An elementary approach to modeling drug resistance in cancer

  • Received: 01 April 2010 Accepted: 29 June 2018 Published: 01 October 2010
  • MSC : Primary: 92B05; Secondary: 34A30.

  • Resistance to drugs has been an ongoing obstacle to a successful treatment of many diseases. In this work we consider the problem of drug resistance in cancer, focusing on random genetic point mutations. Most previous works on mathematical models of such drug resistance have been based on stochastic methods. In contrast, our approach is based on an elementary, compartmental system of ordinary differential equations. We use our very simple approach to derive results on drug resistance that are comparable to those that were previously obtained using much more complex mathematical techniques. The simplicity of our model allows us to obtain analytic results for resistance to any number of drugs. In particular, we show that the amount of resistance generated before the start of the treatment, and present at some given time afterward, always depends on the turnover rate, no matter how many drugs are simultaneously used in the treatment.

    Citation: Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 905-918. doi: 10.3934/mbe.2010.7.905

    Related Papers:

    [1] Kangbo Bao . An elementary mathematical modeling of drug resistance in cancer. Mathematical Biosciences and Engineering, 2021, 18(1): 339-353. doi: 10.3934/mbe.2021018
    [2] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
    [3] Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson . An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences and Engineering, 2015, 12(6): 1219-1235. doi: 10.3934/mbe.2015.12.1219
    [4] Natalia L. Komarova . Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2011, 8(2): 289-306. doi: 10.3934/mbe.2011.8.289
    [5] Damilola Olabode, Libin Rong, Xueying Wang . Stochastic investigation of HIV infection and the emergence of drug resistance. Mathematical Biosciences and Engineering, 2022, 19(2): 1174-1194. doi: 10.3934/mbe.2022054
    [6] Andrzej Swierniak, Jaroslaw Smieja . Analysis and Optimization of Drug Resistant an Phase-Specific Cancer. Mathematical Biosciences and Engineering, 2005, 2(3): 657-670. doi: 10.3934/mbe.2005.2.657
    [7] Haifeng Zhang, Jinzhi Lei . Optimal treatment strategy of cancers with intratumor heterogeneity. Mathematical Biosciences and Engineering, 2022, 19(12): 13337-13373. doi: 10.3934/mbe.2022625
    [8] Hongli Yang, Jinzhi Lei . A mathematical model of chromosome recombination-induced drug resistance in cancer therapy. Mathematical Biosciences and Engineering, 2019, 16(6): 7098-7111. doi: 10.3934/mbe.2019356
    [9] Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz . Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences and Engineering, 2016, 13(6): 1185-1206. doi: 10.3934/mbe.2016038
    [10] Pedro José Gutiérrez-Diez, Jose Russo . Design of personalized cancer treatments by use of optimal control problems: The case of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2020, 17(5): 4773-4800. doi: 10.3934/mbe.2020261
  • Resistance to drugs has been an ongoing obstacle to a successful treatment of many diseases. In this work we consider the problem of drug resistance in cancer, focusing on random genetic point mutations. Most previous works on mathematical models of such drug resistance have been based on stochastic methods. In contrast, our approach is based on an elementary, compartmental system of ordinary differential equations. We use our very simple approach to derive results on drug resistance that are comparable to those that were previously obtained using much more complex mathematical techniques. The simplicity of our model allows us to obtain analytic results for resistance to any number of drugs. In particular, we show that the amount of resistance generated before the start of the treatment, and present at some given time afterward, always depends on the turnover rate, no matter how many drugs are simultaneously used in the treatment.


  • This article has been cited by:

    1. Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 3, 978-1-4939-2971-9, 115, 10.1007/978-1-4939-2972-6_3
    2. Arturo Álvarez-Arenas, Ana Podolski-Renic, Juan Belmonte-Beitia, Milica Pesic, Gabriel F. Calvo, Interplay of Darwinian Selection, Lamarckian Induction and Microvesicle Transfer on Drug Resistance in Cancer, 2019, 9, 2045-2322, 10.1038/s41598-019-45863-z
    3. James Greene, Orit Lavi, Michael M. Gottesman, Doron Levy, The Impact of Cell Density and Mutations in a Model of Multidrug Resistance in Solid Tumors, 2014, 76, 0092-8240, 627, 10.1007/s11538-014-9936-8
    4. David A. Kessler, Herbert Levine, Scaling Solution in the Large Population Limit of the General Asymmetric Stochastic Luria–Delbrück Evolution Process, 2015, 158, 0022-4715, 783, 10.1007/s10955-014-1143-3
    5. Weishan Liang, Yongjiang Zheng, Ji Zhang, Xiaoqiang Sun, Multiscale modeling reveals angiogenesis-induced drug resistance in brain tumors and predicts a synergistic drug combination targeting EGFR and VEGFR pathways, 2019, 20, 1471-2105, 10.1186/s12859-019-2737-1
    6. T. M. K. Cheng, S. Gulati, R. Agius, P. A. Bates, Understanding cancer mechanisms through network dynamics, 2012, 11, 2041-2649, 543, 10.1093/bfgp/els025
    7. Santiago González, Nadezda Volkova, Philip Beer, Moritz Gerstung, Immuno-oncology from the perspective of somatic evolution, 2018, 52, 1044579X, 75, 10.1016/j.semcancer.2017.12.001
    8. Nara Yoon, Robert Vander Velde, Andriy Marusyk, Jacob G. Scott, Optimal Therapy Scheduling Based on a Pair of Collaterally Sensitive Drugs, 2018, 80, 0092-8240, 1776, 10.1007/s11538-018-0434-2
    9. Sharon S. Hori, Ling Tong, Srividya Swaminathan, Mariola Liebersbach, Jingjing Wang, Sanjiv S. Gambhir, Dean W. Felsher, A mathematical model of tumor regression and recurrence after therapeutic oncogene inactivation, 2021, 11, 2045-2322, 10.1038/s41598-020-78947-2
    10. H. Cho, D. Levy, Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth, 2018, 436, 00225193, 120, 10.1016/j.jtbi.2017.10.005
    11. D. A. Kessler, H. Levine, Large population solution of the stochastic Luria-Delbruck evolution model, 2013, 110, 0027-8424, 11682, 10.1073/pnas.1309667110
    12. Heyrim Cho, Doron Levy, Modeling the Dynamics of Heterogeneity of Solid Tumors in Response to Chemotherapy, 2017, 79, 0092-8240, 2986, 10.1007/s11538-017-0359-1
    13. James W. T. Yates, Hitesh Mistry, Clone Wars: Quantitatively Understanding Cancer Drug Resistance, 2020, 2473-4276, 938, 10.1200/CCI.20.00089
    14. Frédéric Thomas, Daniel Fisher, Philippe Fort, Jean‐Pierre Marie, Simon Daoust, Benjamin Roche, Christoph Grunau, Céline Cosseau, Guillaume Mitta, Stephen Baghdiguian, François Rousset, Patrice Lassus, Eric Assenat, Damien Grégoire, Dorothée Missé, Alexander Lorz, Frédérique Billy, William Vainchenker, François Delhommeau, Serge Koscielny, Raphael Itzykson, Ruoping Tang, Fanny Fava, Annabelle Ballesta, Thomas Lepoutre, Liliana Krasinska, Vjekoslav Dulic, Peggy Raynaud, Philippe Blache, Corinne Quittau‐Prevostel, Emmanuel Vignal, Hélène Trauchessec, Benoit Perthame, Jean Clairambault, Vitali Volpert, Eric Solary, Urszula Hibner, Michael E. Hochberg, Applying ecological and evolutionary theory to cancer: a long and winding road, 2013, 6, 1752-4571, 1, 10.1111/eva.12021
    15. Kangbo Bao, An elementary mathematical modeling of drug resistance in cancer, 2021, 18, 1551-0018, 339, 10.3934/mbe.2021018
    16. Morgan Craig, Adrianne L. Jenner, Bumseok Namgung, Luke P. Lee, Aaron Goldman, Engineering in Medicine To Address the Challenge of Cancer Drug Resistance: From Micro- and Nanotechnologies to Computational and Mathematical Modeling, 2021, 121, 0009-2665, 3352, 10.1021/acs.chemrev.0c00356
    17. Xiaoqiang Sun, Bin Hu, Mathematical modeling and computational prediction of cancer drug resistance, 2018, 19, 1467-5463, 1382, 10.1093/bib/bbx065
    18. Шамиль Ханафиевич Ганцев, Shamil Gantsev, Рамиль Назифович Бахтизин, Ramil N Bakhtizin, Марина Валерьевна Франц, Marina Valerievna Frants, Камиль Шамилевич Ганцев, Kamil Gantsev, Опухолевый рост и возможности математического моделирования системных процессов, 2019, 23, 1991-8615, 131, 10.14498/vsgtu1661
    19. Péter Bayer, Joel S. Brown, Kateřina Staňková, A two-phenotype model of immune evasion by cancer cells, 2018, 455, 00225193, 191, 10.1016/j.jtbi.2018.07.014
    20. E. Piretto, M. Delitala, M. Ferraro, How Combination Therapies Shape Drug Resistance in Heterogeneous Tumoral Populations, 2018, 5, 23737867, 10.30707/LiB5.2Piretto
    21. Alexander Lorz, Tommaso Lorenzi, Jean Clairambault, Alexandre Escargueil, Benoît Perthame, Modeling the Effects of Space Structure and Combination Therapies on Phenotypic Heterogeneity and Drug Resistance in Solid Tumors, 2015, 77, 0092-8240, 1, 10.1007/s11538-014-0046-4
    22. Ivana Bozic, Martin A. Nowak, Resisting Resistance, 2017, 1, 2472-3428, 203, 10.1146/annurev-cancerbio-042716-094839
    23. Mitra Shojania Feizabadi, Tarynn M Witten, Modeling drug resistance in a conjoint normal-tumor setting, 2015, 12, 1742-4682, 10.1186/1742-4682-12-3
    24. Donald Geman, Michael Ochs, Nathan D. Price, Cristian Tomasetti, Laurent Younes, An argument for mechanism-based statistical inference in cancer, 2015, 134, 0340-6717, 479, 10.1007/s00439-014-1501-x
    25. Anyue Yin, Dirk Jan A.R. Moes, Johan G.C. Hasselt, Jesse J. Swen, Henk‐Jan Guchelaar, A Review of Mathematical Models for Tumor Dynamics and Treatment Resistance Evolution of Solid Tumors, 2019, 8, 2163-8306, 720, 10.1002/psp4.12450
    26. YuanYuan Li, Scott C. Lenaghan, Mingjun Zhang, Nuno M. Neves, A Data-Driven Predictive Approach for Drug Delivery Using Machine Learning Techniques, 2012, 7, 1932-6203, e31724, 10.1371/journal.pone.0031724
    27. Mitra Shojania Feizabadi, Modeling multi-mutation and drug resistance: analysis of some case studies, 2017, 14, 1742-4682, 10.1186/s12976-017-0052-y
    28. Sébastien Benzekry, Philip Hahnfeldt, Maximum tolerated dose versus metronomic scheduling in the treatment of metastatic cancers, 2013, 335, 00225193, 235, 10.1016/j.jtbi.2013.06.036
    29. David A. Kessler, Robert H. Austin, Herbert Levine, Resistance to Chemotherapy: Patient Variability and Cellular Heterogeneity, 2014, 74, 0008-5472, 4663, 10.1158/0008-5472.CAN-14-0118
    30. Heyrim Cho, Doron Levy, Modeling continuous levels of resistance to multidrug therapy in cancer, 2018, 64, 0307904X, 733, 10.1016/j.apm.2018.07.025
    31. Cristian Tomasetti, On the Probability of Random Genetic Mutations for Various Types of Tumor Growth, 2012, 74, 0092-8240, 1379, 10.1007/s11538-012-9717-1
    32. FR Macfarlane, MAJ Chaplain, T Lorenzi, A stochastic individual-based model to explore the role of spatial interactions and antigen recognition in the immune response against solid tumours, 2019, 480, 00225193, 43, 10.1016/j.jtbi.2019.07.019
    33. C. K. NANDITHA, M. P. RAJAN, AN ADAPTIVE PHARMACOKINETIC OPTIMAL CONTROL APPROACH IN CHEMOTHERAPY FOR HETEROGENEOUS TUMOR, 2022, 30, 0218-3390, 529, 10.1142/S0218339022500188
    34. Deepti Mathur, Bradford P. Taylor, Walid K. Chatila, Howard I. Scher, Nikolaus Schultz, Pedram Razavi, Joao B. Xavier, Optimal Strategy and Benefit of Pulsed Therapy Depend On Tumor Heterogeneity and Aggressiveness at Time of Treatment Initiation, 2022, 21, 1535-7163, 831, 10.1158/1535-7163.MCT-21-0574
    35. Yu-Feng Lin, Jia-Jun Liu, Yu-Jen Chang, Chin-Sheng Yu, Wei Yi, Hsien-Yuan Lane, Chih-Hao Lu, Predicting Anticancer Drug Resistance Mediated by Mutations, 2022, 15, 1424-8247, 136, 10.3390/ph15020136
    36. Anshul Saini, James M. Gallo, Ilya Ioshikhes, Epigenetic instability may alter cell state transitions and anticancer drug resistance, 2021, 17, 1553-7358, e1009307, 10.1371/journal.pcbi.1009307
    37. M. P. Rajan, C. K. Nanditha, A Multi-Drug Pharmacokinectic Optimal Control Approach in Cancer Chemotherapy, 2022, 195, 0022-3239, 314, 10.1007/s10957-022-02085-0
    38. Nara Yoon, Nikhil Krishnan, Jacob Scott, Theoretical modeling of collaterally sensitive drug cycles: shaping heterogeneity to allow adaptive therapy, 2021, 83, 0303-6812, 10.1007/s00285-021-01671-6
    39. Justin Gomez, Nathanael Holmes, Austin Hansen, Vikram Adhikarla, Margarita Gutova, Russell C. Rockne, Heyrim Cho, Mathematical modeling of therapeutic neural stem cell migration in mouse brain with and without brain tumors, 2022, 19, 1551-0018, 2592, 10.3934/mbe.2022119
    40. Gilberto Muniz-Junior, Fábio de Oliveira Roque, Aliny PF. Pires, Rafael D. Guariento, Are lower pesticide doses better? An evolutionary perspective on integrated pest management, 2023, 482, 03043800, 110408, 10.1016/j.ecolmodel.2023.110408
    41. Evgenii Khailov, Ellina Grigorieva, Optimal Melanoma Treatment Protocols for a Bilinear Control Model, 2023, 11, 2227-7390, 3289, 10.3390/math11153289
    42. Aaron Li, Danika Kibby, Jasmine Foo, A comparison of mutation and amplification-driven resistance mechanisms and their impacts on tumor recurrence, 2023, 87, 0303-6812, 10.1007/s00285-023-01992-8
    43. Heng Yang, Haofeng Lin, Xiaoqiang Sun, Multiscale modeling of drug resistance in glioblastoma with gene mutations and angiogenesis, 2023, 21, 20010370, 5285, 10.1016/j.csbj.2023.10.037
    44. Kangbo Bao, Guizhen Liang, Tianhai Tian, Xinan Zhang, Mathematical modeling and bifurcation analysis for a biological mechanism of cancer drug resistance, 2024, 44, 0252-9602, 1165, 10.1007/s10473-024-0321-x
    45. Kangbo Bao, Guizhen Liang, Tianhai Tian, Xinan Zhang, Mathematical modeling of combined therapies for treating tumor drug resistance, 2024, 371, 00255564, 109170, 10.1016/j.mbs.2024.109170
    46. Mariusz Bodzioch, Juan Belmonte-Beitia, Urszula Foryś, Asymptotic dynamics and optimal treatment for a model of tumour resistance to chemotherapy, 2024, 135, 0307904X, 620, 10.1016/j.apm.2024.07.008
    47. D. Voulgarelis, J. V. Forment, A. Herencia Ropero, D. Polychronopoulos, J. Cohen-Setton, A. Bender, V. Serra, M. J. O’Connor, J. W. T. Yates, K. C. Bulusu, Understanding tumour growth variability in breast cancer xenograft models identifies PARP inhibition resistance biomarkers, 2024, 8, 2397-768X, 10.1038/s41698-024-00702-x
    48. Cordelia McGehee, Yoichiro Mori, A mathematical framework for comparison of intermittent versus continuous adaptive chemotherapy dosing in cancer, 2024, 10, 2056-7189, 10.1038/s41540-024-00461-2
    49. Kangbo Bao, Guizhen Liang, Tianhai Tian, Xingan Zhang, Mathematical modeling of drug resistance in heterogeneous cancer cell populations, 2025, 18, 1793-5245, 10.1142/S1793524523501012
    50. Leonce Leandry, Egbert Mujuni, Eunice W. Mureithi, Morten Brun, Mary Mayige, Investigating the evolutionary dynamics of second-line Mycobacterium tuberculosis drug resistance in Tanzania using hypercubic modelling and the Baum–Welch algorithm, 2025, 28, 24682276, e02627, 10.1016/j.sciaf.2025.e02627
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4629) PDF downloads(792) Cited by(50)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog