A model for transmission of partial resistance to anti-malarial drugs

  • Received: 01 November 2008 Accepted: 29 June 2018 Published: 01 June 2009
  • MSC : 92D30.

  • Anti-malarial drug resistance has been identified in many regions for a long time. In this paper we formulate a mathematical model of the spread of anti-malarial drug resistance in the population. The model is suitable for malarial situations in developing countries. We consider the sensitive and resistant strains of malaria. There are two basic reproduction ratios corresponding to the strains. If the ratios corresponding to the infections of the sensitive and resistant strains are not equal and they are greater than one, then there exist two endemic non-coexistent equilibria. In the case where the two ratios are equal and they are greater than one, the coexistence of the sensitive and resistant strains exist in the population. It is shown here that the recovery rates of the infected host and the proportion of anti-malarial drug treatment play important roles in the spread of anti-malarial drug resistance. The interesting phenomena of ''long-time" coexistence, which may explain the real situation in the field, could occur for long period of time when those parameters satisfy certain conditions. In regards to control strategy in the field, these results could give a good understanding of means of slowing down the spread of anti-malarial drug resistance.

    Citation: Hengki Tasman, Edy Soewono, Kuntjoro Adji Sidarto, Din Syafruddin, William Oscar Rogers. A model for transmission of partial resistance to anti-malarial drugs[J]. Mathematical Biosciences and Engineering, 2009, 6(3): 649-661. doi: 10.3934/mbe.2009.6.649

    Related Papers:

    [1] Nicolas Bacaër, Cheikh Sokhna . A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences and Engineering, 2005, 2(2): 227-238. doi: 10.3934/mbe.2005.2.227
    [2] Baaba A. Danquah, Faraimunashe Chirove, Jacek Banasiak . Controlling malaria in a population accessing counterfeit antimalarial drugs. Mathematical Biosciences and Engineering, 2023, 20(7): 11895-11938. doi: 10.3934/mbe.2023529
    [3] Silvia Martorano Raimundo, Hyun Mo Yang, Ezio Venturino . Theoretical assessment of the relative incidences of sensitive andresistant tuberculosis epidemic in presence of drug treatment. Mathematical Biosciences and Engineering, 2014, 11(4): 971-993. doi: 10.3934/mbe.2014.11.971
    [4] Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
    [5] Haifeng Zhang, Jinzhi Lei . Optimal treatment strategy of cancers with intratumor heterogeneity. Mathematical Biosciences and Engineering, 2022, 19(12): 13337-13373. doi: 10.3934/mbe.2022625
    [6] Cristian Tomasetti, Doron Levy . An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences and Engineering, 2010, 7(4): 905-918. doi: 10.3934/mbe.2010.7.905
    [7] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
    [8] Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson . An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences and Engineering, 2015, 12(6): 1219-1235. doi: 10.3934/mbe.2015.12.1219
    [9] Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437
    [10] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
  • Anti-malarial drug resistance has been identified in many regions for a long time. In this paper we formulate a mathematical model of the spread of anti-malarial drug resistance in the population. The model is suitable for malarial situations in developing countries. We consider the sensitive and resistant strains of malaria. There are two basic reproduction ratios corresponding to the strains. If the ratios corresponding to the infections of the sensitive and resistant strains are not equal and they are greater than one, then there exist two endemic non-coexistent equilibria. In the case where the two ratios are equal and they are greater than one, the coexistence of the sensitive and resistant strains exist in the population. It is shown here that the recovery rates of the infected host and the proportion of anti-malarial drug treatment play important roles in the spread of anti-malarial drug resistance. The interesting phenomena of ''long-time" coexistence, which may explain the real situation in the field, could occur for long period of time when those parameters satisfy certain conditions. In regards to control strategy in the field, these results could give a good understanding of means of slowing down the spread of anti-malarial drug resistance.


  • This article has been cited by:

    1. Utami Dyah Purwati, Jonner Nainggolan, Parameter Estimation and Sensitivity Analysis of Malaria Model, 2020, 1490, 1742-6588, 012039, 10.1088/1742-6596/1490/1/012039
    2. Hengki Tasman, An optimal control strategy to reduce the spread of malaria resistance, 2015, 262, 00255564, 73, 10.1016/j.mbs.2014.12.005
    3. Aleisha Brock, Carole Gibbs, Joshua Ross, Adrian Esterman, The Impact of Antimalarial Use on the Emergence and Transmission of Plasmodium falciparum Resistance: A Scoping Review of Mathematical Models, 2017, 2, 2414-6366, 54, 10.3390/tropicalmed2040054
    4. Yoram Vodovotz, Gregory Constantine, James Faeder, Qi Mi, Jonathan Rubin, John Bartels, Joydeep Sarkar, Robert H. Squires, David O. Okonkwo, Jörg Gerlach, Ruben Zamora, Shirley Luckhart, Bard Ermentrout, Gary An, Translational Systems Approaches to the Biology of Inflammation and Healing, 2010, 32, 0892-3973, 181, 10.3109/08923970903369867
    5. Rashad Abdul-Ghani, Hoda F. Farag, Amal F. Allam, Ahmed A. Azazy, Measuring resistant-genotype transmission of malaria parasites: challenges and prospects, 2014, 113, 0932-0113, 1481, 10.1007/s00436-014-3789-9
    6. Faishal Farrel Herdicho, Williams Chukwu, Hengki Tasman, An optimal control of malaria transmission model with mosquito seasonal factor, 2021, 25, 22113797, 104238, 10.1016/j.rinp.2021.104238
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2922) PDF downloads(524) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog