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Abstract. The resurgence of multi-drug-resistant tuberculosis in some parts

of Europe and North America calls for a mathematical study to assess the

impact of the emergence and spread of such strain on the global effort to effec-

tively control the burden of tuberculosis. This paper presents a deterministic

compartmental model for the transmission dynamics of two strains of tubercu-

losis, a drug-sensitive (wild) one and a multi-drug-resistant strain. The model

allows for the assessment of the treatment of people infected with the wild

strain. The qualitative analysis of the model reveals the following. The model

has a disease-free equilibrium, which is locally asymptotically stable if a cer-

tain threshold, known as the effective reproduction number, is less than unity.

Further, the model undergoes a backward bifurcation, where the disease-free

equilibrium coexists with a stable endemic equilibrium. One of the main nov-

elties of this study is the numerical illustration of tri-stable equilibria, where

the disease-free equilibrium coexists with two stable endemic equilibrium when

the aforementioned threshold is less than unity, and a bi-stable setup, involv-

ing two stable endemic equilibria, when the effective reproduction number is

greater than one. This, to our knowledge, is the first time such dynamical

features have been observed in TB dynamics. Finally, it is shown that the

backward bifurcation phenomenon in this model arises due to the exogenous

re-infection property of tuberculosis.

1. Introduction. Tuberculosis (TB), an infectious disease caused by the bac-
terium Mycobacterium tuberculosis, affects at least two billion people (one-third
of the world’s population) and is the second greatest contributor of adult mortal-
ity amongst infectious diseases, causing approximately two million deaths a year
worldwide [31, 33, 36]. The recent World Health Organization’s (WHO) report on
global TB control [36] shows that although the number of TB cases was stable or
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falling in 5 of 6 WHO regions in 2004, the number of cases in Africa continues to
grow (where the TB epidemic is still driven by the spread of HIV). Overall, more
than 80% of all TB patients live in 22 countries mostly in sub-Saharan Africa and
Asia. In the United States, about 10 to 15 million people have latent TB.

TB is an airborne-transmitted disease. Tubercle bacilli, which reside in the lungs
of infectious individuals, are the causative agent of its transmission. They spread
in the air when infectious individuals sneeze, cough, speak or sing. A susceptible
individual may become infected with TB if he or she inhales bacilli from the air.
The particles containing Mycobacterium tuberculosis are so small that normal air
currents not only keep them airborne but also transport them throughout rooms
or buildings [35]. Individuals who regularly share space with those with active TB
(the infectious stage of the disease) have a higher risk of becoming infected than
those who do not. Bacilli become established in the alveoli of the lungs from where
they spread throughout the body. Initially infected individuals typically undergo a
long and varied period of latency before the onset of active disease.

The high burden of TB infections in regions within Asia, Africa, and some parts
of Europe (notably the Russian Federation and other eastern European nations)
necessitated a global effort, spear-headed by WHO, for the effective control of the
TB epidemic worldwide. This resulted in a number of global initiatives such as
the “Stop TB Partnership,” “International Standards of Tuberculosis Care and
the Patient’s Charter” and “Global Plan to Stop TB.” The key components of
these initiatives are to achieve the Millennium Development Goal (of halting, and
beginning to reverse the incidence of TB by 2015), providing access to quality TB
diagnosis and treatment (based on the use of antibiotics) for all and, subsequently,
saving millions of lives.

One of the major advances in TB control was the introduction of antibiotics. Its
widespread use has dramatically reduced mortality. For instance, a 70% reduction
in mortality was observed in the USA from 1945 to 1955 [3, 13, 23]. Nowadays,
most forms of TB can be successfully treated. This, however, requires the use of
multiple drugs and complex treatment regimens for a lengthy period of time, up to
about nine months. The incomplete compliance to treatment and administration of
improper treatment regimens (wrong treatment) have resulted in the emergence of a
multi-drug resistant TB (MDR-TB) (see [8] and the references therein). The MDR-
TB is transmitted from individual to individual in the same way the natural TB
strain is transmitted, and cannot be treated using the currently available antibiotics.
The tragedy of the death of a former First Lady of the United States (Mrs. Eleanor
Roosevelt) was due to the MDR-TB [12, 26]. The emergence of MDR-TB has
undoubtedly made the global effort of elimination of TB more difficult.

According to a 1999 report from the Open Society Institute of Harvard Medical
School [19, 24], the highest percentage of tuberculosis infections that are multi-
drug resistant was in Latvia (accounting for as high as 22.1%). Following the
percentage for India (13.3%), Estonia ranked third with an MDR-TB percentage
of 11.7%. Estonia’s case is not surprising. An increase in tuberculosis morbidity,
accompanied by an appearance of MDR-TB, has been documented in Estonia since
the early 1990s. After a decline in incidence from 417 per 100,000 population in 1953
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to 26 per 100,000 in 1992, the incidence showed a steady increase, which reached
52 per 100,000 in 1999. This two-fold increase in morbidity was followed by an
increase in drug-resistant TB (particularly MDR-TB), resulting in a serious public
health problem for Estonia. In 1994 and 1998, MDR-TB comprised 10% and 14%
of the new pulmonary cases detected, placing Estonia among the countries with the
highest MDR-TB rates in the world. The WHO’s annual report clearly shows an
increasing trend for the incidence of MDR-TB globally [36].

Mathematical models have been used to address the transmission dynamics of TB
(see [7] for a comprehensive review). Exogenous reinfection was first incorporated
in a model for the transmission dynamics of TB in [17]. An essential dynamical
feature of the model in [17] is the phenomenon of backward bifurcation (see, for
instance, [6, 7, 14, 21, 29, 30, 34]), where a stable disease-free equilibrium co-exists
with a stable endemic equilibrium when the associated reproduction threshold is
less than unity (albeit some of the modelling assumptions made in [17] were ques-
tioned in [22].) Two early models for the transmission dynamics of two TB strains
were developed in [4, 8]; but these models did not include the exogenous reinfection
property of TB disease. Further, some TB modelling studies have considered ex-
ogenous re-infection and drug-resistant or multi-drug resistant TB, using the mass
action law for the incidence rate [5, 11, 15, 18, 27]. Although such formulations
(using mass action law for the incidence rate) allows for mathematical tractability
(models with standard incidence rate are more difficult to analyse qualitatively),
data suggests that standard incidence formulation is more suited for modelling hu-
man diseases (see [1, 2, 20] and the references therein). It is, therefore, instructive
to study the transmission dynamics of multiple TB strains, in the presence of ex-
ogenous reinfection, using standard incidence rate (Sharomi et al. [30] established
the existence of backward bifurcation in a single strain TB model with exogenous
re-infection and standard incidence rate). This is the main focus of this study.

The emergence of MDR-TB in some parts of Europe, the Americas, Asia, and
Africa motivates this study. A mathematical model is designed and used, in this
paper, to assess the epidemiological impact of the emergence and transmission of
MDR-TB on the global effort to effectively control the burden of tuberculosis. The
model incorporates key aspects of TB disease such as the exogenous reinfection and
the endogenous reactivation of latent TB cases. The model is analyzed qualitatively
and numerically to obtain important epidemiological thresholds, such as the basic
reproduction numbers (which govern the persistence or elimination of disease in a
given population), as well as determining some types of bifurcations the model can
undergo. It is shown that the model can have two or three stable attractors via a
backward bifurcation, and that the backward bifurcation is a consequence of the
exogenous reinfection feature of TB.

2. Model formulation. In this study, we assume a homogenously mixing popu-
lation and then model the rate of generation of new TB cases (both drug-sensitive
and drug-resistant strains) using standard incidence rate. The model to be de-
signed monitors the temporal dynamics of the sub-populations of susceptible indi-
viduals (S(t)), individuals exposed to wild type TB (LW (t)), individuals exposed
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to drug resistant TB (LR(t)), individuals infectious with wild type (IW (t)), and
individuals infectious with resistant TB (IR(t)) so that the total population is
N(t) = S(t) + LW (t) + LR(t) + IW (t) + IR(t). The model is given by

dS

dt
= Λ− β(IW + IR)

N
S − µS + (1− q1)τ1LW + (1− q2)τ2IW ,

dLW

dt
=

β(1− ρ)IW

N
S − β1IW

N
LW − µLW − κ1LW − τ1LW ,

dLR

dt
=

β(1− ρ)IR

N
S + q1τ1LW + q2τ2IW − β1IR

N
LR − µLR − κ2LR,

dIW

dt
=

βρIW

N
S +

β1IW

N
LW + κ1LW − µIW − d1IW − τ2IW ,

dIR

dt
=

βρIR

N
S +

β1IR

N
LR + κ2LR − µIR − d2IR,

(1)

where Λ is the recruitment rate of individuals into the community by birth or im-
migration (assumed susceptible), β is the rate of TB transmission from infectious
individuals to susceptible individuals, µ is the natural death rate, 0 ≤ ρ ≤ 1 is
the probability of primary progression from latent to active TB (proportion of fast
progressors to active TB), β1 represents the transmission rate associated with ex-
ogenous reinfection of both strains, κ1 and κ2 represent the endogenous reactivation
rates of wild type and resistant type, respectively. Furthermore, di (i = 1, 2) rep-
resent the death rates of infectious individuals with wild type and resistant type,
respectively. Treatment is offered to individuals with the wild strain at the rates
τ1 and τ2 for those in the latent and infectious stages, respectively. The parameter
q1 represents the proportion of latent-TB individuals who do not complete their
treatment and develop drug-resistant TB; the remaining fraction, 1 − q1, denotes
the proportion of successfully treated individuals with latent-TB. Similarly, q2 rep-
resents the proportion of those infectious individuals who do not complete their
treatment and develop multi-drug-resistant TB; and 1 − q2 denotes the remaining
fraction of individuals with active TB who are successfully treated. Successfully
treated individuals are moved to the susceptible class, where they can acquire fur-
ther infection.

3. Effective reproduction number. The model has a disease-free equilibrium
(DFE) given by

E0 := (S∗, L∗W , I∗W , L∗R, I∗R) =
(

Λ
µ

, 0, 0, 0, 0
)

. (2)

The linear stability of E0 is obtained by using the next generation matrix [34]
for the system (1). Using the notation in [34], the non-negative matrix F and the
non-singular matrix V , for the new infection terms and the remaining transfer terms
respectively, are given (at the disease-free equilibrium) by
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F =




0 β(1− ρ) 0 0
0 βρ 0 0
0 0 0 β(1− ρ)
0 0 0 βρ


 =

(
F1 0
0 F2

)

and

V =




µ + κ1 + τ1 0 0 0
−κ1 τ2 + µ + d1 0 0
−q1τ1 −q2τ2 µ + κ2 0

0 0 −κ2 µ + d2


 =

(
V1 0
V3 V2

)
,

where F1 = F2 =
(

0 β(1− ρ)
0 βρ

)
, V1 =

(
µ + κ1 + τ1 0

−κ1 τ2 + µ + d1

)
,

V2 =
(

µ + κ2 0
−κ2 µ + d2

)
, and V3 =

(−q1τ1 −q2τ2

0 0

)
.

The effective reproduction number, denoted by Reff , is then given by Reff =
ρ(FV −1) where ρ denotes the spectral radius (dominant eigenvalue).

It can then be shown that the positive eigenvalues of the matrix FV −1 are

RW = ρ(F1V
−1
1 ) =

β(1− ρ)κ1

(µ + κ1 + τ1)(µ + d1 + τ2)
+

βρ

µ + d1 + τ2
, (3)

and

RL = ρ(F2V
−1
2 ) =

β(1− ρ)κ2

(µ + κ2)(µ + d2)
+

βρ

µ + d2
, (4)

so that Reff = ρ(FV −1) = max {RW ,RL} . Thus, using Theorem 2 of [34], we
have established the following result.

Lemma 1. The disease-free equilibrium E0 of the system (1) is locally asymptoti-
cally stable if Reff < 1 and unstable if Reff > 1.

The effective reproduction number (Reff ) measures the average number of new
infections generated by a typical infectious individual in a community where in-
tervention strategies (treatment) are administered. In the absence of treatment
(τ1 = τ2 = 0), expressions (3) and (4) reduce to

R0W =
β (ρµ + κ1)

(µ + d1)(µ + κ1)
, R0L =

β(µρ + κ2)
(µ + d2)(µ + κ2)

,

so that R0 = max {R0W ,R0L} . The threshold quantity R0 is the basic reproduc-
tion number of infection, which represents the average number of new infections
generated by a single infective individual in a completely susceptible population.

It should be mentioned that each term in Reff has an epidemiological impli-
cation. Take, for instance, the terms in RW . The rate of infection is β(1 − ρ)
and κ1/(µ + κ1 + τ1) is the expected fraction progressing from LW to IW and
1/(µ+ d1 + τ2) is the expected time in IW . A similar interpretation follows for RL.
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The effective reproduction number (Reff ) is then the larger of the two reproduction
numbers (RW and RL).

4. Bifurcation analysis. To explore the possibility of a backward bifurcation in
the model (1), we introduce the following simplification. Let α2 = µ+κ1 +τ1, α3 =

µ+d1+τ2, α4 = µ+κ2 and α5 = µ+d2. It can be seen that RW =
βρ

α3
+

κ1β(1− ρ)
α2α3

and RL =
βρ

α5
+

κ2β(1− ρ)
α4α5

. We then re-label the variables by S = x1, Lw = x2,

Iw = x3, Lr = x4, and Ir = x5, so that N = x1 + x2 + x3 + x4 + x5. Further,
by introducing the vector notation X = (x1, x2, x3, x4, x5)T , the model (1) can be
written in the form dX

dt = F (X), where F = (f1, f2, f3, f4, f5)T , as follows:

dx1

dt
= f1 = Λ− β(x3 + x5)

N
x1 − µx1 + (1− q1)τ1x2 + (1− q2)τ2x3,

dx2

dt
= f2 =

β(1− ρ)x3

N
x1 − β1x3

N
x2 − α2x2,

dx3

dt
= f3 =

βρx3

N − x6
x1 +

β1x3

N
x2 + κ1x2 − α3x3,

dx4

dt
= f4 =

β(1− ρ)x5

N
x1 + q1τ1x2 + q2τ2x3 − β1x5

N
x4 − α4x4,

dx5

dt
= f5 =

βρx5

N
x1 +

β1x5

N
x4 + κ2x4 − α5x5.

(5)

The Jacobian of system (5) at the DFE is given by

J =




−µ (1− q1)τ1 (1− q2)τ2 −β −β

0 −α2 β(1− ρ) 0 0
0 κ1 βρ− α3 0 0
0 q1τ1 q2τ2 −α4 β(1− ρ)
0 0 0 κ2 βρ− α5




. (6)

The following theorem ([7, 14, 34]) will be used to determine whether or not the
system (5) exhibits a backward bifurcation at Reff = 1.

Theorem 1. Consider the following general system of ordinary differential equa-
tions with a parameter φ

dx

dt
= f(x, φ), f : Rn × R→ Rn and f ∈ C2(Rn × R),

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ) and

1. A = Dxf(0, 0) =
(

∂fi

∂xj
(0, 0)

)
is the linearization matrix of the system around

the equilibrium 0 with φ evaluated at 0;
2. zero is a simple eigenvalue of A and all other eigenvalues of A have negative

real parts;
3. matrix A has a right eigenvector w and a left eigenvector v corresponding to

the zero eigenvalue.
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Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0), (7)

b =
n∑

k,i=1

vkwi
∂2fk

∂xi∂φ
(0, 0). (8)

Then the local dynamics of the system around the equilibrium point 0 is totally
determined by the signs of a and b. Particularly, if a > 0 and b > 0, then a
backward bifurcation occurs at φ = 0.

4.1. Case 1: RW > RL. Consider, first of all, the case where RW > RL, so that
Reff = 1 gives 1 = RW > RL. Suppose, further, that β is chosen as the bifurcation
parameter. Solving for β from Reff = 1 gives β = β∗ =

α2α3

α2ρ + κ1(1− ρ)
. For our

convenience, we let Jβ denote the value of J when β = β∗.

4.1.1. Eigenvectors of Jβ. For the case Reff = 1 = RW > RL, it is easy to show
that the Jacobian matrix Jβ has a right eigenvector given by w = (w1, w2, w3, w4, w5)T ,
where

w2 =
β∗(1− ρ)

α2
w3, w3 > 0 is free,

w5 =
q1τ1w2 + q2τ2w3

α4(α5 − β∗ρ)− β∗(1− ρ)κ2
κ2, w4 =

α5 − β∗ρ
κ2

w5,

w1 =
(1− q1)τ1w2 + (1− q2)τ2w3 − β∗w4 − β∗w5

µ
.

Using the fact that RL < 1 in this case, it can then be shown that α5 − β∗ρ > 0
and α4(α5−β∗ρ)−β∗(1−ρ)κ2 > 0. Therefore, wi > 0 for i ≥ 2. It is not necessary
to require w1 > 0 (see Remark 1 in [7]). Furthermore, the Jacobian, Jβ , has a left
eigenvector given by v = (0, κ1

α2
v3, v3, 0, 0) for any v3 > 0.

4.1.2. Computations of a and b. For the system (5), the associated non-zero second
partial derivatives of F are

∂2f2

∂x2∂x3
= −β∗ (1− ρ)µ

Λ
− β1 µ

Λ
,

∂2f2

∂x3∂x3
= −2β∗(1− ρ)µ

Λ
,

∂2f2

∂x3∂x4
= −β∗ (1− ρ)µ

Λ
,

∂2f2

∂x3∂x5
= −β∗ (1− ρ) µ

Λ
,

∂2f3

∂x3∂x3
= −2β∗ρµ

Λ
,

∂2f3

∂x3∂x4
= −β∗ρµ

Λ
,

∂2f3

∂x3∂x5
= −β∗ρµ

Λ
,

∂2f3

∂x2∂x3
= −β∗ ρµ

Λ
+

β1 µ

Λ
.

It follows from (7) that

a = v2

n∑

i,j=1

wiwj
∂2f2

∂xi∂xj
+ v3

n∑

i,j=1

wiwj
∂2f3

∂xi∂xj
.
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To determine the sign of the coefficient a, the partial derivatives above are sub-
stituted into (7) so that (upon rearrangement)

a

(
1
v2

)(
Λ
µ

)
(2w3) = −β∗

(
1 +

µ + τ1

κ1
ρ

)
(w2 + w3 + w4 + w5) + w2β1

(
µ + τ1

κ1

)
,

from which it follows that a > 0 iff

w2β1

(
µ + τ1

κ1

)
> β∗

(
1 +

µ + τ1

κ1
ρ

)
(w2 + w3 + w4 + w5).

Using the expressions for wi, the last inequality is simplified to

β1 > β∗
(

ρ +
κ1

µ + τ1

) 
1 +

α2

β∗(1− ρ)
+

(α5 − β∗ρ + κ2)
(
q1τ1 + q2τ2

α2
β∗(1−ρ)

)

α4(α5 − β∗ρ)− β∗(1− ρ)κ2


 .

For the sign of b, it can be shown that the associated non-vanishing derivatives
of F are

∂f2

∂β
=

(1− ρ)x1x3

N
,

∂f3

∂β
=

ρx1x3

N
,

∂2f2

∂β∂x3
= 1− ρ,

∂2f3

∂β∂x3
= ρ,

and b = v2w3
∂2f2

∂β∂x3
+ v3w3

∂2f3

∂β∂x3
= v2w3(1− ρ +

α2

κ1
ρ) = v2w3(1 +

µ + τ1

κ1
ρ) > 0.

Thus, we have established the following result.

Theorem 2. If

β1 > β∗
(

ρ +
κ1

µ + τ1

) 
1 +

α2

β∗(1− ρ)
+

(α5 − β∗ρ + κ2)
(
q1τ1 + q2τ2

α2
β∗(1−ρ)

)

α4(α5 − β∗ρ)− β∗(1− ρ)κ2




(9)

and
ρ

α3
+

κ1(1− ρ)
α2α3

>
ρ

α5
+

κ2(1− ρ)
α4α5

, (10)

then a backward bifurcation occurs at Reff = 1.

It is worth noting from the inequality (9) of the above theorem that the model
cannot undergo a backward bifurcation if β1 = 0. In other words, as in other
models of TB dynamics [17], this study shows that exogenous reinfection is necessary
for a backward bifurcation to occur. Figure 1 depicts the backward bifurcation
phenomenon for this case using an arbitrary set of parameter values.

Table 1. Parameter values for illustrating tri-stable steady states
when RL < RW = Reff < 1 (RW = 3.7566β,RL = 32

9 β)
d1 d2 Λ β1 µ κ1 κ2 ρ τ1 τ2 q1 q2

.01 .01 1 5 .14 .25 .1 .2 .03 .03 .04 .04
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Figure 1. Illustration of a backward bifurcation for RL < RW .
Plot of Lw at equilibrium (L∗w) versus the parameter β (red indi-
cates stable equilibria, and blue indicates unstable equilibria) using
the parameter values d1 = d2 = .01, Λ = 1, µ = .14, κ1 = .3,
κ2 = .0001, ρ = 0.2, τ1 = τ2 = .03, q1 = q2 = .04, β1 = 5 and
β ∈ [0.2350, 0.2531] (corresponding to Reff ∈ [0.9278, 0.9992] and
RW = 3.9480β > RL = 1.3371β).

0.24 0.25 0.26 0.27 0.28 0.29
0

0.1

0.2

0.3

0.4

0.5

β

L
r*

0.24 0.25 0.26 0.27 0.28 0.29
0

0.5

1

1.5

2

2.5

β

I r*

Figure 2. Illustration of a backward bifurcation for RL > RW .
Plot of Lr at equilibrium (L∗r) versus the parameter β (red indicates
stable equilibria, and blue indicates unstable equilibria) using the
parameter values d1 = d2 = .01, Λ = 1, µ = .14, κ1 = .1, κ2 =
.1, ρ = 0.2, τ1 = τ2 = .03, q1 = q2 = .04, β1 = 1.5 and β ∈
[0.2450, 0.2813] (corresponding to Reff ∈ [0.8711, 1] and RL =
3.5555β > RW = 2.7572β).

4.2. Case 2: 1 = RL > RW . Here, we explore the possibility for a backward
bifurcation when 1 = RL > RW , so that Reff = 1. We keep β as the bifurcation
parameter. When 1 = RL > RW , Reff = 1 gives β∗ =

α4α5

α4ρ + κ2(1− ρ)
.
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Figure 3. Plot of equilibrium values versus the parameter β. Red
indicates stable equilibria, and blue indicates unstable equilibria.
The lower right panel repeats the one above it but in a smaller scale
to show two small stable steady states. Other parameter values can
be found from Table 1 and Reff = RW = 3.7566β > RL =
3.5555β.

Table 2. Parameter values for illustrating bistable steady states
when RW < RL = Reff > 1 (RW = 2.7572β,RL = 32

9 β)
d1 d2 Λ β1 µ κ1 κ2 ρ τ1 τ2 q1 q2

.01 .01 1 2 .14 .1 .1 .2 .03 .03 .04 .04

4.2.1. Eigenvectors of Jβ. In this case, it can be shown that a right eigenvector for
Jβ is w = (w1, w2, w3, w4, w5)T , where

w2 = w3 = 0, w5 > 0 is free,

w4 =
α5 − β∗ρ

κ2
w5, w1 =

w5

µ

(
1− β∗(α5 − β∗ρ)

κ2

)
.

and a left eigenvector is v = (v1, v2, v3, v4, v5), where

v1 = 0, v5 > 0 is free, v4 =
κ2

α4
v5,

v2 =
κ2v5

α2α3α4(1−Rw
0 )

((α3 − β∗ρ)q1τ1 + κ2q2τ2) ,

v3 =
κ2v5

α2α3α4(1−Rw
0 )

(β∗(1− ρ)q1τ1 − α2q2τ2) .
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Figure 4. Illustration of tri-stable steady states. Plot of solutions
generated by 30 randomly-chosen sets of initial values. The param-
eter β is set to equal to .26 and other parameters are as given in
Table 1. The bottom two panels repeat the corresponding middle
ones but in a smaller scale to show two small stable steady states.

4.2.2. Computations of a and b. Noting that w2 = w3 = 0 in this case, most of
the second partial derivatives vanish at the DFE with β = β∗. The only non-zero
second derivatives are

∂2f4

∂x4∂x5
= −β∗(1− ρ)µ

Λ
− β1µ

Λ
,

∂2f4

∂x2
5

= −2
β∗(1− ρ)µ

Λ
,

∂2f5

∂x4∂x5
= −β∗ρµ

Λ
+

β1µ

Λ

and
∂2f5

∂x2
5

= −2
β∗ρµ

Λ
.

In this case, the coefficient a takes the form

a = 2v4
∂2f4

∂x4∂x5
w4w5 + v4

∂2f4

∂x5∂x5
w5w5 + 2v5

∂2f5

∂x4∂x5
w4w5 + v5

∂2f5

∂x5∂x5
w5w5

so that

a
2

v4w4w5

Λ
µ

=
µ

κ2
β1 − β∗

(
(1− ρ)

(
1 +

κ2

α5 − β∗ρ

)
+ ρ

(
α4

κ2
+

α4

α5 − β∗ρ

))
.

Thus, if β1 > β∗
(κ2 + µρ)(α5 − β∗ρ + κ2)

µ(α5 − β∗ρ)
, then a > 0. Similarly, the coefficient b

is given by

b = v4
∂2f4

∂x5∂β
w5 + v5

∂2f5

∂x5∂β
w5 = v4w5(1− ρ) + v5w5ρ > 0.
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Figure 5. Bistable when Reff > 1. Plot of equilibrium values
versus β. Red indicates stable equlibria and blue indicates unstable
equilibria. Other parameter values can be found in Table 2. The
lower right panel repeats the one above it but in a smaller scale to
show two small stable steady states.

Combining this and the condition for a > 0 above, we have established the following
result.

Theorem 3. If

β1 > β∗
(κ2 + µρ)(α5 − β∗ρ + κ2)

µ(α5 − β∗ρ)
(11)

and

ρ

α3
+

κ1(1− ρ)
α2α3

<
ρ

α5
+

κ2(1− ρ)
α4α5

, (12)

then a backward bifurcation occurs at Reff = 1.

Again, we can conclude that, for this case, the exogenous reinfection is necessary
for the occurrence of the backward bifurcation because (11) cannot hold when β1 =
0.

The backward bifurcation phenomenon for Case 2 is illustrated in Figure 2.

5. Tri-stable and bi-stable solutions: numerical illustration.
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Figure 6. Plot of solutions generated by 20 randomly-chosen sets
of initial values using β = .35 and and other parameters as given
in Table 2.

5.1. Tri-stable solutions. Owing to the complexity of the model, its full dynamics
analysis is not feasible at this stage. Hence, we resort to numerical simulations using
the arbitrary set of parameter values in Table 1. It is worth stating that since the
focus of this paper is to illustrate the various types of dynamics the model can
undergo, parameter values are chosen with this purpose in mind (and, it may well
be possible that some may not be within their realistic ranges). Simulating the
model with this set of parameter values using β ∈ [0.24, 0.28] (so that Reff (β) ∈
[0.9016, 1.0519]) gives seven feasible equilibria for 0.245 ≤ β ≤ 0.265 (0.9024 ≤
Reff (β) ≤ .9955) (Table 3). Three of these equilibria are locally asymptotically
stable (Figure 3). Figure 4 depicts these tri-stable solutions for randomly-chosen
sets of initial values with β = 0.26 and other parameters as in Table 1. The
epidemiological implication of this (tri-stability) phenomenon is that the classical
requirement of the reproduction number (Reff ) less than unity, although necessary,
is no longer sufficient for disease elimination. The presence of the two stable endemic
equilibria when Reff < 1 requires Reff to be much less than one (outside the
backward bifurcation range) to ensure disease elimination. To our knowledge, this
is the first time such a feature (tri-stability for Reff < 1) is illustrated in TB
dynamics, and possibly in the transmission dynamics of any other epidemic.

5.2. Bi-stable solutions for Reff > 1. Figure 3 shows that the multiple steady
states exist even when Reff crosses unity. We present these dynamics by using
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another set of parameter values, given in Table 2. Using β ∈ [0.3, 0.4], four feasible
equilibria were obtained; two unstable and two stable (Figure 5). Simulating the
model with the parameters in Table 2 with β = 0.35 and randomly-chosen sets of
initial conditions shows the existence of two stable (bi-stable) endemic equilibria
(Figure 6). Bi-stable equilibria for Reff > 1 have been observed in a model of
dengue dynamics [28].

6. Conclusions and discussion. A deterministic model for the transmission dy-
namics of wild and multi-drug resistant strains of mycobacterium tuberculosis is
designed and analyzed. The theoretical analysis and numerical simulations (using
arbitrary set of parameters) of the model show the following.

(i) The classical epidemiological requirement of having the reproduction number
(Reff ) less than unity, while necessary, is not sufficient for disease elimination
owing to the phenomenon of backward bifurcation, which occurs at Reff = 1
(for the cases RL > RW and RW > RL). The disease can persist even when
the reproduction threshold is less than unity. The disease will also persist
when Reff > 1;

(ii) The model can exhibit bifurcations involving three stable equilibria (the disease-
free equilibrium and two stable endemic equilibria) when the associated effec-
tive reproduction number is less than unity;

(iii) The model can have two stable endemic equilibria when the effective repro-
duction number exceeds unity;

(iv) To the authors’ knowledge, this is the first time the phenomena of tri-stability
(for Reff < 1) and bi-stable endemic equilibria for Reff > 1 are observed for
a model of the transmission dynamics of TB; further, this may be the first
time tri-stable equilibria (for Reff < 1) are illustrated for any human disease;

(v) The occurrence of the backward bifurcation phenomenon necessarily requires
the exogenous reinfection.

Overall, the prospect of eliminating MDR-TB in a population seems plausible if
the use of treatment can make the effective reproduction number less than unity
and outside the backward bifurcation range. It is of interest to extend this work
to determine (i) whether or not such dynamical behaviors (tri-stability for Reff <

1 and bi-stability for Reff > 1) can be obtained with more reasonable sets of
parameter values, and (ii) determine what other types of bifurcations the model
can undergo at Reff = RW = RL = 1.

It should be stated that in modeling the exogenous reinfection property of mul-
tiple strains of tuberculosis, the model (1) does not include the possibility of cross-
infection between strains. This is because the paper is focussed on illustrating the
rich qualitative dynamics of the MDR-TB using a relatively simple model. It is quite
plausible to expect more complicated dynamics (rich bifurcations) if the model (1)
is extended to incorporate cross-infection.

It is worth emphasizing that in performing the bifurcation analysis and numerical
simulations of the model, the associated parameters of the model were not restricted.
Tables 1 and 2 and Figures 1 and 2 actually shows that conditions (9) and (10) (or
(11) and (12)) are achievable. However, because of the uncertainty of actual real
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parameter values, one may not certainly predict that the bi-stable or tri-stable
situations could happen in real-life. Like in the case of the single strain models
of TB, the presence of backward bifurcation may be based on using an unrealistic
set of parameter values [22]. Further, under the hypothesis that individuals with
latent TB have partial immunity against exogenous reinfection [32], the associated
backward bifurcation conditions (9) or (11) may not hold for realistic parameter
values. Consider, for example, the model with only the resistant strain (for a
simple case). Consider also the case when all new infected individuals enter the
latent stage the resistant strain only for a simple case of ρ = 0 (that is, fast TB
cases are ignored). Take inequality (11) for example. For the model with resistant
strain only, given a contact between an infectious individual with resistant strain
and an individual with latent TB with resistant strain, the reinfection probability
is β1; and given a contact between an infectious individual with resistant strain and
a susceptible individual, the primary infection probability is β k2

k2+µ . If individuals
with latent TB have partial immunity against exogenous reinfection [32], then we
have

β1 < β
κ2

κ2 + µ
. (13)

If ρ = 0, inequality (11) becomes

β1 > β
κ2(α5 + κ2)

µα5
. (14)

Rearranging (14) as

β1 > β
κ2(α5 + κ2)

µα5
= β

κ2

κ2 + µ

(
κ2 + µ

µ

)(
α5 + κ2

α5

)
> β

κ2

κ2 + µ
. (15)

Thus, obviously, (15) contradicts (13). Therefore, we conclude that if we assume
that individuals with latent TB infection have partial immunity against reinfection
(that is, if (13) holds), then the presence of multi-stable steady states is impossible.
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Table 3. Tri-stable steady states when Reff < 1. For each β

value, there are three locally asymptotically stable and four unsta-
ble equilibria. All other parameters are as given in Table 1.

β Reff S∗ L∗w I∗w L∗r I∗r Stability Status
7.1429 0 0 0 0 Stable
4.5453 0 0 0.1553 2.2794 Stable

0.2450 0.9204 7.0008 0 0 0.0534 0.0828 Unstable
5.9235 0.1441 0.9722 0.0161 0.0164 Stable
6.7796 0.0787 0.2517 0.0071 0.0073 Unstable
7.1429 0 0 0 0 Stable
4.4394 0 0 0.1557 2.3779 Stable
7.0251 0 0 0.0460 0.0670 Unstable

0.2500 0.9392 5.7053 0.1512 1.1645 0.0183 0.0190 Stable
5.9868 0.1296 0.7020 0.0847 0.1770 Unstable
6.6325 0.0791 0.2539 0.0585 0.0940 Unstable
6.9047 0.0575 0.1575 0.0056 0.0058 Unstable
7.1429 0 0 0 0 Stable
4.3392 0 0 0.1559 2.4712 Stable
7.0475 0 0 0.0385 0.0530 Unstable

0.2550 .9579 5.5280 0.1558 1.3218 0.0202 0.0211 Stable
5.7134 0.1414 0.9150 0.0905 0.2027 Unstable
6.8312 0.0520 0.1373 0.0444 0.0635 Unstable
6.9940 0.0388 0.0943 0.0043 0.0045 Unstable
7.1429 0 0 0 0 Stable
4.2440 0 0 0.1562 2.5598 Stable
7.0682 0 0 0.0312 0.0406 Unstable

0.2600 .9767 5.3732 0.1591 1.4596 0.0219 0.0231 Stable
5.5152 0.1480 1.0757 0.0936 0.2180 Unstable
6.9575 0.0302 0.0697 0.0334 0.0440 Unstable
7.0659 0.0212 0.0465 0.0028 0.0029 Unstable
7.1429 0 0 0 0 Stable
4.1712 0 0 0.1563 2.6276 Stable
7.0837 0 0 0.0253 0.0316 Unstable

0.2640 .9917 5.2607 0.1612 1.5601 0.0231 0.0246 Stable
5.3806 0.1517 1.1874 0.0953 0.2269 Unstable
7.0358 0.0143 0.0303 0.0258 0.0323 Unstable
7.1165 0.0075 0.0153 0.0012 0.0012 Unstable
7.1429 0 0 0 0 Stable
4.1535 0 0 0.1564 2.6441 Stable
7.0875 0 0 0.0238 0.02948 Unstable

0.2650 .9955 5.2338 0.1617 1.5842 0.0234 0.0249 Stable
5.3492 0.1525 1.2137 0.0956 0.2288 Unstable
7.0531 0.0104 0.0218 0.0241 0.02978 Unstable
7.1286 0.0041 0.0082 0.0007 0.00071 Unstable
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Table 4. Bi-stable steady states when Reff > 1. For each β

value, there are four steady states, two are locally asymptotically
stable and the remaining two are unstable. All other parameters
are as given in Table 2.

β Reff S∗ L∗w I∗w L∗r I∗r Stability Status
0.3100 1.1022 7.1429 0 0 0 0 Unstable

3.7582 0 0 0.3598 2.8231 Stable
5.0756 0.3852 1.4980 0.0362 0.0382 Stable
5.4215 0.3466 1.0143 0.1139 0.1625 Unstable

0.3200 1.1378 7.1429 0 0 0 0 Unstable
3.6212 0 0 0.3615 2.9494 Stable
4.7967 0.3979 1.7435 0.0378 0.0396 Stable
5.0669 0.3671 1.2389 0.1420 0.2235 Unstable

0.3300 1.1733 7.1429 0 0 0 0 Unstable
3.4950 0 0 0.3630 3.0659 Stable
4.5731 0.4060 1.9415 0.0394 0.0412 Stable
4.7978 0.3798 1.4202 0.1587 0.2658 Unstable

0.3400 1.2089 7.1429 0 0 0 0 Unstable
3.3780 0 0 0.3642 3.1740 Stable
4.3816 0.4119 2.1117 0.0409 0.0428 Stable
4.5751 0.3888 1.5761 0.1703 0.2986 Unstable

0.3500 1.2444 7.1429 0 0 0 0 Unstable
3.2692 0 0 0.3652 3.2745 Stable
4.2125 0.4164 2.2626 0.0424 0.0443 Stable
4.3827 0.3956 1.7145 0.1789 0.3253 Unstable

0.3600 1.2800 7.1429 0 0 0 0 Unstable
3.1677 0 0 0.3661 3.3684 Stable
4.0603 0.4200 2.3986 0.0437 0.0457 Stable
4.2124 0.4010 1.8398 0.1857 0.3477 Unstable

0.3700 1.3156 7.1429 0 0 0 0 Unstable
3.0726 0 0 0.3669 3.4564 Stable
3.9216 0.4229 2.5227 0.0449 0.0471 Stable
4.0592 0.4054 1.9544 0.1912 0.3669 Unstable

0.3800 1.3511 7.1429 0 0 0 0 Unstable
2.9834 0 0 0.3676 3.5390 Stable
3.7942 0.4254 2.6370 0.0461 0.0484 Stable
3.9197 0.4090 2.0603 0.1958 0.3835 Unstable

0.3900 1.3867 7.1429 0 0 0 0 Unstable
2.8995 0 0 0.3682 3.6168 Stable
3.6763 0.4274 2.7428 0.0472 0.0496 Stable
3.7916 0.4121 2.1588 0.1996 0.3981 Unstable

0.4000 1.4222 7.1429 0 0 0 0 Unstable
2.8203 0 0 0.3688 3.6902 Stable
3.5666 0.4292 2.8414 0.0482 0.0508 Stable
3.6732 0.4148 2.2507 0.2029 0.4111 Unstable


