Processing math: 46%
Research article Special Issues

Equilibrium properties of a coupled contagion model of mosquito-borne disease and mosquito preventive behaviors

  • Received: 01 February 2025 Revised: 20 May 2025 Accepted: 27 May 2025 Published: 18 June 2025
  • Although different strategies for mosquito-borne disease prevention can vary significantly in their efficacy and scale of implementation, they all require that individuals comply with their use. Despite this, human behavior is rarely considered in mathematical models of mosquito-borne diseases. Here, we sought to address that gap by establishing general expectations for how different behavioral stimuli and forms of mosquito prevention shape the equilibrium prevalence of disease. To accomplish this, we developed a coupled contagion model tailored to the epidemiology of dengue and preventive behaviors relevant to it. Under our model's parameterization, we found that mosquito biting was the most important driver of behavior uptake. In contrast, encounters with individuals experiencing disease or engaging in preventive behaviors themselves had a smaller influence on behavior uptake. The relative influence of these three stimuli reflected the relative frequency with which individuals encountered them. We also found that two distinct forms of mosquito prevention—namely, personal protection and mosquito density reduction—mediated different influences of behavior on equilibrium disease prevalence. Our results highlight that unique features of coupled contagion models can arise in disease systems with distinct biological features.

    Citation: Marya L. Poterek, Mauricio Santos-Vega, T. Alex Perkins. Equilibrium properties of a coupled contagion model of mosquito-borne disease and mosquito preventive behaviors[J]. Mathematical Biosciences and Engineering, 2025, 22(8): 1875-1897. doi: 10.3934/mbe.2025068

    Related Papers:

    [1] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
    [2] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266
    [3] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [4] Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198
    [5] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
    [6] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
    [7] Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469
    [8] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [9] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [10] Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232
  • Although different strategies for mosquito-borne disease prevention can vary significantly in their efficacy and scale of implementation, they all require that individuals comply with their use. Despite this, human behavior is rarely considered in mathematical models of mosquito-borne diseases. Here, we sought to address that gap by establishing general expectations for how different behavioral stimuli and forms of mosquito prevention shape the equilibrium prevalence of disease. To accomplish this, we developed a coupled contagion model tailored to the epidemiology of dengue and preventive behaviors relevant to it. Under our model's parameterization, we found that mosquito biting was the most important driver of behavior uptake. In contrast, encounters with individuals experiencing disease or engaging in preventive behaviors themselves had a smaller influence on behavior uptake. The relative influence of these three stimuli reflected the relative frequency with which individuals encountered them. We also found that two distinct forms of mosquito prevention—namely, personal protection and mosquito density reduction—mediated different influences of behavior on equilibrium disease prevalence. Our results highlight that unique features of coupled contagion models can arise in disease systems with distinct biological features.



    Fractional calculus signifies the identity of the distinguished materials in the modern research field due to its integrated applications in diverse regions such as mathematical physics, fluid dynamics, mathematical biology, etc. Convex function, exponentially convex function [1,2,3,4,5], related inequalities like as trapezium inequality, Ostrowski's inequality and Hermite Hadamard inequality, integrals [6,7,8,9,10] having succeed in mathematical analysis, approximation theory due to immense applications [11,12] have great importance in mathematics theory. Many authors established quadrature rules in numerical analysis for approximate definite integrals. Recently, Pólya-Szegö and Chebyshev inequalities occupied immense space in the field analysis. Chebyshev [13] was introduced the well-known inequality called Chebyshev inequality.

    In the literature of convex function, the Jensen inequality has gained much importance which describes a connection between an integral of the convex function and the value of the convex function of an interval [14,15,16]. Pshtiwan and Thabet [17] considered the modified Hermite Hadamard inequality in the context of fractional calculus using the Riemann-Liouville fractional integrals. Arran and Pshtiwan [18] discussed the Hermite Hadamard inequality results with fractional integrals and derivatives using Mittag-Leffler kernel. Pshtiwan and Thabet [19] constructed a connection between the Riemann-Liouville fractional integrals of a function concerning a monotone function with nonsingular kernel and Atangana-Baleanu. Pshtiwan and Brevik [20] obtained an inequality of Hermite Hadamard type for Riemann-Liouville fractional integrals, and proved the application of obtained inequalities on modified Bessel functions and q-digamma function. In [21], Set et al. introduced Grüss type inequalities by employing generalized k-fractional integrals. Recently, Nisar et al. [22] gave some new generalized fractional integral inequalities.

    Very recently, the fractional conformable and proportional fractional integral operators were given in [23,24]. Later on, Huang et al. [25] gave Hermite–Hadamard type inequalities by using fractional conformable integrals (FCI). Qi et al. [26] investigated Čebyšev type inequalities involving FCI. The Chebyshev type inequalities and certain Minkowski's type inequalities are found in [27,28,29]. Nisar et al. [30] have investigated some new inequalities for a class of n  (nN) positive, continuous, and decreasing functions by employing FCI. Rahman et al. [31] introduced Grüss type inequalities for k-fractional conformable integrals.

    Some significant inequalities are given as applications of fractional integrals [32,33,34,35,36,37,38]. Recently, Rahman et al. [39,40] presented fractional integral inequalities involving tempered fractional integrals. Qiang et al. [41] discussed a fractional integral containing the Mittag-Leffler function in inequality theory and contributed Hadamard type inequality, continuity, and boundedness, upper bounds of that integral. Nisar et al. [42] established weighted fractional Pólya-Szegö and Chebyshev type integral inequalities by operating the generalized weighted fractional integral involving kernel function. The dynamical approach of fractional calculus [43,44,45,46,47,48,49] in the field of inequalities.

    Grüss inequality [50] established for two integrable function as follows

    |T(h,l)|(kK)(sS)4, (1.1)

    where the h and l are two integrable functions which are synchronous on [a,b] and satisfy:

    sh(z)K,sl(y1)S, z,y1[a,b] (1.2)

    for some s,k,S,KR.

    Pólya and Szegö [51] proved the inequalities

    bah2(z)dzabl2(z)dz(abh(z)l(z)dz)214(KSks+ksKS)2. (1.3)

    Dragomir and Diamond [52], proves the inequality by using the Pólya-szegö inequality

    |T(h,l)|(Ss)(Kk)4(ba)2skSKbah(z)l(z)dz (1.4)

    where h and l are two integrable functions which are synchronous on [a,b], and

    0<sh(z)S<,0<kl(y1)K<, z,y1[a,b] (1.5)

    for some s,k,S,KR.

    The aim of this paper is to estimate a new version of Pólya-Szegö inequality, Chebyshev integral inequality, and Hermite Hadamard type integral inequality by a fractional integral operator having a nonsingular function (generalized multi-index Bessel function) as a kernel, and these established results have great contribution in the field of inequalities. The Hermite Hadamard type integral inequality provides the upper and lower estimate to find the average integral for the convex function of any defined interval.

    The structure of the paper follows:

    In section 2, we present some well-known definitions and mathematical preliminaries. The new generalized fractional integral with nonsingular function as a kernel is defined in section 3. In section 4, we present Hermite Hadamard type Mercer inequality of new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel. some inequalities of (sm)-preinvex function involving new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel are presented in section 5. Here section 6 and 7, we present Pólya-Szegö and Chebyshev integral inequalities involving generalized fractional integral operator with nonsingular function as a kernel, respectively.

    Definition 2.1. The inequality holds for the convex function if a mapping g:KR exist as

    g(δy1+(1δ)y2)δg(y1)+(1δ)g(y2), (2.1)

    where y1,y2K and δ[0,1].

    Definition 2.2. The inequality derived by Hermite [53] call as Hermite Hadamard inequality

    g(y1+y22)1y2y1y2y1g(t)dtg(y1)+g(y2)2, (2.2)

    where y1,y2I, with y2y1, if g:IRR is a convex function.

    Definition 2.3. Let yjK for all jIn, ωj>0 such that jInωj=1. Then the Jensen inequality holds

    g(jInωjyj)jInωjg(yj), (2.3)

    exist if g:kR is convex function.

    Mercer [54] derived the Mercer inequality by applying the Jensen inequality and properties of convex function.

    Definition 2.4. Let yjK for all jIn, ωj>0 such that jInωj=1, m=minjIn{yj} and n=maxjIn{yj}. Then the inequality holds for convex function as

    g(m+niInωjyj)g(m)+g(n)jInωjg(yj), (2.4)

    if g:kR is convex function.

    Definition 2.5. [55] The inequality holds for exponentially convex function, if a real valued mapping g:KR exist as

    g(δy1+(1δ)y2)δg(y1)eθy1+(1δ)g(y2)eθy2, (2.5)

    where y1,y2K and δ[0,1] and θR.

    Suppose that ΩRn is a set. Let g:ΩR continuous function and let ξ:Ω×ΩRn be continuous function:

    Definition 2.6. [56] With respect to bifunction ξ(.,.) a set Ω is called a invex set, if

    y1+δξ(y2,y1), (2.6)

    where y1,y2Ω,δ[0,1].

    Definition 2.7. [57] A invex set Ω and a mapping g with respect to ξ(.,.) is called a preinvex function, as

    g(y1+δξ(y2,y1))(1δ)g(y1)+δg(y2), (2.7)

    where y1,y2+ξ(y2,y1)Ω,δ[0,1].

    Definition 2.8. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially preinvex, if the inequality

    g(y1+δξ(y2,y1))(1δ)g(y1)eθy1+δg(y2)eθy2, (2.8)

    where for all y1,y2+ξ(y2,y1)Ω,δ[0,1] and θR.

    Definition 2.9. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially s-preinvex, if

    g(y1+δξ(y2,y1))(1δ)sg(y1)eθy1+δsg(y2)eθy2, (2.9)

    where for all y1,y2+ξ(y2,y1)Ω,δ[0,1], s(0,1] and θR.

    Definition 2.10. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called exponentially (s-m)-preinvex, if

    g(y1+mδξ(y2,y1))(1δ)sg(y1)eθy1+mδsg(y2)eθy2, (2.10)

    where for all y1,y2+ξ(y2,y1)Ω, δ,m[0,1] and θR.

    Definition 2.11. [58] Generalized multi-index Bessel function is defined by Choi et al as follows

    J(ξj)m,λ(δj)m,σ(z)=s=0(λ)σsmj=1Γ(ξjs+δj+1)(z)ss!, (2.11)

    where ξj,δj,λC, (j=1,,m), (λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0.

    Definition 2.12. [58] Pohhammer symbol is defined for λC as follows

    (λ)s={λ(λ+1)(λ+s1),sN1,s=0, (2.12)
    =Γ(λ+s)Γ(λ),(λC/Z0) (2.13)

    where Γ being the Gamma function.

    This section presents a generalized fractional integral operator with a nonsingular function (multi-index Bessel function) as a kernel.

    Definition 3.1. Let ξj,δj,λ,ζC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξj)>max{0:(σ)1},σ>0. Let gL  [y1,y2] and t[y1,y2]. Then the corresponding left sided and right sided generalized integral operators having generalized multi-index Bessel function defined as:

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)=zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt, (3.1)

    and

    (Œ(ξj,δj)mλ,σ,ζ;y2g)(z)=y2z(tz)δjJ(ξj)m,λ(δj)m,σ(ζ(tz)ξj)g(t)dt. (3.2)

    Remark 3.1. The special cases of generalized fractional integrals with nonsingular kernel are given below:

    1. If set j=m=1, σ=0 and limits from [0,z] in Eq (3.1), we get a fractional integral defined by Srivastava and Singh in [59] as

    (Œξ1,δ1λ,0,ζ;0+g)(z)=z0(zt)δ1Jξ1δ1(ζ(zt)ξ1)g(t)dt=f(z). (3.3)

    2. If set j=m=1, δ1=δ11 in Eq (3.1), we have a fractional integral defined by Srivastava and Tomovski in [60] as

    (Œξ1,δ11λ,σ,ζ;y+1g)(z)=(Eζ;λ,σy+1;ξ1,δ1g)(z). (3.4)

    3. If set j=m=1, δ1=δ11, ζ=0 in Eq (3.1), we get a Riemann-Liouville fractional integral operator defined in [61] as

    (Œξ1,δ1λ,σ,ζ;y+1g)(z)=(Iδ1y+1g)(z). (3.5)

    4. If set j=m=1, σ=1, δ1=δ11, in Eq (3.1) and Eq (3.2), we get the fractional integral operator defined by Prabhakar in [62] as follows

    (Œξ1,δ11λ,1,ζ;y+1g)(z)=E(ξ1,δ1;λ;ζ)g(z)=g(z) (3.6)
    (Œ(ξ1,δ11)λ,1,ζ;y2g)(z)=E(ξ1,δ1;λ;ζ)g(z). (3.7)

    Lemma 3.1. From generalized fractional integral operator, we have

    (Œ(ξj,δj)mλ,σ,ζ;y+11)(z)=zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)dt=zy1(zt)δjs=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)(zt)ξjss!dt=s=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)s!zy1(zt)ξjs+δjdt=(zy1)δj+1s=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)s!(zy1)ξjsξjs+δj+1. (3.8)

    Hence, the Eq (3.8) becomes

    (Œ(ξj,δj+1)mλ,σ,ζ;y+11)(z)=(zy1)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(zy1)ξj), (3.9)

    and similarly we have

    (Œ(ξj,δj+1)mλ,σ,ζ;y21)(z)=(y2z)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(y2z)ξj). (3.10)

    In this section, we derive Hermite Hadamard type Mercer inequality of new designed fractional integral operator in a generalized multi-index Bessel function using a kernel.

    Theorem 4.1. Let g:[m,n](0,) is convex function such that gχc(m,n), x,y[m,n] and the operator defined in Eq (5.2) in the form of left sense operator and Eq (3.2) in the form of right sense operator then we have

    g(m+nx+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)] (4.1)
    g(m)+g(n)g(x)+g(y)2. (4.2)

    Proof. Consider the mercer inequality

    g(m+ny1+y22)g(m)+g(n)g(y1)+g(y2)2,y1,y2[m,n]. (4.3)

    Let x,y[m,n], t[z1,z], y1=(zt)x+(1z+t)y and y2=(1z+t)x+(zt)y then inequality (4.3) becomes

    g(m+ny1+y22)g(m)+g(n)g((zt)x+(1z+t)y)+g(1z+t)x+(zt)y)2. (4.4)

    Multiply both sides of Eq (4.4) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and integrating with respect to t from [z1,z], we get

    J(ξj)m,λ(δj)m+1,σ(ζ)g(m+nx+y2)J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12[zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)×[g((zt)y1+(1z+t)y2)+g(1z+t)x+(zt)y2]]dt=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12[yx(yuyx)δjJ(ξj)m,λ(δj)m,σ(ζ(yuyx)ξj)×g(u)(yx)du+xy(uxyx)δjJ(ξj)m,λ(δj)m,σ(ζ(uxyx)ξj)g(u)(yx)du]=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)],

    we get the desired inequality, as

    g(m+nx+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. (4.5)

    Thus, we get the inequality (4.1). Let t[z1,z]. From the convexity of function g we have

    g(x+y2)=g[(zt)x+(1z+t)y+(1z+t)x+(zt)y]2g((zt)x+(1z+t)y)+g((1z+t)x+(zt)y)2. (4.6)

    Both sides multiply of Eq (4.6) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and integrating with respect to t from [z1,z], we obtain

    J(ξj)m,λ(δj)m,σ(ζ)g(x+y2)zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)×[g((zt)x+(1z+t)y)+g((1z+t)x+(zt)y)]dt=12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)].

    We get the inequality of negative sign

    g(x+y2)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. (4.7)

    By adding g(m)+g(n) of both sides of inequality (4.7), we have

    g(m)+g(n)g(x+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)].

    Hence, we get the inequality (4.2).

    Theorem 4.2. Let g:[m,n](0,) is convex function such that gχc(m,n) then we have the following inequalities:

    g(m+nx+y2)[J(ξj)m,λ(δj)m,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)]. (4.8)
    g(m+nx)+g(m+ny)2g(m)+g(n)g(m)+g(n)2. (4.9)

    Where x,y[m,n].

    Proof. We see that from the convexity of g as

    g(m+ny1+y22)=g(m+ny1+m+ny22)12[g(m+ny1)+g(m+ny2)],y1,y2[m,n]. (4.10)

    Let x,y[m,n], t[z1,z], m+ny1=(zt)(m+nx)+(1z+t)(m+ny), m+ny2=(1z+t)(m+nx)+(zt)(m+ny), then inequality (4.10) gives

    g(m+ny1+y22)12g[(zt)(m+nx)+(1z+t)(m+ny)]+12g[(1z+t)(m+nx)+(zt)(m+ny)], (4.11)

    multiply of both sides of inequality (4.11) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) then integrate with respect to t from [z1,z], we get

    J(ξj)m,λ(δj)m,σ(ζ)g(m+nx+y2)12zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g[(zt)(m+nx)+(1z+t)(m+ny)]dt+12zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g[(1z+t)(m+nx)+(zt)(m+ny)]dt=12(yx)[m+nxm+ny(u(m+ny)yx)δj)J(ξj)m,λ(δj)m,σ(ζ(u(m+ny)yx)ξj)g(u)du+m+nym+nx((m+ny)uyx)δj)J(ξj)m,λ(δj)m,σ(ζ((m+ny)uyx)ξj)g(u)du]=12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)].

    Thus, we get the inequality (4.8)

    g(m+nx+y2)[J(ξj)m,λ(δj)m,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)].

    From the convexity of g, we obtain

    g((zt)(m+nx)+(1z+t)(m+ny))(zt)g(m+nx)+(1z+t)g(m+ny), (4.12)

    and

    g((1z+t)(m+nx)+(zt)(m+ny))(1z+t)g(m+nx)+(zt)g(m+ny). (4.13)

    Adding up the above inequalities and applying Jensen-Mercer inequality, we get

    g((zt)(m+nx)+(1z+t)(m+ny))+g((1z+t)(m+nx)+(zt)(m+ny))g(m+nx)+g(m+ny)2[g(m)+g(n)][g(x)+g(y)]. (4.14)

    Multiply both sides of inequality (4.14) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and then integrating with respect to t from [z1,z] we obtain the two inequalities (4.9).

    In this section, we derive some inequalities of (sm) preinvex function involving new designed fractional integral operator Œ(ξj,δj)mλ,σ,ζg)(z) having generalized multi-index Bessel function as its kernel in the form of theorems.

    Theorem 5.1. Suppose a real valued function g:[y1,y1+ξ(y2,y1)]R be exponentially (s-m) preinvex function, then the following fractional inequality holds:

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z].

    z[y1,y1+ξ(y2,y1)], θ1,θ2R.

    Proof. Let z[y1,y1+ξ(y2,y1)], and then for t[y1,z) and δj>1, we have the subsequent inequality

    (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj). (5.1)

    For g is exponentially (s-m)-preinvex function, we obtain

    g(t)(ztzy1)sg(y1)eθ1y1+m(ty1zy1)sg(z)eθ1z. (5.2)

    Taking product (5.1) and (5.2), and integrating with respect to t from y1 to z, we get

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dtzy1(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)×[(ztzy1)sg(y1)eθ1y1+m(ty1zy1)sg(z)eθ1z]dt, (5.3)

    apply definition (13) in Eq (5.3), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]. (5.4)

    Analogously for t(z,y1+ξ(y2,y1)] and μj>1, we have

    (tz)μjJ(ξj)m,λ(μj)m,σ(ζ(tz)ξj)(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)z)ξj). (5.5)

    Further, the exponentially (s-m) convexity of g, we get

    g(t)(tzy1+ξ(y2,y1)z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)sg(z)eθ2z. (5.6)

    Taking product of (5.5) and (5.6) and integrating with respect to t from z to y1+ξ(y2,y1), we have

    y1+ξ(y2,y1)z(tz)μjJ(ξj)m,λ(μj)m,σ(ζ(tz)ξj)g(t)dty1+ξ(y2,y1)z(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)z)ξj)×[(tzy1+ξ(y2,y1)z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)sg(z)eθ2z]dt, (5.7)

    apply the definition (13) in inequality (5.7), we have

    (Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z]. (5.8)

    Now, add the inequalities (5.4) and (5.8), we get the result

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z].

    Corollary 5.1. If gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+η(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+m1eθ2z)].

    Corollary 5.2. Setting m=1 and gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)].

    Corollary 5.3. Setting m=s=1 and gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||2[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)].

    Corollary 5.4. Setting ξ(y2,y1)=y2y1 and gL[y1,y2], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y2z)(Œ(ξj,μj)mλ,σ,ζ;y+21)(z)(1eθ2y2+1eθ2z)].

    Theorem 5.2. Suppose a real value function g:[y1,y1+ξ(y2,y1)]R is differentiable and |g| is exponentially (s-m) preinvex, then the following fractional inequality for (3.1) and (3.2) holds:

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z].

    \forall z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , \theta_{1}, \theta_{2} \in \mathbb{R} .

    Proof. Let z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , t\in[y_{1}, z) , and applying exponentially (s-m) preinvex of |g|^{\prime} , we get

    \begin{equation} |g^{\prime}(t)|\leq\Big(\frac{z-t}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\Big(\frac{t-y_{1}}{z-x_{1}}\Big)^{s}\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}. \end{equation} (5.9)

    Get the inequality (5.9), we have

    \begin{equation} g^{\prime}(t)\leq\Big(\frac{z-t}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\Big(\frac{t-y_{1}}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(x)|}{e^{\theta_{1} z}}. \end{equation} (5.10)

    Subsequently inequality as:

    \begin{eqnarray} (z-t)^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, k}(\zeta(z-t)^{\xi_{j}})}\leq(z-y_{1})^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}. \end{eqnarray} (5.11)

    Conducting product of inequality (5.10) and (5.11), we have

    \begin{eqnarray} (z-t)^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})}g^{\prime}(t)\leq(z-y_{1})^{\delta_{j}}{ \mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}\\ \times\bigg[\Big(\frac{z-t}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\Big(\frac{t-y_{1}}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(x)|}{e^{\theta_{1} z}}\bigg], \end{eqnarray} (5.12)

    integrating before mention inequality with respect to t from y_{1} to z , we have

    \begin{eqnarray} &&\int^{z}_{y_{1}}(z-t)^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})}g^{\prime}(t)dt\\ &&\leq\int^{z}_{y_{1}}(z-y_{1})^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, k}(\zeta(z-y_{1})^{\xi_{j}})} \bigg[\Big(\frac{z-t}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\Big(\frac{t-y_{1}}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]dt\\ && = \frac{(z-y_{1})}{s+1}(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]. \end{eqnarray} (5.13)

    Now, solving left side of (5.13) by putting z-t = \alpha , then we have

    \begin{multline} \int^{z}_{y_{1}}(z-t)^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})}g^{\prime}(t)dt = \int^{z-y_{1}}_{0}\alpha^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(\alpha)^{\xi_{j}})}g^{\prime}(z-\alpha)d\alpha\nonumber\\ = -(z-y_{1})^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}g(y_{1})+\int^{z-y_{1}}_{0}\alpha^{\delta_{j}-1}{ \mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m-1, \sigma}(\zeta(\alpha)^{\xi_{j}})}g(z-\alpha)d\alpha. \end{multline}

    Now, again subsisting z-\alpha = t , we get

    \begin{eqnarray} &&\int^{z}_{y_{1}}(z-t)^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})}g^{\prime}(t)dt\\ && = \int^{z}_{y_{1}}(z-t)^{\delta_{j}-1}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m-1, \sigma}(\zeta(z-t)^{\xi_{j}})}g(t)dt-(z-y_{1})^{\delta_{j}}{ \mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}g(y_{1})\\ && = (Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1}). \end{eqnarray}

    Therefore, the inequality (5.13) have the following form

    \begin{multline} (Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(x)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\\\leq\frac{(z-y_{1})}{s+1}(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]. \end{multline} (5.14)

    Also from (5.9), we get

    \begin{eqnarray} g^{\prime}(t)\geq-\Big(\frac{z-t}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}-m\Big(\frac{t-y_{1}}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}. \end{eqnarray} (5.15)

    Adopting the same procedure as we have done for (5.10), we obtain

    \begin{multline} (Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\\\geq\frac{-(z-y_{1})}{s+1}(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]. \end{multline} (5.16)

    From (5.14) and (5.16), we get

    \begin{multline} \bigg|(Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\bigg|\\ \leq\frac{(z-y_{1})}{s+1}(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]. \end{multline} (5.17)

    Now, we let z\in[y_{1}, y_{1}+\eta(y_{2}, y_{1})] and t\in(z, y_{1}+\xi(y_{2}, y_{1})] , and by exponentially (s-m) preinvex of |g^{\prime}| , we get

    \begin{align} |g^{\prime}(t)| \leq\Big(\frac{t-z}{y_{1}+\xi(y_{2}, y_{1})-z}\Big)^{s}\frac{|g^{\prime}(y_{1}+\xi(y_{2}, y_{1}))|}{e^{\theta_{2}(y_{1}+\xi(y_{2}, y_{1}))}}+m\Big(\frac{y_{1}+\xi(y_{2}, y_{1})-t}{y_{1}+\xi(y_{2}, y_{1})-z}\Big)^{s}\frac{|g^{\prime}(z)|}{e^{\theta_{2} z}}, \end{align} (5.18)

    repeat the same procedure from Eq (5.9) to Eq (5.17), we get

    \begin{multline} \bigg|(Œ^{(\xi_j)_{m}, (\mu_j-1)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)-\big[(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z)\big]g(y_{1}+\xi(y_{2}, y_{1}))\bigg|\\ \leq\frac{((y_{1}+\xi(y_{2}, y_{1})-z)}{s+1}(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z)\bigg[\frac{|g^{\prime}(y_{1}+\xi(y_{2}, y_{1}))|}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg].\; \; \; \; \; \; \; \; \end{multline} (5.19)

    From inequalities (5.17) and (5.19), we have

    \begin{multline} \bigg|(Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)+(Œ^{(\xi_j)_{m}, (\mu_j-1)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, k, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\nonumber\\ -\big[(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z)\big]g(y_{1}+\xi(y_{2}, y_{1}))\bigg|\leq \frac{(z-y_{1})}{s+1} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z) \bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]\nonumber\\ +\frac{((y_{1}+\xi(y_{2}, y_{1})-z)}{s+1}(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z) \bigg[\frac{|g^{\prime}(y_{1}+\xi(y_{2}, y_{1}))|}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg].\nonumber \end{multline}

    Corollary 5.5. Setting \xi(y_{2}, y_{1}) = y_{2}-y_{1} , then under the assumption of theorem (5.2), we have

    \begin{multline} \bigg|(Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)+(Œ^{(\xi_j)_{m}, (\mu_j-1)_m}_{\lambda, \sigma, \zeta; y_{2}^{-}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, k, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\nonumber\\ -\big[(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(z)\big]g(y_{2})\bigg|\leq \frac{(z-y_{1})}{s+1} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z) \bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]\nonumber\\ +\frac{(y_{2}-z)}{s+1}(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(z) \bigg[\frac{|g^{\prime}(y_{2})|}{e^{\theta_{1}(y_{2})}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg].\nonumber \end{multline}

    \forall t\in[y_{1}, y_{2}] , \theta_{1}, \theta_{2} \in \mathbb{R} .

    Corollary 5.6. Setting \xi(y_{2}, y_{1}) = y_{2}-y_{1} , along with m = s = 1 then under the assumption of theorem (5.2), we have

    \begin{multline} \bigg|(Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)+(Œ^{(\xi_j)_{m}, (\mu_j-1)_m}_{\lambda, \sigma, \zeta; y_{2}^{-}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, k, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\nonumber\\ -\big[(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(z)\big]g(y_{2})\bigg|\leq \frac{(z-y_{1})}{2} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z) \bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]\nonumber\\ +\frac{(y_{2}-z)}{2}(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(z) \bigg[\frac{|g^{\prime}(y_{2})|}{e^{\theta_{1}(y_{2})}}+\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg].\nonumber \end{multline}

    \forall t\in[y_{1}, y_{2}] , \theta_{1}, \theta_{2} \in \mathbb{R} .

    Definition 5.1. Let g: [y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R is a function, and g is exponentially symmetric about \frac{2y_{1}+\xi(y_{2}, y_{1})}{2} if

    \begin{equation} \frac{g(z)}{e^{\theta z}} = \frac{g(2y_{1}+\xi(y_{2}, y_{1})-z)}{e^{\theta (2y_{1}+\xi(y_{2}, y_{1})-z)}},\; \; \; \; \theta\in R. \end{equation} (5.20)

    Lemma 5.1. Let g:[y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R be exponentially symmetric, then

    \begin{eqnarray} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\leq\frac{(1+m)g(z)}{2^{s}e^{\theta z}},\; \; \; \; \; \theta\in R. \end{eqnarray} (5.21)

    Proof. For g is exponentially (s-m) preinvex, therefore

    \begin{eqnarray} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2} \Big)\leq\frac{g(y_{1}+\delta\xi(y_{2}, _{1}))}{2^{s}e^{\theta(y_{1}+\delta\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1}+(1-\delta)\xi(y_{2}, y_{1}))}{2^{s}e^{\theta (y_{1}+(1-\delta)\xi(y_{2}, y_{1}))}}. \end{eqnarray} (5.22)

    Let t = y_{1}+\delta\xi(y_{2}, y_{1}) , where t\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , and then 2y_{1}+\xi(y_{2}, y_{1}) = y_{1}+(1-\delta)\xi(y_{2}, y_{1}) , we have

    \begin{eqnarray} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2} \Big)\leq\frac{g(z)}{2^{s}e^{\theta z}}+m\frac{g(2y_{1}+\xi(y_{2}, y_{1})-z)}{2^{s}e^{\theta(2y_{1}+\xi(y_{2}, y_{1})-z)}}. \end{eqnarray} (5.23)

    applying that g is exponentially symmetric, we obtain

    \begin{equation} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\leq\frac{(1+m)g(z)}{2^{s}e^{\theta z}}. \end{equation} (5.24)

    Theorem 5.3. Suppose a real valued function g:[y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R is exponentially (s-m) preinvex and symmetric about exponentially \frac{2y_{1}+\xi(y_{2}, y_{1})}{2} , then the following integral inequality for (3.1) and (3.2) holds:

    \begin{multline} \frac{2^{s}}{1+m}f\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\Big[e^{\theta y_{1}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1})+(Œ^{(\mu_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(y_{1}+\xi(y_{2}, y_{1}))\Big]\\ \leq(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)+(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(y_{1}+\xi(y_{2}, y_{1}))\\ \leq\frac{\xi(y_{2}, y_{1})}{s+1}\big(\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\big)\\ \times\bigg[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z) +(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1}+\xi(y_{2}, y_{1}))\bigg]. \end{multline} (5.25)

    Proof. For z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , we have

    \begin{eqnarray} (z-y_{1})^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}\leq(\xi(y_{2}, y_{1}))^{\delta_{j}}{ \mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}, \end{eqnarray} (5.26)

    the real value function g is exponentially (s-m) preinvex, then for z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , we get

    \begin{eqnarray} g(z)\leq\Big(\frac{z-y_{1}}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\Big(\frac{(y_{1}+\xi(y_{2}, y_{1})-z)}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}. \end{eqnarray} (5.27)

    Conducting product of (5.26) and (5.27), and integrating with respect to z from y_{1} to y_{2} , we get

    \begin{multline} \int^{y_{2}}_{y_{1}}(z-y_{1})^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}g(z)dz\leq\int^{y_{2}}_{y_{1}}(\xi(y_{2}, y_{1}))^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}\\ \times\bigg[\Big(\frac{z-y_{1}}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\Big(\frac{(y_{1}+\xi(y_{2}, y_{1})-z)}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg]dz, \end{multline} (5.28)

    then we have

    \begin{eqnarray} &&(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)\\ &&\leq(\xi(y_{2}, y_{1}))^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}\frac{\xi(y_{2}, y_{1})}{s+1} \bigg[\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg]\\ && = (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z)\frac{\xi(y_{2}, y_{1})}{s+1} \bigg[\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg]. \end{eqnarray} (5.29)

    Analogously for z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , we have

    \begin{eqnarray} (y_{1}+\xi(y_{2}, y_{1})-z)^{\mu_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\mu_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}\leq(\xi(y_{2}, y_{1}))^{\mu_{j}}{ \mathrm{J}^{(\xi_j)_m, \lambda}_{(\mu_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}. \end{eqnarray} (5.30)

    Conducting product of (5.27) and (5.30), and integrating with respect to z from y_{1} to y_{2} , we have

    \begin{multline} \int^{y_{2}}_{y_{1}}(y_{1}+\xi(y_{2}, y_{1})-z)^{\mu_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\mu_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}g(z)dz\\ \leq\int^{y_{2}}_{y_{1}}(\xi(y_{2}, y_{1}))^{\mu_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\mu_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}\bigg[\Big(\frac{z-y_{1}}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}\\ +m\Big(\frac{(y_{1}+\xi(y_{2}, y_{1})-z)}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg]dz\nonumber\\ = (\xi(y_{2}, y_{1}))^{\mu_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\mu_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}\frac{\xi(y_{2}, y_{1})}{s+1}\bigg[\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg],\nonumber \end{multline}

    then

    \begin{multline} (Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(z)\\\leq(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1}+\xi(y_{2}, y_{1}))\frac{\xi(y_{2}, y_{1})}{s+1}\bigg[\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg]. \end{multline} (5.31)

    Summing (5.29) and (5.31), we obtain

    \begin{multline} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)+(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(z)\leq\frac{\xi(y_{2}, y_{1})}{s+1}\big(\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}\\+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\big) \bigg[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z) +(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1}+\xi(y_{2}, y_{1}))\bigg]. \end{multline} (5.32)

    Take the product of Eq (5.21) with (z-y_{1})^{\tau_{j}}{\mathrm{J}^{(\mu_j)_m, \lambda}_{(\tau_j)_m, \sigma}(\zeta(z-y_{1})^{\mu_{j}})} and integrating with respect to t from y_{1} to y_{2} , we have

    \begin{eqnarray} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\int^{y_{2}}_{y_{1}}(z-y_{1})^{\tau_{j}}{\mathrm{J}^{(\mu_j)_m, \lambda}_{(\tau_j)_m, \sigma}(\zeta(z-y_{1})^{\mu_{j}})}dz\\ \leq\frac{(1+m)}{2^{s}}\int^{y_{2}}_{y_{1}}(z-y_{1})^{\tau_{j}}{\mathrm{J}^{(\mu_j)_m, \lambda}_{(\tau_j)_m, \sigma}(\zeta(z-y_{1})^{\mu_{j}})}\frac{g(z)}{e^{\theta z}}dz \end{eqnarray} (5.33)

    using definition (13), we have

    \begin{align} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1})\leq\frac{(1+m)}{2^{s}e^{\theta y_{1}}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z). \end{align} (5.34)

    Taking product (5.21) with (y_{1}+\xi(y_{2}, y_{1})-z)^{\delta_{j}}{\mathrm{J}^{(\mu_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(y_{1}+\xi(y_{2}, y_{1})-z)^{\mu_{j}})} and integrating with respect to variable z from y_{1} to y_{2} , we have

    \begin{multline} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)(Œ^{(\mu_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(y_{1}+\xi(y_{2}, y_{1}))\\\leq\frac{(1+m)}{2^{s}e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(y_{1}+\xi(y_{2}, y_{1})). \end{multline} (5.35)

    Summing up (5.34) and (5.35), we get

    \begin{multline} \frac{2^{s}}{1+m}g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\Big[e^{\theta y_{1}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1})\\ +(Œ^{(\mu_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(y_{1}+\xi(y_{2}, y_{1}))\Big] \leq(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)+(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(y_{1}+\xi(y_{2}, y_{1})). \end{multline} (5.36)

    Now, combining (5.32) and (5.36), we get inequality

    \begin{multline} \frac{2^{s}}{1+m}g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\Big[e^{\theta y_{1}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\eta(y_{2}, y_{1})) ^{-}} 1)(y_{1})+(Œ^{(\mu_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(y_{1}+\xi(y_{2}, y_{1}))\Big]\nonumber\\ \leq(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)+(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(y_{1}+\xi(y_{2}, y_{1}))\\ \leq\frac{\xi(y_{2}, y_{1})}{s+1}\big(\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\big)\nonumber\\ \times\bigg[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z) +(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1}+\xi(y_{2}, y_{1}))\bigg]. \end{multline}

    Corollary 5.7. Setting \xi(y_{2}, y_{1}) = y_{2}-y_{1} , then under the assumption of theorem (5.3), we have

    \begin{eqnarray} &&\frac{2^{s}}{1+m}g\Big(\frac{y_{1}+y_{2}}{2}\Big)\Big[e^{\theta y_{1}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(y_{1})+(Œ^{(\mu_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(y_{2})\Big]\\ &&\leq(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} g)(z)+(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(y_{2})\leq\frac{(y_{2}-y_{1})}{s+1}\big(\frac{g(y_{2}-y_{1})}{e^{\theta_{1}(y_{2}-y_{1})}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\big)\\ &&\times\bigg[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(z) +(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(y_{2})\bigg]. \end{eqnarray} (5.37)

    In this section, we derive some Pólya-Szegö inequalities for four positive integrable functions having fractional operator Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(z) in the form of theorems.

    Theorem 6.1. Let h and l are integrable functions on [y_{1}, \infty) . Suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) such that:

    \begin{equation} (R1) \,\,\ 0 \lt \theta_{1}(b)\leq h(b)\leq\theta_{2}(b), 0 \lt \psi_{1}(b)\leq l(b)\leq\psi_{2}(b) \,\,\ (b\in[y_{1}, z], z \gt y_{1}).\nonumber \end{equation}

    Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b)\in \Omega , then the following inequalities hold:

    \begin{align} \frac{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}} [(\psi_{1}\psi_{2})h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})l^{2}](z)}{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\psi_{1}+\theta_{2}\psi_{2})hl](z)]^{2}}\leq\frac{1}{4}. \end{align} (6.1)

    Proof. From (R1) , for b\in[y_{1}, z] , z > y_{1} , we have

    \begin{equation} \frac{h(b)}{l(b)}\leq\frac{\theta_{2}(b)}{\psi_{1}(b)}, \end{equation} (6.2)

    the inequality write as

    \begin{equation} \bigg(\frac{\theta_{2}(b)}{\psi_{1}(b)}-\frac{h(b)}{l(b)}\bigg)\geq0. \end{equation} (6.3)

    Similarly, we get

    \begin{equation} \frac{\theta_{1}(b)}{\psi_{2}(b)}\leq\frac{h(b)}{l(b)}, \end{equation} (6.4)

    thus

    \begin{equation} \bigg(\frac{h(b)}{l(b}-\frac{\theta_{1}(b)}{\psi_{2}(b)}\bigg)\geq0. \end{equation} (6.5)

    Multiplying Eq (6.3) and Eq (6.5), it follows

    \begin{equation} \bigg(\frac{\theta_{2}(b)}{\psi_{1}(b)}-\frac{h(b)}{l(b)}\bigg)\bigg(\frac{h(b)}{l(b)}-\frac{\theta_{1}(b)}{\psi_{2}(b)}\bigg)\geq0, \end{equation} (6.6)

    i.e.

    \begin{equation} \bigg(\frac{\theta_{2}(b)}{\psi_{1}(b)}+\frac{\theta_{1}(b)}{\psi_{2}(b)}\bigg)\frac{h(b)}{l(b)}\geq\frac{h^{2}(b)}{l^{2}(b)}+\frac{\theta_{1}(b)\theta_{2}(b)}{\psi_{1}(b)\psi_{2}(b)}. \end{equation} (6.7)

    The last inequality can be written as

    \begin{equation} (\theta_{1}(b)\psi_{1}(b)+\theta_{2}(b) \psi_{2}(b))h(b)l(b)\geq\psi_{1}(b)\psi_{2}(b)h^{2}(b)+\theta_{1}(b)\theta_{2}(b)l^{2}(b). \end{equation} (6.8)

    Consequently, multiply both sides of (6.8) by (y_{1}-b)^{\delta_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(y_{1}-b)^{\xi_{j}}) , (z-b) \in \Omega and integrating with respect to b from y_{1} to z , we get

    \begin{equation} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(\theta_{1}\psi_{1}+\theta_{2}\psi_{2})hl](z)\geqŒ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\psi_{1}\psi_{2}h^{2}](z)+Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}\theta_{2}l^{2}](z). \end{equation} (6.9)

    Besides, by AM-GM (arithmetic mean- geometric mean) inequality, i.e., a_{1}+b_{1}\geq2\sqrt{a_{1}b_{1}} a_{1}, b_{1} \in \Re^{+} , we get

    \begin{equation} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(\theta_{1}\psi_{1}+\theta_{2}\psi_{2})hl](x)\geq2\sqrt{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\psi_{1}\psi_{2}h^{2}](z)+Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}\theta_{2}l^{2}](z)}, \end{equation} (6.10)

    and it follows straightforward the statement of Eq (6.1).

    Corollary 6.1.. Let h and l be two integrable functions on [0, \infty) and satisfying the inequality

    \begin{equation} (R2) \,\ 0 \lt s\leq h(b)\leq S, 0 \lt k\leq l(b)\leq K (b\in[y_{1}, \tau], z \gt y_{1}). \end{equation} (6.11)

    For z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b)\in \Omega , then the following inequalities hold:

    \begin{equation} \frac{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l^{2}](z)}{(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z))^{2}}\leq\frac{1}{4}\bigg(\frac{\sqrt{SK}}{\sqrt{sk}}+\frac{\sqrt{sk}}{\sqrt{SK}}\bigg)^{2}. \end{equation} (6.12)

    Theorem 6.2. Let h and l are positive integrable functions on [y_{1}, \infty) . Suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) satisfying (R1) on [y_{1}, \infty) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b), (\tau-z)\in \Omega , then the following inequalities hold:

    \begin{equation} \frac{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}} [h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{1}\psi_{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}\theta_{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z)}{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{1}h](z)+Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{2}h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{2}l](z)]^{2}}\leq\frac{1}{4}. \end{equation} (6.13)

    Proof. By condition (R1) , it is clear that

    \begin{equation} \bigg(\frac{\theta_{2}(b)}{\psi_{1}(\alpha)}-\frac{h(b)}{l(\alpha)}\bigg)\geq0, \end{equation} (6.14)

    and

    \begin{equation} \bigg(\frac{h(b)}{l(\alpha)}-\frac{\theta_{1}(b)}{\psi_{2}(\alpha)}\bigg)\geq0, \end{equation} (6.15)

    these inequalities implies that

    \begin{equation} \bigg(\frac{\theta_{1}(b)}{\psi_{2}(\alpha)}+\frac{\theta_{2}(b)}{\psi_{1}(\alpha)}\bigg)\frac{h(b)}{l(\alpha)}\geq\frac{h^{2}(b)}{l^{2}(\alpha)} +\frac{\theta_{1}(b)\theta_{2}(b)}{\psi_{1}(\alpha)\psi_{2}(\alpha)}. \end{equation} (6.16)

    The Eq (6.16), multiply by \psi_{1}(\alpha)\psi_{2}(\alpha)l^{2}(\alpha) of both sides, we have

    \begin{align} \theta_{1}(b)h(b)\psi_{1}(\alpha)l(\alpha)+\theta_{2}(b)h(b)\psi_{2}(\alpha)l(\alpha)\\ \geq\psi_{1}(\alpha)\psi_{2}(\alpha)h^{2}(b)+\theta_{1}(b)\theta_{2}(b)l^{2}(\alpha). \end{align} (6.17)

    Hence, the Eq (6.17) multiply both sides by

    \begin{equation} (z-b)^{\delta_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\xi_{j}}), (\alpha-z)^{\delta_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (\alpha-z)^{\xi j}). \end{equation} (6.18)

    And integrating double with respect to b and \alpha from y_{1} to z and z to y_{2} respectively, we have

    \begin{align} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{1}l](z)+Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{2}h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{2}l](z)\\ \geqŒ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}} [h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{1}\psi_{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}\theta_{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z). \end{align} (6.19)

    At last, we come to Eq (6.13) by using the arithmetic and geometric mean inequality to the upper inequality.

    Theorem 6.3. Let h and l are integrable functions on [y_{1}, \infty) . Suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) satisfying (R1) on [y_{1}, \infty) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b), (\alpha-z)\in \Omega , then the following inequalities hold:

    \begin{align} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z)\leqŒ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(\theta_{2}hl)/\psi_{1}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[(\psi_{2}hl)/\theta_{1}]. \end{align} (6.20)

    Proof. We have for any (z-b), (\alpha-z)\in \Omega , from Eq (6.2), thus

    \begin{multline} \int^{z}_{y_{1}}(z-b)^{\delta_{j}} \mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\xi_{j}}) h^{2}(b)db \leq\int^{y_{1}}_{z}(\alpha-z)^{\xi_{j}} \mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (\alpha-z)^{\xi_{j}}) \frac{\theta_{2}(\alpha)}{\psi_{1}(\alpha)}h(\alpha)l(\alpha)d\alpha,\nonumber \end{multline}

    which implies

    \begin{equation} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)\leqŒ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(\theta_{2}hl)/\psi_{1}](z). \end{equation} (6.21)

    and analogously, by Eq (6.4), we get

    \begin{equation} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](x)\leqŒ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[(\psi_{2}hl)/\theta_{1}](z), \end{equation} (6.22)

    hence, by multiplying Eq (6.21) and Eq (6.22), follow Eq (6.20).

    Corollary 6.2. Let h and l be integrable functions on [y_{1}, \infty) satisfying (R2) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b), (\alpha-z)\in \Omega , we obtain

    \begin{equation} \frac{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z)}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[hl](z)}\leq\frac{SK}{sk}. \end{equation} (6.23)

    In this section, Chebyshev type integral inequalities established involving the fractional operator Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(z) and using the Pólya-Szegö fractional integral inequalities of theorem (6.1) in the form of theorem, and then discuss its corollary.

    Theorem 7.1. Let h and l be integrable functions on [y_{1}, \infty) , and suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) satisfying (R1) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b)(\alpha-z)\in \Omega the following inequality hold:

    \begin{align} |Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[hl](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\\ -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)|\\ \leq 2[G_{y_{1}, y_{2}}(h, \theta_{1}, \theta_{2})G_{y_{1}, y_{2}}(l, \psi_{1}, \psi_{2})]^{\frac{1}{2}}. \end{align} (7.1)

    where

    \begin{align} G_{y_{1}, y_{2}}(b, y, x)(z) = \frac{1}{8}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(y+x)b](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[yx](z)}Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\ +\frac{1}{8}\frac{[Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[(y+x)b](z)]^{2}}{Œ^{(\mu_j, \nu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[yx](z)}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\\ -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[b](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[b](z). \end{align}

    Proof. For (b, \alpha)\in(y_{1}, z) (z > y_{1}) , we defined A(b, \alpha) = (h(b)-h(\alpha))(l(b)-l(\alpha)) which is the same

    \begin{equation} A(b, \alpha) = h(b)l(b)+h(\alpha)l(\alpha)-h(b)l(\alpha)-h(\alpha)l(b). \end{equation} (7.2)

    Further, the Eq (7.2), multiply both sides by

    \begin{equation} (z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}}), \end{equation} (7.3)

    and integrating double with respect to b and \alpha from y_{1} to z and z to y_{2} respectively, we get

    \begin{align} &\int^{z}_{y_{1}} \int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})A(b,\alpha)dbd\alpha\\ & = \int^{z}_{y_{1}}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})h(b)l(b)db\int^{y_{2}}_{z}(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})d\alpha\\ &+\int^{z}_{y_{1}}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})db\int^{y_{2}}_{z}(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})h(\alpha)l(\alpha)d\alpha\\ &-\int^{y_{1}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})h(b)db\int^{y_{2}}_{z}(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})h(\alpha)d\alpha\\ &-\int^{y_{1}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})l(b)db\int^{y_{2}}_{z}(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})h(\alpha)d\alpha\\ & = Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[hl](z)\\ &-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z). \end{align} (7.4)

    Now, applying Cauchy-Schwartz inequality for integrals, we get

    \begin{multline} \bigg|\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})A(b, \alpha)dbd\alpha\bigg|\\ \leq\bigg(\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})\alpha[h(b)]^{2}dbd\alpha\\ +\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})[h(\alpha)]^{2}dbd\alpha\\ -2\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})h(b)h(\alpha)dbd\alpha \bigg)^{1/2}\\ \times\bigg(\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})\alpha[l(b)]^{2}dbd\alpha\\ +\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})[l(\alpha)]^{2}dbd\alpha\\ -2\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})l(b)l(\alpha)dbd\alpha \bigg)^{1/2}, \end{multline} (7.5)

    it follow as

    \begin{multline} \bigg|\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})A(b, \alpha)dbd\alpha\bigg|\\ \leq2\{1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h^{2}](z)\\ -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\}^{1/2}\times\{1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z) -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)\}^{1/2}. \end{multline} (7.6)

    By applying lemma (6.1) for \psi_{1}(z) = \psi_{2}(z) = l(z) = 1 , we get for any \mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(z)^{\delta_{j}}\in \Omega

    \begin{align} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}} [h^{2}](z)\leq\frac{1}{4}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)}, \end{align} (7.7)

    this implies

    \begin{align} &1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h^{2}](z)\\ &-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\leq\frac{1}{8}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)}Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\ &+\frac{1}{8}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\frac{[Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)} -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\\ & = G_{y_{1}, y_{2}}(h, \theta_{1}, \theta_{2}). \end{align} (7.8)

    Analogously, it is clear when \theta_{1}(z) = \theta_{2}(z) = h(z) = 1 , according to Lemma (6.1), we get

    \begin{align} &1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z)\\ &-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](x)\leq\frac{1}{8}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}+\psi_{2})l](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}\psi_{2})](z)}Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\ &+\frac{1}{8}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\frac{[Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}+\psi_{2})l](z)]^{2}}{Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}\psi_{2})](z)} -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)\\ & = G_{y_{1}, y_{2}}(l, \psi_{1}, \psi_{2}). \end{align} (7.9)

    Thus, by resulting Eqs (7.4), (7.6), (7.8) and (7.9), we get the desired inequality (7.1).

    Corollary 7.1. Let h and l be integrable functions on [y_{1}, \infty) , suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) satisfying (R1) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b), (\alpha-z)\in \Omega the following inequalities hold:

    \begin{align} |Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z) -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)|\\ \leq [G_{y_{1}, y_{2}}(h, \theta_{1}, \theta_{2})G_{y_{1}, y_{1}}(l, \theta_{1}, \theta_{2})]^{\frac{1}{2}}, \end{align}

    where

    \begin{align} G_{y_{1}, y_{1}}(b, y, x)(z) = \frac{1}{4}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(y+x)b](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[yx](z)}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1]-(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[b](z))^{2}. \end{align}

    This article analyzed the generalized fractional integral operator having nonsingular function (generalized multi-index Bessel function) as kernel and developed a new version of inequalities. We estimate some inequalities (Hermite Hadamard type Mercer inequality, exponentially (s-m) preinvex inequality, Pólya-Szegö type integral inequality and the Chebyshev type inequality) with the generalized fractional integral operator in which nonsingular function as the kernel. Introducing the new version of inequalities of newly constricted operators have strengthened the idea and results.

    The authors declare that they have no competing interest.



    [1] S. Q. Deng, X. Yang, Y. Wei, J. T. Chen, X. J. Wang, H. J. Peng, A review on dengue vaccine development, Vaccines, 8 (2020), 63. https://doi.org/10.3390/vaccines8010063 doi: 10.3390/vaccines8010063
    [2] S. Rajapakse, C. Rodrigo, A. Rajapakse, Treatment of dengue fever, Infect. Drug Resist., 5 (2012), 103–112. https://doi.org/10.2147/IDR.S22613
    [3] S. J. Thomas, D. Strickman, D. W. Vaughn, Dengue Epidemiology: Virus Epidemiology, Ecology, and Emergence, Adv. Virus Res., 61 (2003), 235–289. https://doi.org/10.1016/S0065-3527(03)61006-7
    [4] N. L. Achee, F. Gould, T. A. Perkins, R. C. Reiner Jr, A. C. Morrison, S. A. Ritchie, et al., A critical assessment of vector control for dengue prevention, PLoS Negl.Trop. Dis., 9 (2015), e0003655. https://doi.org/10.1371/journal.pntd.0003655 doi: 10.1371/journal.pntd.0003655
    [5] D. Pilger, M. De Maesschalck, O. Horstick, J. L. San Martin, Dengue outbreak response: documented effective interventions and evidence gaps, TropIKA.net, 1 (2010).
    [6] P. A. Reyes-Castro, L. Castro-Luque, R. Díaz-Caravantes, K. R. Walker, M. H. Hayden, K. C. Ernst, Outdoor spatial spraying against dengue: A false sense of security among inhabitants of Hermosillo, Mexico, PLoS Negl.Trop. Dis., 11 (2017), e0005611. https://doi.org/10.1371/journal.pntd.0005611 doi: 10.1371/journal.pntd.0005611
    [7] F. Espinoza-Gómez, C. M. Hernández-Suárez, R. Coll-Cárdenas, Educational campaign versus malathion spraying for the control of Aedes aegypti in Colima, Mexico, J. Epidemiol. Community Health, 56 (2002), 148–152. https://doi.org/10.1136/jech.56.2.148 doi: 10.1136/jech.56.2.148
    [8] N. Arunachalam, B. K. Tyagi, M. Samuel, R. Krishnamoorthi, R. Manavalan, S. C. Tewari, et al., Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India, Pathog. Global Health, 106 (2012), 488–496. https://doi.org/10.1179/2047773212Y.0000000056 doi: 10.1179/2047773212Y.0000000056
    [9] C. Aerts, M. Revilla, L. Duval, K. Paaijmans, J. Chandrabose, H. Cox, et al., Understanding the role of disease knowledge and risk perception in shaping preventive behavior for selected vector-borne diseases in Guyana, PLoS Negl. Trop. Dis., 14 (2020), e0008149. https://doi.org/10.1371/journal.pntd.0008149 doi: 10.1371/journal.pntd.0008149
    [10] N. Andersson, E. Nava-Aguilera, J. Arosteguí, A. Morales-Perez, H. Suazo-Laguna, J. Legorreta-Soberanis, et al., Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial, BMJ, 351 (2015), h3267. https://doi.org/10.1136/bmj.h3267 doi: 10.1136/bmj.h3267
    [11] J. Arosteguí, R. J. Ledogar, J. Coloma, C. Hernández-Alvarez, H. Suazo-Laguna, A. Cárcamo, et al., The Camino Verde intervention in Nicaragua, 2004–2012, BMC Public Health, 17 (2017), 406. https://doi.org/10.1186/s12889-017-4299-3 doi: 10.1186/s12889-017-4299-3
    [12] S. Funk, M. Salathé, V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: a review, J. R. Soc. Interface, 7 (2010), 1247–1256. https://doi.org/10.1098/rsif.2010.0142 doi: 10.1098/rsif.2010.0142
    [13] T. Berry, M. Ferrari, T. Sauer, S. J. Greybush, D. Ebeigbe, A. J. Whalen, et al., Stabilizing the return to normal behavior in an epidemic, medRxiv, 2023.03.13.23287222.
    [14] S. Del Valle, H. Hethcote, J. M. Hyman, C. Castillo-Chavez, Effects of behavioral changes in a smallpox attack model, Math. Biosci., 195 (2005), 228–251. https://doi.org/10.1016/j.mbs.2005.03.006 doi: 10.1016/j.mbs.2005.03.006
    [15] M. J. Ferrari, S. Bansal, L. A. Meyers, O. N. Bjørnstad, Network frailty and the geometry of herd immunity, Proc. R. Soc. B, 273 (2006), 2743–2748. https://doi.org/10.1098/rspb.2006.3636 doi: 10.1098/rspb.2006.3636
    [16] E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddia, G. Chowell, P. A. Gonzalez Parra, G. J. Hickling, et al., Adaptive human behavior in epidemiological models, Proc. Natl. Acad. Sci. U.S.A., 108 (2011), 6306–6311. https://doi.org/10.1073/pnas.101125010 doi: 10.1073/pnas.101125010
    [17] L. LeJeune, N. Ghaffarzadegan, L. M. Childs, O. Saucedo, Mathematical analysis of simple behavioral epidemic models, Math. Biosci., 375 (2024), 109250. https://doi.org/10.1016/j.mbs.2024.109250 doi: 10.1016/j.mbs.2024.109250
    [18] C. Eksin, K. Paarporn, J. S. Weitz, Systematic biases in disease forecasting – The role of behavior change, Epidemics, 27 (2019), 96–105. https://doi.org/10.1016/j.epidem.2019.02.004 doi: 10.1016/j.epidem.2019.02.004
    [19] T. Boccia, M. N. Burattini, F. A. B. Coutinho, E. Massad, Will people change their vector-control practices in the presence of an imperfect dengue vaccine?, Epidemiol. Infect., 142 (2014), 625–633. https://doi.org/10.1017/S0950268813001350 doi: 10.1017/S0950268813001350
    [20] V. M. Alvarado-Castro, C. Vargas-De-León, S. Paredes-Solis, A. Li-Martin, E. Nava-Aguilera, A. Morales-Pérez, et al., The influence of gender and temephos exposure on community participation in dengue prevention: a compartmental mathematical model, BMC Infect. Dis., 24 (2024), 463. https://doi.org/10.1186/s12879-024-09341-w doi: 10.1186/s12879-024-09341-w
    [21] J. Jiao, G. P. Suarez, N. H. Fefferman, How public reaction to disease information across scales and the impacts of vector control methods influence disease prevalence and control efficacy, PLoS Comput. Biol., 17 (2021), e1008762. https://doi.org/10.1371/journal.pcbi.1008762 doi: 10.1371/journal.pcbi.1008762
    [22] K. Roosa, N. H. Fefferman, A general modeling framework for exploring the impact of individual concern and personal protection on vector-borne disease dynamics, Parasites Vectors, 15 (2022), 361. https://doi.org/10.1186/s13071-022-05481-7 doi: 10.1186/s13071-022-05481-7
    [23] J. M. Epstein, J. Parker, D. Cummings, R. A. Hammond, Coupled contagion dynamics of fear and disease: mathematical and computational explorations, PLoS One, 3 (2008), e3955. https://doi.org/10.1371/journal.pone.0003955 doi: 10.1371/journal.pone.0003955
    [24] K. Jain, V. Bhatnagar, S. Prasad, S. Kaur, Coupling fear and contagion for modeling epidemic dynamics, IEEE Trans. Network Sci. Eng., 10 (2023), 20–34. https://doi.org/10.1109/TNSE.2022.3187775 doi: 10.1109/TNSE.2022.3187775
    [25] J. M. Epstein, E. Hatna, J. Crodelle, Triple contagion: a two-fears epidemic model, J. R. Soc. Interface, 18 (2021), 20210186. https://doi.org/10.1098/rsif.2021.0186 doi: 10.1098/rsif.2021.0186
    [26] N. Perra, D. Balcan, B. Gonçalves, A. Vespignani, Towards a characterization of behavior-disease models, PLoS One, 6 (2011), e23084. https://doi.org/10.1371/journal.pone.0023084 doi: 10.1371/journal.pone.0023084
    [27] S. A. Pedro, F. T. Ndjomatchoua, P. Jentsch, J. M. Tchuenche, M. Anand, C. T. Bauch, Conditions for a second wave of COVID-19 due to interactions between disease dynamics and social processes, Front. Phys., 8 (2020), 574514. https://doi.org/10.3389/fphy.2020.574514 doi: 10.3389/fphy.2020.574514
    [28] A. Bernardin, A. J. Martínez, T. Perez-Acle, On the effectiveness of communication strategies as non-pharmaceutical interventions to tackle epidemics, PLoS One, 16 (2021), e0257995. https://doi.org/10.1371/journal.pone.0257995 doi: 10.1371/journal.pone.0257995
    [29] Mathematica 14.0, 2024. Available from: http://www.wolfram.com.
    [30] M. M. Andersen, S. Højsgaard, caracas: Computer Algebra, 2023. Available from: https://github.com/r-cas/caracas.
    [31] P. Driessche, J. Watmough, Further notes on the basic reproduction number, Math. Epidemiol., 2008 (2008), 159–178. https://doi.org/10.1007/978-3-540-78911-6_6 doi: 10.1007/978-3-540-78911-6_6
    [32] A. B. Sabin, Research on dengue during World War II, Am. J. Trop. Med. Hyg., 1 (1952), 30–50. https://doi.org/10.4269/ajtmh.1952.1.30 doi: 10.4269/ajtmh.1952.1.30
    [33] C. Probst, T. M. Vu, J. M. Epstein, A. E. Nielsen, C. Buckley, A. Brennan, et al., The normative underpinnings of population-level alcohol use: An individual-level simulation model, Health Educ. Behav., 47 (2020), 224–234. https://doi.org/10.1177/1090198119880545 doi: 10.1177/1090198119880545
    [34] J. M. Epstein, Agent_Zero, Princeton University Press, 2014.
    [35] T. M. Vu, C. Probst, J. M. Epstein, A. Brennan, M. Strong, R. C. Purshouse, Toward inverse generative social science using multi-objective genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference, ACM, Prague Czech Republic, (2019), 1356–1363.
    [36] L. Cattarino, I. Rodriguez-Barraquer, N. Imai, D. A. T. Cummings, N. M. Ferguson, Mapping global variation in dengue transmission intensity, Sci. Transl. Med., 12 (2020), eaax4144. https://doi.org/10.1126/scitranslmed.aax4144 doi: 10.1126/scitranslmed.aax4144
    [37] Y. Liu, K. Lillepold, J. C. Semenza, Y. Tozan, M. B. M. Quam, J. Rocklöv, Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones, Environ. Res., 182 (2020), 109114. https://doi.org/10.1016/j.envres.2020.109114 doi: 10.1016/j.envres.2020.109114
    [38] A. C. Morrison, R. C. Reiner, W. H. Elson, H. Astete, C. Guevara, C. del Aguila, et al., Efficacy of a spatial repellent for control of Aedes-borne virus transmission: A cluster-randomized trial in Iquitos, Peru, Proc. Natl. Acad. Sci., 119 (2022), e2118283119. https://doi.org/10.1073/pnas.2118283119 doi: 10.1073/pnas.2118283119
    [39] H. J. Wearing, P. Rohani, Ecological and immunological determinants of dengue epidemics, Proc. Natl. Acad. Sci., 103 (2006), 11802–11807. https://doi.org/10.1073/pnas.0602960103 doi: 10.1073/pnas.0602960103
    [40] N. G. Reich, S. Shrestha, A. A. King, P. Rohani, J. Lessler, S. Kalayanarooj, et al., Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity, J. R. Soc. Interface, 10 (2013), 20130414. https://doi.org/10.1098/rsif.2013.0414 doi: 10.1098/rsif.2013.0414
    [41] C. B. F. Vogels, C. Rückert, S. M. Cavany, T. A. Perkins, G. D. Ebel, N. D. Grubaugh, Arbovirus coinfection and co-transmission: A neglected public health concern?, PLoS Biol., 17 (2019), e3000130. https://doi.org/10.1371/journal.pbio.3000130 doi: 10.1371/journal.pbio.3000130
    [42] M. Chan, M. A. Johansson, The incubation periods of dengue viruses, PLoS One, 7 (2012), e50972. https://doi.org/10.1371/journal.pone.0050972 doi: 10.1371/journal.pone.0050972
    [43] Q. A. Ten Bosch, J. M. Wagman, F. Castro-Llanos, N. L. Achee, J. P. Grieco, T. A. Perkins, Community-level impacts of spatial repellents for control of diseases vectored by Aedes aegypti mosquitoes, PLoS Comput. Biol., 16 (2020), e1008190. https://doi.org/10.1371/journal.pcbi.1008190 doi: 10.1371/journal.pcbi.1008190
    [44] L. C. Harrington, J. P. Buonaccorsi, J. D. Edman, A. Costero, P. Kittayapong, G. G. Clark, et al., Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand, J. Med. Entomol., 38 (2001), 537–547. https://doi.org/10.1603/0022-2585-38.4.537 doi: 10.1603/0022-2585-38.4.537
    [45] T. W. Scott, P. H. Amerasinghe, A. C. Morrison, L. H. Lorenz, G. G. Clark, D. Strickman, et al., Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency, J. Med. Entomol., 37 (2000), 89–101. https://doi.org/10.1603/0022-2585-37.1.89 doi: 10.1603/0022-2585-37.1.89
    [46] D. L. Smith, K. E. Battle, S. I. Hay, C. M. Barker, T. W. Scott, F. E. McKenzie, Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens, PLoS Pathogens, 8 (2012), e1002588. https://doi.org/10.1371/journal.ppat.1002588 doi: 10.1371/journal.ppat.1002588
    [47] R Core Team, R: A Language and Environment for Statistical Computing, 2021. Available from: https://www.R-project.org/.
    [48] K. Soetaert, T. Petzoldt, R. W. Setzer, Solving differential equations in R: package deSolve, J. Stat. Software, 33 (2010), 1–25. https://doi.org/10.18637/jss.v033.i09 doi: 10.18637/jss.v033.i09
    [49] A. Puy, S. Lo Piano, A. Saltelli, S. A. Levin, Sensobol: An R package to compute variance-based sensitivity indices, J. Stat. Software, 102 (2022), 1–37. https://doi.org/10.18637/jss.v102.i05 doi: 10.18637/jss.v102.i05
    [50] R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, New York, 1992.
    [51] M. Martcheva, Introduction to epidemic modeling, in An Introduction to Mathematical Epidemiology (ed. M. Martcheva), Springer US, Boston, MA, (2015), 9–31. https://doi.org/10.1007/978-1-4899-7612-3_2
    [52] F. Brauer, C. Castillo-Chavez, Z. Feng, Endemic disease models, Math. Models Epidemiol., 69 (2019), 63–116. https://doi.org/10.2478/acph-2019-0006
    [53] R. C. Reiner, S. T. Stoddard, B. M. Forshey, A. A. King, A. M. Ellis, A. L. Lloyd, et al., Time-varying, serotype-specific force of infection of dengue virus, Proc. Natl. Acad. Sci., 111 (2014), E2694–E2702. https://doi.org/10.1073/pnas.13149331 doi: 10.1073/pnas.13149331
    [54] M. Ryan, E. Brindal, M. Roberts, R. I. Hickson, A behaviour and disease transmission model: incorporating the Health Belief Model for human behaviour into a simple transmission model, J. R. Soc. Interface, 21 (215), 20240038. https://doi.org/10.1098/rsif.2024.0038
    [55] J. Cascante-Vega, S. Torres-Florez, J. Cordovez, M. Santos-Vega, How disease risk awareness modulates transmission: coupling infectious disease models with behavioural dynamics, R. Soc. Open Sci., 9 (2022), 210803. https://doi.org/10.1098/rsos.210803 doi: 10.1098/rsos.210803
    [56] V. Vanlerberghe, M. E. Toledo, M. Rodriguez, D. Gomez, A. Baly, J. R. Benitez, et al., Community involvement in dengue vector control: cluster randomised trial, BMJ, 338 (2009), b1959–b1959. https://doi.org/10.1136/bmj.b1959 doi: 10.1136/bmj.b1959
    [57] J. Quintero, N. R. Pulido, J. Logan, T. Ant, J. Bruce, G. Carrasquilla, Effectiveness of an intervention for Aedes aegypti control scaled-up under an inter-sectoral approach in a Colombian city hyper-endemic for dengue virus, PLoS One, 15 (2020), e0230486. https://doi.org/10.1371/journal.pone.0230486 doi: 10.1371/journal.pone.0230486
    [58] J. Raude, K. MCColl, C. Flamand, T. Apostolidis, Understanding health behaviour changes in response to outbreaks: Findings from a longitudinal study of a large epidemic of mosquito-borne disease, Soc. Sci. Med., 230 (2019), 184–193. https://doi.org/10.1016/j.socscimed.2019.04.009 doi: 10.1016/j.socscimed.2019.04.009
    [59] L. S. Lloyd, P. Winch, J. Ortega-Canto, C. Kendall, The design of a community-based health education intervention for the control of Aedes aegypti, Am. J. Trop. Med. Hyg., 50 (1994), 401–411. https://doi.org/10.4269/ajtmh.1994.50.401 doi: 10.4269/ajtmh.1994.50.401
    [60] A. Caprara, J. W. D. O. Lima, A. C. R. Peixoto, C. M. V. Motta, J. M. S. Nobre, J. Sommerfeld, et al., Entomological impact and social participation in dengue control: a cluster randomized trial in Fortaleza, Brazil, Trans. R. Soc. Trop. Med. Hyg., 109 (2015), 99–105. https://doi.org/10.1093/trstmh/tru187 doi: 10.1093/trstmh/tru187
    [61] A. M. Buttenheim, V. Paz-Soldan, C. Barbu, C. Skovira, J. Q. Calderón, L. M. M. Riveros, et al., Is participation contagious? Evidence from a household vector control campaign in urban Peru, J Epidemiol. Community Health, 68 (2014), 103–109. https://doi.org/10.1136/jech-2013-202661 doi: 10.1136/jech-2013-202661
    [62] J. Bedson, L. A. Skrip, D. Pedi, S. Abramowitz, S. Carter, M. F. Jalloh, et al., A review and agenda for integrated disease models including social and behavioural factors, Nat. Hum. Behav., 5 (2021), 834–846. https://doi.org/10.1038/s41562-021-01136-2 doi: 10.1038/s41562-021-01136-2
    [63] K. Magori, M. Legros, M. E. Puente, D. A. Focks, T. W. Scott, A. L. Lloyd, et al., Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies, PLoS Negl. Trop. Dis., 3 (2009), e508. https://doi.org/10.1371/journal.pntd.0000508 doi: 10.1371/journal.pntd.0000508
    [64] E. L. Davis, T. D. Hollingsworth, M. J. Keeling, An analytically tractable, age-structured model of the impact of vector control on mosquito-transmitted infections, PLoS Comput. Biol., 20 (2024), e1011440. https://doi.org/10.1371/journal.pcbi.1011440 doi: 10.1371/journal.pcbi.1011440
    [65] M. Predescu, G. Sirbu, R. Levins, T. Awerbuch-Friedlander, On the dynamics of a deterministic and stochastic model for mosquito control, Appl. Math. Lett., 20 (2007), 919–925. https://doi.org/10.1016/j.aml.2006.12.001 doi: 10.1016/j.aml.2006.12.001
    [66] J. Elsinga, H. T. Van Der Veen, I. Gerstenbluth, J. G. M. Burgerhof, A. Dijkstra, M. P. Grobusch, et al., Community participation in mosquito breeding site control: an interdisciplinary mixed methods study in Curaçao, Parasites Vectors, 10 (2017), 434. https://doi.org/10.1186/s13071-017-2371-6 doi: 10.1186/s13071-017-2371-6
    [67] A. N. Rakhmani, Y. Limpanont, J. Kaewkungwal, K. Okanurak, Factors associated with dengue prevention behaviour in Lowokwaru, Malang, Indonesia: a cross-sectional study, BMC Public Health, 18 (2018), 619. https://doi.org/10.1186/s12889-018-5553-z doi: 10.1186/s12889-018-5553-z
    [68] A. J. Mackay, M. Amador, A. Diaz, J. Smith, R. Barrera, Dynamics of Aedes aegypti and Culex quinquefasciatus in septic tanks, J. Am. Mosq. Control Assoc., 25 (2009), 409–416. https://doi.org/10.2987/09-5888.1 doi: 10.2987/09-5888.1
  • This article has been cited by:

    1. Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Artion Kashuri, Hassen Aydi, Eskandar Ameer, Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02899-6
    2. Peng Xu, Saad Ihsan Butt, Saba Yousaf, Adnan Aslam, Tariq Javed Zia, Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel, 2022, 61, 11100168, 4837, 10.1016/j.aej.2021.10.033
    3. Ravi Kumar Jain, Alok Bhargava, Mohd. Rizwanullah, Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series, 2022, 8, 2349-5103, 10.1007/s40819-021-01202-3
    4. Wedad Saleh, Abdelghani Lakhdari, Adem Kiliçman, Assia Frioui, Badreddine Meftah, Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended s,m-prequasiinvex mixed partial derivatives, 2023, 72, 11100168, 261, 10.1016/j.aej.2023.03.080
    5. Anupam Das, Mohsen Rabbani, Bipan Hazarika, An iterative algorithm to approximate the solution of a weighted fractional integral equation, 2023, 1793-5571, 10.1142/S1793557123502418
    6. Yong Tang, Ghulam Farid, M. Y. Youssif, Zakieldeen Aboabuda, Amna E. Elhag, Kahkashan Mahreen, Çetin Yildiz, Refinements of Various Types of Fractional Inequalities via Generalized Convexity, 2024, 2024, 2314-4629, 10.1155/2024/4082683
    7. Saad Ihsan Butt, Praveen Agarwal, Juan J. Nieto, New Hadamard–Mercer Inequalities Pertaining Atangana–Baleanu Operator in Katugampola Sense with Applications, 2024, 21, 1660-5446, 10.1007/s00009-023-02547-3
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(159) PDF downloads(25) Cited by(0)

Figures and Tables

Figures(9)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog