Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis

  • Accepted: 29 June 2018 Published: 01 June 2008
  • MSC : 92D30, 34C37, 37G35.

  • The resurgence of multi-drug-resistant tuberculosis in some parts of Europe and North America calls for a mathematical study to assess the impact of the emergence and spread of such strain on the global effort to effectively control the burden of tuberculosis. This paper presents a deterministic compartmental model for the transmission dynamics of two strains of tubercu- losis, a drug-sensitive (wild) one and a multi-drug-resistant strain. The model allows for the assessment of the treatment of people infected with the wild strain. The qualitative analysis of the model reveals the following. The model has a disease-free equilibrium, which is locally asymptotically stable if a cer- tain threshold, known as the effective reproduction number, is less than unity. Further, the model undergoes a backward bifurcation, where the disease-free equilibrium coexists with a stable endemic equilibrium. One of the main nov- elties of this study is the numerical illustration of tri-stable equilibria, where the disease-free equilibrium coexists with two stable endemic equilibrium when the aforementioned threshold is less than unity, and a bi-stable setup, involving two stable endemic equilibria, when the effective reproduction number is greater than one. This, to our knowledge, is the first time such dynamical features have been observed in TB dynamics. Finally, it is shown that the backward bifurcation phenomenon in this model arises due to the exogenous re-infection property of tuberculosis.

    Citation: Abba B. Gumel, Baojun Song. Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis[J]. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437

    Related Papers:

  • The resurgence of multi-drug-resistant tuberculosis in some parts of Europe and North America calls for a mathematical study to assess the impact of the emergence and spread of such strain on the global effort to effectively control the burden of tuberculosis. This paper presents a deterministic compartmental model for the transmission dynamics of two strains of tubercu- losis, a drug-sensitive (wild) one and a multi-drug-resistant strain. The model allows for the assessment of the treatment of people infected with the wild strain. The qualitative analysis of the model reveals the following. The model has a disease-free equilibrium, which is locally asymptotically stable if a cer- tain threshold, known as the effective reproduction number, is less than unity. Further, the model undergoes a backward bifurcation, where the disease-free equilibrium coexists with a stable endemic equilibrium. One of the main nov- elties of this study is the numerical illustration of tri-stable equilibria, where the disease-free equilibrium coexists with two stable endemic equilibrium when the aforementioned threshold is less than unity, and a bi-stable setup, involving two stable endemic equilibria, when the effective reproduction number is greater than one. This, to our knowledge, is the first time such dynamical features have been observed in TB dynamics. Finally, it is shown that the backward bifurcation phenomenon in this model arises due to the exogenous re-infection property of tuberculosis.


    加载中
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(229) PDF downloads(1290) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog