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1. Introduction

The Caginalp phase-field system

ou

E—Au+f(u) —9, (11)
06 ou

E—AO— T (1.2)

has been introduced in [1] in order to describe the phase transition phenomena in certain class of mate-
rial. In this context, 6 denotes the relative temperature (relative to the equilibrium melting temperature),

and u is the phase-field or order parameter, f is a given function (precisely, the derivaritve of a double-
well potential F). This system has received much attention (see for example, [2], [3], [4], [5], [6], [7],
[81, [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [23], [30], [34] and [42]). These equations
can be derived by introducing the (total Ginzburg-Landau) free energy:

_ 1 2 1 2
‘”‘L(EW +F(u)—u0—§9)dx, (1.3)
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where Q is the domain occupied by the system (here, we assume that it is a bounded and smooth
domain of R", n = 1, 2 or 3, with boundary 9dQ2), and the enthalpy

H=u+6. (1.4)

Then, the evolution equation for the order parameter u is given by:

ou

i =0y, (1.5)

where ¢, stands for the variational derivative with respect to u, which yields (1.1). Then, we have the

energy equation

oH

— = —divg, 1.6

gy vq (1.6)
where ¢ is the heat flux. Assuming finally the classical Fourier law for heat conduction, which pre-
scribes the heat flux as

q=-V6, (1.7)
we obtain (1.2). Now, a well-known side effect of the Fourier heat law is the infinite speed of propaga-

tion of thermal disturbances, deemed physically unreasonable and thus called paradox of heat conduc-
tion (see, for example, [9]). In order to account for more realistic features, several variations of (1.7),

based, for example, on the Maxwell-Cattaneo law or recent laws from thermomechanics, have been
proposed in the context of the Caginalp phase-field system (see, for example, [20], [21], [22], [24],
[25], [26], [27], [28], [29], [311, [32], [36], [37], [38], [39], [45], [46] and [47]).

A different approach to heat conduction was proposed in the Sixties (see, [48], [49] and [50]),
where it was observed that two temperatures are involved in the definition of the entropy: the conduc-
tive temperature 6, influencing the heat conduction contribution, and the thermodynamic temperature,
appearing in the heat supply part. For time-independent models, it appears that these two temperatures
coincide in absence of heat supply. Actually, they are different generally in the time depedent case see,
for example, [20] and references therein for more discussion on the subject. In particular, this happens
for non-simple materials. In that case, the two temperatures are related as follows (see [43], [44]):

0 =¢— Agp. (1.8)

Our aim in this paper is to study a generalization of the Caginalp phase-field system based on this two
temperatures theory and the usual Fourier law with a nonlinear coupling.

The purpose of our study is the following initial and boundary value problem

Ou

i Au+ f(u) = g(u)(p — Ap), (1.9)
oy 0y ou

L AL _Ap=- — 1.1
i Fria g(u)at, (1.10)
u=¢ =0onodQ, (1.11)
Ul=o = Uy, Pli=0 = o. (L.12)

The paper is organized as follows. In Section 2, we give the derivation of the model. The Section 3
states existence, regularity and uniqueness results. In Section 4, we address the question of dissipativity

AIMS Mathematics Volume 3, Issue 2, 298-315



300

properties of the system. The last section, analyzes the spatial behavior of solutions in a semi-infinite
cylinder, assuming their existence.

77

Thoughout this paper, the same letters ¢, ¢’, ¢, and sometimes ¢”’ denote constants which may
change from line to line and also ||.||, will denote the usual L” norm and (.,.) the usual L? scalar
product. More generally, we will denote by ||.||y the norm in the Banach space X. When there is no
possible confusion, ||.|| will be noted instead of ||.||,.

2. Derivation of the model

In our case, to obtain equations (1.9) and (1.10), the total free energy reads in terms of the conductive
temperature 6,

W, 6) = fg (%Nmz + F(u) - Gu)f — %Hz)dx, @.1)

where f = F’ and g = G’, and (1.5) yields, in view of (1.8), the evolution equation for the order
parameter (1.9). Furthermore, the enthalpy now reads

H=Gu)+0=Gu)+¢-Ayp, (2.2)
which yields thanks to (1.6), the energy equation,

Oy oo . ou
% A divg = g 2.
o D Tava= st 23)

Considering the usual Fourier law (¢ = —V ¢), one has (1.10).

Remark 2.1. We can note that we still have an infinite speed of propagation here.
3. Existence and uniqueness of solutions

Before stating the existence result, we make some assumptions on nonlinearities f and g:

IG(s)* < i F(s) +ca, co,c1,¢0 20, (3.1)

lg(s)s| < c3(IG()F + 1), 320, (3.2)

cy 8 —cs S F(s) < f(s)s+co < c s =7, c4,06 >0, c5,07 20, (3.3)
g < cs(Isl+ 1), ') <cg c5,09 20, (3.4)

IF () < erollsl + 1),  ¢10 >0, (3.5)

where k is an integer.

Theorem 3.1. We assume that (3.1)—(3.4) hold true. For all initial data (ug, ¢o) € H(€) N L**(Q) x
Hé(Q) N H*(Q), the problem (1.9)—(1.12) possesses at least one solution (u, ) with the following
regularity u € L>(0, T;Hé(Q)) N LH2(Q), % € L*(0,T;L*(Q)), ¢ € L™(0, T;Hé(Q) N H*(Q)) and
% € [X(0,T; HY(Q)).
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Proof. The proof is based on the Galerkin scheme. Here, we just make formally computations to get
a priori estimates, having in mind that these estimates can be rigourously justified using the Galerkin

scheme see, for example, [11], [12] and [41] for details.
Multiplying (1.9) by % and integrating over 2, we get

li(HVullz +2fF(u)dx)+ H@
Q ot

2 ou
2 —ng(u)E(so—Acp)dx-

Multiplying (1.10) by ¢ — Ag and integrating over €2, we have

1d
EE(IIWII2 +2lVell? + I1Agl) + 11Vl + [|Agl?

ou
=- fg 8u) = (¢ — Ap) dx.

Now, summing (3.6) and (3.7), we are led to,

d
E(IIVMIIZ ) f Fuydx + [l¢l? + 21Vl + ||A<p||2)
Q

ou
2 -
* (“81

Multiplying (1.9) by u and integrating over €2, we obtain

1d
Ed—llull2 +[|Vaull* + ff(u)u dx = fg(u)u(so - Ap) dx.
t Q Q

Using (3.2)—(3.3), (3.9) becomes

1d
Ed—tllullz+||Vu||2+c‘fQF(u)dx

1
<c f Gl dx + E(II‘,OII2 +1Agl?) +¢”.
Q

Adding (3.8) and (3.10), one has

dE,

oull?
e (N f F(u)dx+|'§ +IVIP) + AP
Q

dt
<c f GG dx + gl +¢”,
Q

where
Ey = ull + [Vall> +2 f Fu)dx + Il + 219l + IAgl
Q
enjoys
By < ol g + 133 + gy ) -
and

2 k+2 2
El S CN(HMHHI(Q) + ||u||k:2 + ”QDHHZ(Q)) - C”/.

2
+ Vel + ||A<,o||2) - 0.

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Multiplying now (1.10) by ‘;—f and integrating over €2, we have

2
:—fg(u)@a—‘pdx. (3.15)
Q

1d dp||? A
sVl o) Ve
Vel 13710 1V 5 o1 o1

2 dt

Taking into account (3.4) and using Holder’s inequality, we get

1d 1 ||0¢|* || Aul
e\ —H— HV— < c(|[Vul* + 1 H— 3.16
2dt” ¢l 230 1V c(lVull” + 1) E (3.16)
and then, summing (3.11) and (3.16), we have
£ +2(||v P+ fF( vax+ |24
— u c wydx + ||—
dt Q ot
1 1|00 Ao
+ IVel? + =|IA 2+—|'— +“V— ) (3.17)
IVell 2|| el 53 ”
2 2 ’” 2 8” ? "
<c [ Gl dx+lloll” + c"(IVull” + D) || || +c",
Q ot
where
E; = E + ||Vl (3.18)
satisfies similar estimates as E£;. We deduce from (3.1) and (3.17)
dE, de||* H a<p”2)
— — V= |<E " 1
- +C(H0t A DR (3.19)
which achieve the proof.
O
For more regularity on solutions, we make following additional assumptions:
f(0)=0and f'(s) > —c, ¢ = 0. (3.20)

We have:

Theorem 3.2. Under assumptions of Theorem 3.1 and assuming that (3.20) is satisfied. For every
initial data (uy, ¢o) € Hy(Q) N L**(Q) x Hy(Q) N HX(Q), the problem (1.9)~(1.12) admits at least
one solution (u, @) such that u € L™(0,T; Hy(Q)) N L**(Q), §* € L™(0, T; LA(€)) N L*(0, T; Hy(Y),
¢ € L~(0,T; Hy(Q) N HX(Q)) and ‘Z—‘f € L*(0,T; H)(©) N H*(Q)).

Proof. As above proof, we focus on a priori estimates.
We multiply (1.10) by —AZ—‘f and have, integrating over €,

1d dp||? 0p
—— ||Vl + HV— + HA—
Vel " F”

2
ou 0Oy
= —A—dx. 21
2 dr fgg(”)at o (3-21)
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Thanks to (3.4) and Holder’s inequality:

fg(u)%A%dec 8—"0 dx
@ ) (3.22)
_HAa_S"
21 ot
and then,
1| d¢l?
s+ [V 5 lear] < G2
Differentiating (1.9) with respect to time, we get
0’u 8u ou dp  Op
— - — =g wW—(p-A (—— —). 3.24
pr f() g(u)at(so @)+ gu) o o (3.24)
Multiplying (3.24) by and integrating over ), we obtain
ld‘au 2 | f
S5 Fra|5
2dt || Ot o L ] (3.25)
ufop 14
fg(u) fg(u) (at Aat)dx'
Using (1.10), we write,
f (u ﬂ(‘f’?—f—f’;’)d f g(u)%(—g(u>%+w)dx
@ P 5 (3.26)
u u
—| d —Apdx.
Qg(u)at x+j;g(u)al pdx
Owing to (3.26), (3.25) reads
i |
X
2dt . ot ; o (3.27)
u u
ZAodx — =
fg(u) o fgg(u)at pdx j;g(u)at X,
since
. |oul? Aul
[ w|] @-apdr<e [ |5 o+ agax
Q 0 qlot
R (3.28)
< 2|y 2 2
<3 |75 | + et +nagipy
0 0 0
f e) ZApdx = — f & (VuiVgdx - f 2()V Vg dx (3.29)
0 ot o ot o ot
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and then,
0
& WVuiVpdx| < f IVul
5 ot
1 ou
<< HVT + clIVulPllAgl?
and
ou ou
V—Vodx| < + 1D |IV—||Veld
]fgg(u) 9 x_cfgum >‘ ath ol dx
1 oull?
< —[IV=I| + c(|Vull* + D||Ve|].
_6H v + DI
Furthemore,

dx
Now, collecting (3.27)—(3.32) and owing to (3.20), we are led to

d ||0ull* oul* u

NG |5 < g+ v HE gl

Adding (3.19), £(3.23) and &,(3.33), with g; > 0, i = 1,2, small enough, we obtain

d E;

—+c “ < c’'Es+c”,
dt H'(Q) ot H2(§2>
where
ou|?
2
Ez = E, + &||Voll” + & ||
ot
enjoys
k+2 2
E3 = c(”u”H(Q) + ||u||k12 + ”QD”HZ(Q)) - Cl
and
77 k+2 2 22
Es < " (Il + IllE33 + 1gln0) — €

We complete the proof applying Gronwall’s lemma.

We now give a uniqueness result

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

Theorem 3.3. Under assumptions of Theorem 3.2 and assuming that (3.5) holds true. The problem

(1.9)—(1.12) has a unique solution (u, @), with the above regularity.
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Proof. We suppose the existence of two solutions (1, ¢;) and (u, ¢;) to problem (1.9)—(1.11) associ-

ated to initial conditions (ug1, ¢o1) and (1, ¢o2), respectively. We then have

0

a_bzt —Au+ f(uy) — flup) = g(ul)(w - Aso) +(g(uy) - g(uz))(saz - Asoz),
de A ~ ou Oou,

i AE —Ap = —8(M1)E - (g(uy) - g(uz))_at ,

ulso = ¢@lag = 0,
Uli—o = o1 — U2, Pli=o = o1 — P02,
with u = u; —uy, ¢ = @1 — @2, Up = U1 — upz and @y = Yo1 — Po2-

Multiplying (3.38) by % and integrating over €, we have

1d
— 2 IVull?
5> 7Vl +

0 0
= f g(u) (¢ - Aso)a—L; dx + f (g(ur) — g(u2)) (g2 — A«pz)a—b; dx.
Q Q

2 ou
+ j; (fur — f(uz)))a dx

ou
ot

Multiplying (3.39) by ¢ and integrating over €, one has
1d 5 5 5 f ou
—— \Y VolI* = - —pd
2dt(llsoll +IVell) + [[Vell Qg(m)atso x

o
- fQ (g(ul)—g(uz))ﬁsodx.

Multiplying (3.39) by —Ag and integrating over 2, we obtain
1d ou
——((IV 2 A 2 A 2 :f —Apd
2dz(“ olI” + [1A¢ll") + [[Agl| Qg(ul)at pdx

ou
+ f (8(ur) - g(uz))a—zAgo dx.
Q t
Finally, adding (3.42), (3.43) and (3.44), we get

|
ot

2
0
7 + Vel + IIA¢II2+L(f(u1)—f(uz))a—? dx

0
= f (g(uy) — gu2)) (g2 — sz)a—l: dx
Q

o
- f (st~ 8))o ~ Ap) 2
Q

where
Ey = |IVull® + llgll> + 21IVel* + [|Agl.
Now, owing to (3.5), and applying Holder’s inequality for k = 2, when n = 3, we can write

ou
—|d
or|

0
f (F) = flu) g dr < c f (ol + Dl
Q t o
2
< eIVl + DIV + ”% ,

(3.38)

(3.39)

(3.40)
(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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we also get, thanks to (3.4), and applying Holder’s inequality,

ou
—| d
ot x

)
f (g(u1) — g(u2)) (2 — AS02)6—L; dx < Cf lullpr — Agy|
¢ ° 5 (3.48)

Oou
< clVulPlieall® + 1A@al) + || =

and

ou ou
f (g(t)) — g(u2))(p — Ap)—— dx < cf lul —\ lp — Agldx
a ot o |0t

P (3.49)
u
<c 6_t2H (Il + 1A@I?) + IV ul.
From (3.45)—(3.49), we deduce a differential inequality of the type
dE ou||* ous ||*
TS| < comuat + | Z2| + 1l? + 18l + DE (3.50)
In particular,
dE,
—— < cE 3.51
dr CLy ( )
and then applying the Gronwall’s lemma to (3.51), we end the proof.
O

4. Dissipativity properties of the system

This section is devoted to the existence of bounded absorbing sets for the semigroup S (¢), > 0. To
this end, we consider a more restrictive assumption on G, namely,

Ve>0, |G <eF(s)+ce, s €R. 4.1)

We then have

Theorem 4.1. Under the assumptions of the Theorem 3.3 and assuming that (4.1) holds true. Then,
u € L*(R*; Hy(Q)) N L*2(Q), ¢ € L*(RY; Hy(Q) N H*(Q)).
Proof. Going from (3.8) and (3.10), we get, summing (3.8) and 6(3.10), with 6 > 0, as small as we

need,

dEs

p
o +2(c||Vu||2 +6LF(u)dx+ Ha_b;

<2¢'6 f G@)P dx + (Il + IAGIP) + ¢ “2)
Q

2
Vel + IIAQOIIZ)

< 26'(5f G dx + 5(clIVell® + 11A@IP) +¢”,
Q

where

Es = 6ljull® + Vul* + 2 f Fu)dx + llgl® + 20IVell® + llAgl® (4.3)
Q
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satisfies
E- > 2 k+2 2 ’ 4.4
5 < c ||u||Hl(Q) + ||u||k+2 + ||‘70||H2(Q) - C ( . )

and
2 k+2 2
Es < (Il + W13 + el ) — 4.5)

From (4.2) and owing to (4.1), we obtain

dE ?
d—5 + 2(c||Vu||2 + 6fF(u) dx + a—” +[|Vel* + ||A¢||2)
! o ! (4.6)
< C. [ Fadx+ (clVelP + 16a) + C.
Q
where C. and C, are positive constants which depend on €. Now, choosing € and ¢ such that:
26 > Ccand 2 > co, 4.7
we then deduce from (4.6),
dEs ’ u)* )
——— tclEs + || — <c, 4.8
di C( STl ) =€ 48)
we complete the proof applying the Gronwall’s lemma.
O

Remark 4.2. It follows from theorems 3.1, 3.2 and 4.1 that we can define the family solving operators:

S):®— D,
(1o, o) > (u(®), (1)), V1 =0,

where ® = Hé(Q) X Hé(Q) N H*(Q), and (u, ) is the unique solution to the problem (1.9)—(1.12).
Moreover, this family of solving operators forms a continuous semigroup i.e., S(0) = Id and S(t +7) =
S oS(),Vt, T > 0. And then, it follows from (4.8) that S(t) is dissipative in ©, it means that
it possesses a bounded absorbing set By C ® ie., YB C ®(bounded),Aty = ty(B) such thatt >
to implies S (t)B C By. (see, e.g., [33], [35] for details).

4.9)

5. Spatial behavior of solutions

The aim of this section is to study the spatial behavior of solutions in a semi-infinite cylinder,
assuming that such solutions exist. This study is motivated by the possibility of extending results
obtained above to the case of unbounded domains like semi-infinite cylinders. To do so, we will study
the behavior of solutions in a semi-infinite cylinder denoted R = (0, +oc0) X D, where D is a smooth
bounded domain of R"™!, n being the space dimension. We then consider the problem defined by the
system (1.9)—(1.10) in the semi-infinite R, with n = 3. Furthermore, we endow to this system following
boundary conditions:

u=¢=00n(0, +00) x D x (0,T) (5.1)

and
u(0, x2, x331) = h(x2, x3; 1), 9(0, X2, x3; 1) = l(x2, x3;¢) on {0} x D x (0, T), (5.2)
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where T > 0 is a given final time.
We also consider following initial data

Uli=o = ¢li-o = O on R. (5.3)

Let us suppose that such solutions exist. We consider the function

!
Fo(z,0) = f f e"”(usu,l +o(p1 +¢s) +sosso,1)dads, (5.4)
0 JD(z)
where D(z) = {x € R: x; =z}, u; = 57”1, U; = % and w is a positive constant. Using the divergence

theorem and owing to (5.1), we have

—wt

Fulz+ht)— Fulef) = f (|Vu|2 T 2F W) + gl + 21V + |Aso|2)dx
2 R(z,z+h)

!
; f f e‘w“(luslz+|V90|2+|A<p|2)dxds (5.5)
0 R(z,z+h)
!
LY f f e“”(qulZ £ 2F () + g + 2Vl + IAgolz)dxds,
2 0 R(z,z+h)

where R(z,z+ h)={x€eR:z<x1 <z+h}.

Hence,
(9Fw —wt
0 =2 f (|Vu|2 +2F () + |of* + 2|Vel? + |Ago|2)da
ot 2 Jpe
!
+ f f e‘ws(lu5|2+|V<,0|2+|A<p|2)dads (5.6)
0 JD(z)

!
LY f f e-m‘(wmz +2F (W) + o + 2V + |Ago|2)dads.
2 0 JD@@)

We consider a second function, namely,

!
Gz, 1) = f f e‘w"(usu,lww,]+go,1s>)dads, 5.7)
0 D(z)

where 6 = fot w(s)ds.
Similarly, we have

e—wt

Gu(z+h,t) = Gy(z,1) = 5 f (lul + VO dx
R(z,z+h)

!
; f f e_WS(|Vu|2 T+ Fu + ubdg + g + IVgolz)dxds
0 R(z,z+h)

!
+ 2 f f e (uf> + |VOP) dxds
2 0 R(z,z+h)

t
+ f f e " (G(u) — g(wu)p dxds
0 R(z,z+h)

AIMS Mathematics Volume 3, Issue 2, 298-315
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and then

0G,, e M
~(z,0) = f (lul* + |VOP) da
ot 2 Jpe

!
; f f e_ws(|Vu|2 + Fuu + ubg + [P + |v¢|2)dads
0 JD(2)

w [ 5.9
+ = f f e (|ul* + |VO*) dads
2 Jo Joey
!
+ f f e " (G(u) — g(wu)p dads.
0 JD(z)
We choose 7 large enough such as
2F(u) + U > C1u?,C, > 0. (5.10)
Now, we focus on the nonliear part i.e.,
T o0 w2
w(F(u) + Elul )+ tfu + v(G(u) — guwyu)p + Elsﬁl : (5.11)

We assume that G(s) — g(s)s < c(|s[**? + s?).

For 7 large enough, we have F(u) + Z|ul* > Co(lul*** + |u]*), C; > 0. Thus, for w > 7, we deduce
that

Ww(F(u) + §|u|2) + T f 0 + (G ) — gwu)p

W (5.12)
+ Flel = Cy(uf” + lp + |Agl).

Taking into account previous choices, it clearly appears that the following function

H,=F,+1G, (5.13)
satisfies
0H,, !
(1) = C f f e + Vaf +

ot 0 JD@) (5.14)

+ 1l + [Vel? + |Agf + |ve|2)dads.
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We give now an estimate of |H,,| in terms of BZ“’. Applying Cauchy-Schwarz’s inequality, one has

1/2 1/2
|F| < ff - 2a’aals (e‘wsu?])
D(z)
1/2 1/2
f‘f —ws Zdads ( WS‘,DZI)
D(z)
1/2 1/2
ff —-ws 2dadS ( ws(pZIS)
D(2)
U U (5.15)
ff —ws Zdads) ( ws(’021)
0 JD(z)
!
SC{[\[ eW%WMZ+Wf4WﬂZ+W¢F
0 JD()

o + |Vgos|2)dads, Cs > 0.

Similarly,

! 1/2 t 1/2
G| < ( f f “ws 2dads) ( f f sy 2 dads)
0 D(z) D(2)
! 1/2 1/2
+( f f s 2dads f f e dads)
0 JD(@) D(z)
t 1/2 1/2
+(ff WS 2dads ff s 2dcza’s) (5.16)
0 JD(@) D(z)
!
< Cq f f e |u|2 + [Vul* + |o?
0 D(z)

+IVgl? + |V9|2)dads, Co > 0.

C5+TC6

We then deduce the existence of a positive constant C; = such that

0H,,

(5.17)

Remark 5.1. The inequality (5.17) is well known in the study of spatial estimates and leads to the
Phragmén-Lindelof alternative (see, e.g., [10], [40]).

In particular, if there exist zo > 0 such that F,,(zg, r) > 0, then the solution satisfies
H,(z,1) > H,(z0, D€ &, 7 > 2. (5.18)
The estimate (5.18) gives information in terms of measure defined in the cylinder. Actually, from
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(5.18), we deduce that

e—wt

2

f (qu|2 +2F(u) + o> + 2|Vy|* + |A<,0|2)dx
R(0,2)

—wt

+r8 (luP + Vo) dx
2 R(0,2)

!
n f f e‘WS(IuS|2+|V¢,0|2+|A<,0|2)dxds
0 JR(0,2)

!
i1 f f e_WS(IVu|2 + Fu + guhg + ol + 2|Vgo|2)dxds (5.19)
0 JR(0,2)

A
LY f f e‘ws(qu|2+2F(u)+|<p|2+2|Vgo|2+|A<,0|2)dxds
2 Jo Jroa

w !
+T— f f e (ju* + |VOP*) dx
2 0 JR(0,7)

+ Tf f e (G(u) — g(uu)p dxds
0 JR(0,2)

tends to infinity exponentially fast. On the other hand, if H,,(z,1) < 0, for every z > 0, we deduce that
the solution decreases and we get an inequality of the type

— H,(z,1) < —H,(0,0¢5 %, 2> 0, (5.20)
where
—wt
Ean= f (194 + 2F) + 1 + 2VP + AP
R(z)
—wt
+T (Ju* + |VOP*) dx
2 Jre
!
+ f f e_ws(luslz -Vl + IAgalz)dxds
0 JR(z)
!
. f f e-ws(wm2 + Fuu + guAg + ol + 2|V¢p|2)dxds (5.21)
0 JR(z)

!
LY f f e_ws(|Vu|2 +2F(u) + [P + 21Vl? + |Ag0|2)dxds
2 Jo Jre

w !
+ 7= f f e (jul* + |VO*) dx
2 Jo Jrey

+ Tf f e (G(u) — g(wu)p dxds
0 JR(@)

and R(z) = {x € R: x; > z}.
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Finally, setting

1
Euz D)= 5 f (|Vu|2 F2F W) + gl + 21Vl + |A<p|2)dx
R(2)

1
+ 7= (Ju* + |VOP) dx
2 R(2)

!
+ f f (luS|2+|Vgo|2+|A90|2)dxds
0 R(2)

!
+T f f (qu|2 + Fuu + guhg + ol + 2|Vgo|2)dxds (5.22)
0 R(z)
!
LY f f (|Vu|2 +2F () + P + 2Vl + |A<p|2)dxds
2 Jo Jrey

w f
+T— f (ul® + [V dx
2 Jo Jrey

+ Tf f (G(u) — g(wu)p dxds.
0 JR()

We have the following result

Theorem 5.2. Let (u, ¢) be a solution to the problem given by (1.9)—(1.10), boundary conditions (5.1)—
(5.2) and initial data (5.3). Then, either this solution satisfies (5.18), or it satisfies

Eu(z,1) < Ef(0,0)e" 5%, 2> 0, (5.23)
where the energy &, is given by (5.22).
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