Loading [Contrib]/a11y/accessibility-menu.js

A Single-Cell Approach in Modeling the Dynamics of Tumor Microregions

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 92C10, 92C37, 92C50, 76D05, 76M20.

  • Interactions between tumor cells and their environment lead to the formation of microregions containing nonhomogeneous subpopulations of cells and steep gradients in oxygen, glucose, and other metabolites. To address the formation of tumor microregions on the level of single cells, I propose a new two-dimensional time-dependent mathematical model taking explicitly into account the individually regulated biomechanical processes of tumor cells and the effect of oxygen consumption on their metabolism. Numerical simulations of the self-organized formation of tumor microregions are presented and the dynamics of such a process is discussed.

    Citation: Katarzyna A. Rejniak. A Single-Cell Approach in Modeling the Dynamics of Tumor Microregions[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 643-655. doi: 10.3934/mbe.2005.2.643

    Related Papers:

    [1] Britnee Crawford, Christopher Kribs-Zaleta . A metapopulation model for sylvatic T. cruzi transmission with vector migration. Mathematical Biosciences and Engineering, 2014, 11(3): 471-509. doi: 10.3934/mbe.2014.11.471
    [2] Jin Zhong, Yue Xia, Lijuan Chen, Fengde Chen . Dynamical analysis of a predator-prey system with fear-induced dispersal between patches. Mathematical Biosciences and Engineering, 2025, 22(5): 1159-1184. doi: 10.3934/mbe.2025042
    [3] Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu . Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences and Engineering, 2004, 1(1): 131-145. doi: 10.3934/mbe.2004.1.131
    [4] Pan Zheng . On a two-species competitive predator-prey system with density-dependent diffusion. Mathematical Biosciences and Engineering, 2022, 19(12): 13421-13457. doi: 10.3934/mbe.2022628
    [5] Tracy L. Stepien, Erica M. Rutter, Yang Kuang . A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1157-1172. doi: 10.3934/mbe.2015.12.1157
    [6] Zhiyin Gao, Sen Liu, Weide Li . Biological control for predation invasion based on pair approximation. Mathematical Biosciences and Engineering, 2022, 19(10): 10252-10274. doi: 10.3934/mbe.2022480
    [7] James T. Cronin, Jerome Goddard II, Amila Muthunayake, Ratnasingham Shivaji . Modeling the effects of trait-mediated dispersal on coexistence of mutualists. Mathematical Biosciences and Engineering, 2020, 17(6): 7838-7861. doi: 10.3934/mbe.2020399
    [8] José Luis Díaz Palencia, Abraham Otero . Modelling the interaction of invasive-invaded species based on the general Bramson dynamics and with a density dependant diffusion and advection. Mathematical Biosciences and Engineering, 2023, 20(7): 13200-13221. doi: 10.3934/mbe.2023589
    [9] Fu-Yuan Tsai, Feng-BinWang . Mathematical analysis of a chemostat system modeling the competition for light and inorganic carbon with internal storage. Mathematical Biosciences and Engineering, 2019, 16(1): 205-221. doi: 10.3934/mbe.2019011
    [10] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
  • Interactions between tumor cells and their environment lead to the formation of microregions containing nonhomogeneous subpopulations of cells and steep gradients in oxygen, glucose, and other metabolites. To address the formation of tumor microregions on the level of single cells, I propose a new two-dimensional time-dependent mathematical model taking explicitly into account the individually regulated biomechanical processes of tumor cells and the effect of oxygen consumption on their metabolism. Numerical simulations of the self-organized formation of tumor microregions are presented and the dynamics of such a process is discussed.


  • This article has been cited by:

    1. Yunshyong Chow, Sophia R.-J. Jang, Nai-Sher Yeh, Dynamics of a population in two patches with dispersal, 2018, 24, 1023-6198, 543, 10.1080/10236198.2018.1428962
    2. Flávia T. Giordani, Jacques A. L. Silva, Asymptotic transversal stability for synchronized attractors in a metapopulation model, 2015, 38, 01704214, 4804, 10.1002/mma.3395
    3. Yunshyong Chow, Sophia R.-J. Jang, Coexistence in a discrete competition model with dispersal, 2013, 19, 1023-6198, 615, 10.1080/10236198.2012.663361
    4. 雨青 陈, Dynamic Properties of a Class of Discrete Population Model, 2019, 08, 2324-7991, 1463, 10.12677/AAM.2019.88171
    5. Chunqing Wu, Shengming Fan, Patricia J. Y. Wong, Theoretical Studies on the Effects of Dispersal Corridors on the Permanence of Discrete Predator-Prey Models in Patchy Environment, 2014, 2014, 1085-3375, 1, 10.1155/2014/140902
    6. Flávia Tereza Giordani, Fermín S. V. Bazán, Luciano Bedin, Coupling and Parameter Estimation for a Discrete Single-Species Metapopulation Model, 2025, 11, 2349-5103, 10.1007/s40819-025-01903-z
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3538) PDF downloads(575) Cited by(52)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog