Processing math: 100%

Analysis and Optimization of Drug Resistant an Phase-Specific Cancer

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 92D25, 93C23, 92C50.

  • This paper presents analysis and biomedical implications of a certain class of bilinear systems that can be applied in modeling of cancer chemotherapy. It combines models that so far have been studied separately, taking into account both the phenomenon of gene amplification and drug specificity in chemotherapy in their different aspects. The methodology of analysis of such models, based on system decomposition, is discussed. The mathematical description is given by an infinite dimensional state equation with a system matrix, the form of which allows decomposing the model into two interacting subsystems. While the first one, of a finite dimension, can have any form, the second one is infinite-dimensional and tridiagonal. Then the optimal control problem is defined in l1 space. To derive necessary conditions for optimal control, the model description is transformed into an integrodifferential one.

    Citation: Andrzej Swierniak, Jaroslaw Smieja. Analysis and Optimization of Drug Resistant an Phase-Specific Cancer[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 657-670. doi: 10.3934/mbe.2005.2.657

    Related Papers:

    [1] Haifeng Zhang, Jinzhi Lei . Optimal treatment strategy of cancers with intratumor heterogeneity. Mathematical Biosciences and Engineering, 2022, 19(12): 13337-13373. doi: 10.3934/mbe.2022625
    [2] Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
    [3] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
    [4] Wenxiang Liu, Thomas Hillen, H. I. Freedman . A mathematical model for M-phase specific chemotherapy including the G0-phase and immunoresponse. Mathematical Biosciences and Engineering, 2007, 4(2): 239-259. doi: 10.3934/mbe.2007.4.239
    [5] Pedro José Gutiérrez-Diez, Jose Russo . Design of personalized cancer treatments by use of optimal control problems: The case of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2020, 17(5): 4773-4800. doi: 10.3934/mbe.2020261
    [6] Natalia L. Komarova . Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2011, 8(2): 289-306. doi: 10.3934/mbe.2011.8.289
    [7] Ghassen Haddad, Amira Kebir, Nadia Raissi, Amira Bouhali, Slimane Ben Miled . Optimal control model of tumor treatment in the context of cancer stem cell. Mathematical Biosciences and Engineering, 2022, 19(5): 4627-4642. doi: 10.3934/mbe.2022214
    [8] Kangbo Bao . An elementary mathematical modeling of drug resistance in cancer. Mathematical Biosciences and Engineering, 2021, 18(1): 339-353. doi: 10.3934/mbe.2021018
    [9] Hongli Yang, Jinzhi Lei . A mathematical model of chromosome recombination-induced drug resistance in cancer therapy. Mathematical Biosciences and Engineering, 2019, 16(6): 7098-7111. doi: 10.3934/mbe.2019356
    [10] Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103
  • This paper presents analysis and biomedical implications of a certain class of bilinear systems that can be applied in modeling of cancer chemotherapy. It combines models that so far have been studied separately, taking into account both the phenomenon of gene amplification and drug specificity in chemotherapy in their different aspects. The methodology of analysis of such models, based on system decomposition, is discussed. The mathematical description is given by an infinite dimensional state equation with a system matrix, the form of which allows decomposing the model into two interacting subsystems. While the first one, of a finite dimension, can have any form, the second one is infinite-dimensional and tridiagonal. Then the optimal control problem is defined in l1 space. To derive necessary conditions for optimal control, the model description is transformed into an integrodifferential one.


  • This article has been cited by:

    1. Hode Sbeity, Rafic Younes, Suat Topsu, Imad Mougharbel, 2011, Comparative study of the optimization theory for cancer treatment, 978-1-4244-9352-4, 927, 10.1109/BMEI.2011.6098370
    2. Andrzej Świerniak, Marek Kimmel, Jaroslaw Smieja, Krzysztof Puszynski, Krzysztof Psiuk-Maksymowicz, 2016, Chapter 2, 978-3-319-28093-6, 9, 10.1007/978-3-319-28095-0_2
    3. Mst. Shanta Khatun, Md. Haider Ali Biswas, Modeling the effect of adoptive T cell therapy for the treatment of leukemia, 2020, 2, 2577-7408, 10.1002/cmm4.1069
    4. Andrzej Swierniak, Marek Kimmel, Jaroslaw Smieja, Mathematical modeling as a tool for planning anticancer therapy, 2009, 625, 00142999, 108, 10.1016/j.ejphar.2009.08.041
    5. Andrzej Swierniak, 2012, Three levels of objects of control in anticancer therapy, 978-1-4673-2124-2, 421, 10.1109/MMAR.2012.6347852
    6. Orit Lavi, Michael M. Gottesman, Doron Levy, The dynamics of drug resistance: A mathematical perspective, 2012, 15, 13687646, 90, 10.1016/j.drup.2012.01.003
    7. Chen-Hsiang Yeang, Robert A. Beckman, Long range personalized cancer treatment strategies incorporating evolutionary dynamics, 2016, 11, 1745-6150, 10.1186/s13062-016-0153-2
    8. Mst. Shanta Khatun, Md. Haider Ali Biswas, Mathematical analysis and optimal control applied to the treatment of leukemia, 2020, 64, 1598-5865, 331, 10.1007/s12190-020-01357-0
    9. Jessica J. Cunningham, Joel S. Brown, Robert A. Gatenby, Kateřina Staňková, Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer, 2018, 459, 00225193, 67, 10.1016/j.jtbi.2018.09.022
    10. Tim Cardilin, Torbjörn Lundh, Mats Jirstrand, Optimization of additive chemotherapy combinations for an in vitro cell cycle model with constant drug exposures, 2021, 00255564, 108595, 10.1016/j.mbs.2021.108595
    11. Marzena Dolbniak, Jaroslaw Smieja, Andrzej Swierniak, 2018, Structural Sensitivity of Control Models Arising in Combined Chemo-Radiotherapy, 978-1-5386-4325-9, 339, 10.1109/MMAR.2018.8486088
    12. Andrzej Świerniak, 2007, Control problems arising in cancer chemotherapy under evolving drug resistance - finite versus infinite dimensional models, 978-3-9524173-8-6, 3103, 10.23919/ECC.2007.7068245
    13. Emilia Kozłowska, Andrzej Swierniak, Mathematical Model of Intrinsic Drug Resistance in Lung Cancer, 2023, 24, 1422-0067, 15801, 10.3390/ijms242115801
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2792) PDF downloads(518) Cited by(13)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog