2.1919e-08 | 2.7900e-07 | 1.4310e-07 |
Rational | 1.3038e-05 | 2.4541e-07 | 4.9788e-06 | 1.4310e-07 |
uniform | nonuniform | uniform | nonuniform | |
t | (12,12) | (12,12) | (12,12)dt=ds=5 | (12,12)dt=ds=5 |
0.5 | 2.1021e-11 | 3.8250e-09 | 6.8506e-06 | 1.6436e-06 |
1 | 9.0394e-13 | 4.4206e-10 | 4.6667e-06 | 7.8141e-07 |
5 | 6.1833e-12 | 5.6655e-08 | 2.3777e-04 | 4.2230e-05 |
10 | 1.0094e-12 | 8.5622e-07 | 1.9813e-04 | 1.5634e-05 |
15 | 3.5397e-12 | 1.8827e-05 | 8.5498e-04 | 8.2551e-05 |
α1 | α2=0.1 | α2=0.4 | α2=0.6 | α2=0.8 | α2=0.99 |
0.01 | 1.0153e-04 | 1.0246e-04 | 1.0300e-04 | 1.0346e-04 | 1.0384e-04 |
0.1 | 1.2753e-05 | 1.2865e-05 | 1.2930e-05 | 1.2987e-05 | 1.3033e-05 |
0.3 | 2.7464e-05 | 2.7704e-05 | 2.7845e-05 | 2.7971e-05 | 2.8074e-05 |
0.5 | 4.5746e-06 | 4.6152e-06 | 4.6399e-06 | 4.6609e-06 | 4.6794e-06 |
0.9 | 9.0295e-06 | 9.1193e-06 | 9.1240e-06 | 9.2142e-06 | 9.2479e-06 |
0.99 | 1.8981e-06 | 1.8247e-06 | 1.5293e-06 | 1.9193e-06 | 2.0670e-06 |
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 1.3626e-02 | 6.9619e-03 | 2.0708e-03 | 9.8232e-04 | ||||
10 | 9.6780e-03 | 1.5332 | 3.4354e-03 | 3.1653 | 6.9542e-04 | 4.8900 | 3.2829e-04 | 4.9117 |
12 | 7.0485e-03 | 1.7389 | 1.9408e-03 | 3.1320 | 2.9186e-04 | 4.7621 | 1.3132e-04 | 5.0255 |
14 | 5.4466e-03 | 1.6725 | 1.2017e-03 | 3.1097 | 1.4211e-04 | 4.6686 | 6.0148e-05 | 5.0654 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 4.9495e-04 | 4.9492e-04 | 4.9486e-04 | |||
10 | 1.0051e-04 | 7.1443 | 1.0053e-04 | 7.1431 | 1.0053e-04 | 7.1426 |
12 | 2.7700e-05 | 7.0690 | 2.7711e-05 | 7.0679 | 2.7714e-05 | 7.0673 |
14 | 9.4272e-06 | 6.9921 | 9.4315e-06 | 6.9917 | 9.4314e-06 | 6.9925 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 2.8113e-05 | 2.8110e-05 | 2.8108e-05 | |||
10 | 2.1197e-05 | 1.2654 | 2.1196e-05 | 1.2652 | 2.1195e-05 | 1.2651 |
12 | 6.6990e-06 | 6.3180 | 6.6989e-06 | 6.3178 | 6.6988e-06 | 6.3176 |
14 | 1.6712e-06 | 9.0069 | 1.6712e-06 | 9.0068 | 1.6712e-06 | 9.0067 |
m,n | dt=2 | dt=3 | dt=4 | dt=5 | ||||
8 | 3.1539e-02 | 8.7995e-03 | 2.1930e-03 | 3.3004e-04 | ||||
10 | 2.4329e-02 | 1.1632 | 4.0288e-03 | 3.5010 | 2.7133e-04 | 9.3648 | 2.2278e-04 | 1.7613 |
12 | 1.5223e-02 | 2.5716 | 1.9127e-03 | 4.0859 | 9.5194e-05 | 5.7449 | 5.1702e-05 | 8.0116 |
14 | 1.1407e-02 | 1.8721 | 1.1143e-03 | 3.5049 | 3.5772e-05 | 6.3493 | 1.1369e-05 | 9.8255 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 4.9427e-04 | 4.9426e-04 | 4.9414e-04 | |||
10 | 1.0035e-04 | 7.1455 | 1.0041e-04 | 7.1427 | 1.0041e-04 | 7.1413 |
12 | 2.7639e-05 | 7.0720 | 2.7674e-05 | 7.0684 | 2.7684e-05 | 7.0669 |
14 | 9.3984e-06 | 6.9977 | 9.4153e-06 | 6.9942 | 9.4254e-06 | 6.9895 |
m,n | dt=1 | dt=2 | dt=3 | dt=4 | ||||
8 | 1.3587e-02 | 6.9513e-03 | 2.0677e-03 | 9.8084e-04 | ||||
10 | 9.6497e-03 | 1.5334 | 3.4314e-03 | 3.1637 | 6.9462e-04 | 4.8884 | 3.2791e-04 | 4.9102 |
12 | 7.0259e-03 | 1.7404 | 1.9389e-03 | 3.1311 | 2.9157e-04 | 4.7613 | 1.3118e-04 | 5.0249 |
14 | 5.4269e-03 | 1.6752 | 1.2005e-03 | 3.1096 | 1.4198e-04 | 4.6682 | 6.0090e-05 | 5.0648 |
m,n | dt=1 | dt=2 | dt=3 | dt=4 | ||||
8 | 3.1481e-02 | 8.7825e-03 | 2.1876e-03 | 3.2930e-04 | ||||
10 | 2.4263e-02 | 1.1671 | 4.0219e-03 | 3.5000 | 2.7124e-04 | 9.3553 | 2.2231e-04 | 1.7606 |
12 | 1.5185e-02 | 2.5704 | 1.9076e-03 | 4.0912 | 9.5106e-05 | 5.7481 | 5.1649e-05 | 8.0057 |
14 | 1.1373e-02 | 1.8751 | 1.1117e-03 | 3.5026 | 3.5733e-05 | 6.3504 | 1.1365e-05 | 9.8211 |
m,n | ds=2 | ds=3 | ds=4 | |||
8 | 2.8065e-05 | 2.8059e-05 | 2.8056e-05 | |||
10 | 2.1156e-05 | 1.2665 | 2.1154e-05 | 1.2660 | 2.1153e-05 | 1.2656 |
12 | 6.6875e-06 | 6.3168 | 6.6874e-06 | 6.3164 | 6.6873e-06 | 6.3161 |
14 | 1.6693e-06 | 9.0033 | 1.6693e-06 | 9.0031 | 1.6693e-06 | 9.0030 |