Research article Special Issues

Dynamic interaction between transmission, within-host dynamics and mosquito density


  • Published: 28 April 2025
  • The central question in this paper is the character and role of the within-host and between-host interactions in vector-transmitted diseases compared to environmental-transmitted diseases. In vector-transmitted diseases, the environmental stage becomes the vector population. We link an epidemiological model for a vector-transmitted disease with a simple immunological process: the effective transmission rate from host to vector, modeled as a function of the infected cell level within the host, and a virus inoculation term that depends on the abundance of infected mosquitoes. We explore the role of infectivity (defined as the number of host target cells infected), recovery rate, and viral clearance rate in the coupled dynamics of these systems. As expected, the conditions for a disease outbreak require the average individual in the population to have an active (within-host) viral infection. However, the outbreak's nature, duration, and dynamic characteristics depend on the intensity of the within-host infection and the nature of the mosquito transmission capacity. Through the model, we establish inter-relations between the infectivity, host recovery rate, viral clearance rate, and different dynamic behavior patterns at the population level.

    Citation: Mayra Núñez-López, Jocelyn A. Castro-Echeverría, Jorge X. Velasco-Hernández. Dynamic interaction between transmission, within-host dynamics and mosquito density[J]. Mathematical Biosciences and Engineering, 2025, 22(6): 1364-1381. doi: 10.3934/mbe.2025051

    Related Papers:

  • The central question in this paper is the character and role of the within-host and between-host interactions in vector-transmitted diseases compared to environmental-transmitted diseases. In vector-transmitted diseases, the environmental stage becomes the vector population. We link an epidemiological model for a vector-transmitted disease with a simple immunological process: the effective transmission rate from host to vector, modeled as a function of the infected cell level within the host, and a virus inoculation term that depends on the abundance of infected mosquitoes. We explore the role of infectivity (defined as the number of host target cells infected), recovery rate, and viral clearance rate in the coupled dynamics of these systems. As expected, the conditions for a disease outbreak require the average individual in the population to have an active (within-host) viral infection. However, the outbreak's nature, duration, and dynamic characteristics depend on the intensity of the within-host infection and the nature of the mosquito transmission capacity. Through the model, we establish inter-relations between the infectivity, host recovery rate, viral clearance rate, and different dynamic behavior patterns at the population level.



    加载中


    [1] Z. Feng, J. X. Velasco-Hernández, B. Tapia-Santos, A mathematical model for coupling within-host and between-host dynamics in an environmentally-driven infectious disease, Math. Biosci., 241 (2013), 49–55. https://doi.org/10.1016/j.mbs.2012.09.004 doi: 10.1016/j.mbs.2012.09.004
    [2] Z. Feng, J. X. Velasco-Hernández, B. Tapia-Santos, M. Leite, A model for coupling within-host and between-host dynamics in an infectious disease, Nonlinear Dyn., 68 (2012), 401–411. https://doi.org/10.1007/s11071-011-0291-0 doi: 10.1007/s11071-011-0291-0
    [3] Z. Feng, X. Cen, Y. Zhao, J. X. Velasco-Hernández, Coupled within-host and between-host dynamics and evolution of virulence, Math. Biosci., 270 (2015), 204–212. https://doi.org/10.1016/j.mbs.2015.02.012 doi: 10.1016/j.mbs.2015.02.012
    [4] X. Cen, Z. Feng, Y. Zhao, Emerging disease dynamics in a model coupling withinhost and between-host systems, J. Theor. Biol., 361 (2014), 141–151. https://doi.org/10.1016/j.jtbi.2014.07.030 doi: 10.1016/j.jtbi.2014.07.030
    [5] M. A. Gilchrist, A. Sasaki, Modeling host-parasite coevolution: A nested approach based on mechanistic models, J. Theor. Biol., 218 (2002), 289–308. https://doi.org/10.1006/jtbi.2002.3076 doi: 10.1006/jtbi.2002.3076
    [6] A. E. S. Almocera, V. K. Nguyen, E. A. Hernández-Vargas, Multiscale model within-host and between-host for viral infectious diseases, J. Math. Biol., 77 (2018), 1432–1416. https://doi.org/10.1007/s00285-018-1241-y doi: 10.1007/s00285-018-1241-y
    [7] N. Mideo, S. Alizon, T. Day, Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases, Trends Ecol. Evol., 23 (2008), 511–517. https://doi.org/10.1016/j.tree.2008.05.009 doi: 10.1016/j.tree.2008.05.009
    [8] M. Gilchrist, D. Coombs, Evolution of virulence: interdependence, constraints, and selection using nested models, Theor. Popul. Biol., 69 (2006), 145–153. https://doi.org/10.1016/j.tpb.2005.07.002 doi: 10.1016/j.tpb.2005.07.002
    [9] F. Saldaña, J. X. Velasco-Hernández, Modeling the COVID-19 pandemic: a primer and overview of mathematical epidemiology, SeMA J., 79 (2022), 225–251. https://doi.org/10.1007/s40324-021-00260-3 doi: 10.1007/s40324-021-00260-3
    [10] H. Gulbudak, V. L. Cannataro, N. Tuncer, M. Martcheva, Vector-borne pathogen and host evolution in a structured immuno-epidemiological system, Bull. Math. Biol., 79 (2017), 325–355. https://doi.org/10.1007/s11538-016-0239-0 doi: 10.1007/s11538-016-0239-0
    [11] M. Martcheva, N. Tuncer, Y. Kim, On the principle of host evolution in host–pathogen interactions, J. Biol. Dyn., 11 (2017), 102–119. https://doi.org/10.1080/17513758.2016.1161089 doi: 10.1080/17513758.2016.1161089
    [12] H. Gulbudak, An immuno-epidemiological vector-host model with within-vector viral kinetics, J. Biol. Syst., 28 (2020), 233–275. https://doi.org/10.1142/S0218339020400021 doi: 10.1142/S0218339020400021
    [13] R. M. Ribeiro, A. S. Perelson, The analysis of HIV dynamics using mathematical models, in AIDS and Other Manifestations of HIV Infection, 905 (2004), 912.
    [14] B. Tesla, L. R. Demakovsky, H. S. Packiam, E. A. Mordecai, A. D. Rodríguez, M. H. Bonds, et al., Estimating the effects of variation in viremia on mosquito susceptibility, infectiousness, and R0 of Zika in Aedes aegypti, PLoS Negl. Trop. Dis., 12 (2018). https://doi.org/10.1371/journal.pntd.0006733
    [15] B. W. Alto, K. Wiggins, B. Eastmond, D. Velez, L. P. Lounibos, C. C. Lord, Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic, PLoS Negl. Trop. Dis., 11 (2017), e0005724. https://doi.org/10.1371/journal.pntd.0005724 doi: 10.1371/journal.pntd.0005724
    [16] L. Lambrechts, R. C. Reiner, M. V. Briesemeister, P. Barrera, K. C. Long, W. H. Elson, et al., Direct mosquito feedings on dengue-2 virus-infected people reveal dynamics of human infectiousness, PLoS Negl. Trop. Dis., 17 (2023), e0011593. https://doi.org/10.1371/journal.pntd.0011593 doi: 10.1371/journal.pntd.0011593
    [17] S. M. Lemon, P. F. Sparling, M. A. Hamburg, D. A. Relman, E. R. Choffnes, A. Mack, Vector-Borne Diseases: Understanding the Environmental, Human Health, and Ecological Connections: Workshop Summary, The National Academies Press, 2008. https://doi.org/10.17226/11950
    [18] N. L. González Morales, M. Núñez-López, J. Ramos-Castañeda, J. X. Velasco-Hernández, Transmission dynamics of two dengue serotypes with vaccination scenarios, Math. Biosci., 287 (2017), 54–71. https://doi.org/10.1016/j.mbs.2016.10.001 doi: 10.1016/j.mbs.2016.10.001
    [19] S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, et al., The global distribution and burden of dengue, Nature, 496 (2013), 504–507. https://doi.org/10.1038/nature12060 doi: 10.1038/nature12060
    [20] C. A. Hill, F. C. Kafatos, S. K. Stansfield, F. H. Collins, Arthropod-borne diseases: vector control in the genomics era, Nat. Rev. Microbiol., 3 (2005), 262–268. https://doi.org/10.1038/nrmicro1101 doi: 10.1038/nrmicro1101
    [21] F. Beugnet, M. Jean-Lou, Emerging arthropod-borne diseases of companion animals in Europe, Vet. Parasitol., 163 (2009), 298–305. https://doi.org/10.1016/j.vetpar.2009.03.02 doi: 10.1016/j.vetpar.2009.03.02
    [22] H. J. Bremermann, H. R. R. Thieme, A competitive exclusion principle for pathogen virulence, J. Math. Biol., 27 (1989), 179–190. https://10.1007/BF00276102 doi: 10.1007/BF00276102
    [23] S. Lion, A. J. J. Metz, Beyond R0 Maximisation: On pathogen evolution and environmental dimensions, Trends Ecol. Evol., 33 (2018), 458–473. https://doi.org/10.1007/s00285-018-1241-y doi: 10.1007/s00285-018-1241-y
    [24] I. Thapa, D. Ghersi, Modeling preferential attraction to infected hosts in vector-borne diseases, Front. Public Health, 11 (2023), 1276029. https://doi.org/10.3389/fpubh.2023.1276029 doi: 10.3389/fpubh.2023.1276029
    [25] H. Zhang, Y. Zhu, Z. Liu, Y. Peng, W. Peng, L. Tong, et al., A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness, Cell, 185 (2022), 2510–2522. https://doi.org/10.1016/j.cell.2022.05.016 doi: 10.1016/j.cell.2022.05.016
    [26] D. W. Vaughn, S. Green, S. Kalayanarooj, B. L. Innis, S. Nimmannitya, S. Suntayakorn, et al., Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity, J. Infect. Dis., 181 (2000), 2–9. https://doi.org/10.1086/315215 doi: 10.1086/315215
    [27] N. Haider, Y. M. Chang, M. Rahman, A. Zumla, R. A. Kock, Dengue outbreaks in Bangladesh: Historic epidemic patterns suggest earlier mosquito control intervention in the transmission season could reduce the monthly growth factor and extent of epidemics, Curr. Res. Parasitol. Vector-Borne Dis., 1 (2021), 100063. https://doi.org/10.1016/j.crpvbd.2021.100063 doi: 10.1016/j.crpvbd.2021.100063
    [28] PAHO, Integrated management strategy for dengue prevention and control in the Caribbean subregion, 2010. Available from: https://www.paho.org/sites/default/files/IMS-Dengue%20CARIBBEAN%20SUBREGION%20Integrated%20FINAL.pdf.
    [29] M. A. Nowak, R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, 2000.
    [30] R. Ben-Shachar, K. Koelle, Transmission-clearance trade-offs indicate that dengue virulence evolution depends on epidemiological context, Nat. Commun., 9 (2018), 29907741. https://doi.org/10.1038/s41467-018-04595-w doi: 10.1038/s41467-018-04595-w
    [31] N. J. White, Malaria parasite clearance, Malar. J., 16 (2017). https://doi.org/10.1186/s12936-017-1731-1
    [32] F. B. Agusto, M. C. Leite, M. E. Orive, The transmission dynamics of a within-and between-hosts malaria model, Ecol. Complexity, 38 (2019), 31–55. https://doi.org/10.1016/j.ecocom.2019.02.002 doi: 10.1016/j.ecocom.2019.02.002
    [33] J. M. Mansuy, C. Mengelle, C. Pasquier, S. Chapuy-Regaud, P. Delobel, M. B. Guillaume, et al., Zika virus infection and prolonged viremia in whole-blood specimens, Emerging Infect. Dis., 23 (2017), 863–865. https://doi.org/10.3201/eid2305.161631 doi: 10.3201/eid2305.161631
    [34] C. Triplett, S. Dufek, N. Niemuth, D. Kobs, C. Cirimotich, K. Mack, et al., Onset and progression of infection based on viral loads in rhesus macaques exposed to Zika virus, Appl. Microbiol., 2 (2022), 544–553. https://doi.org/10.3201/eid2305.161631 doi: 10.3201/eid2305.161631
    [35] Y. M. Tun, P. Charunwatthana, C. Duangdee, J. Satayarak, S. Suthisawat, L. Sand, et al., Virological, serological and clinical analysis of Chikungunya virus infection in Thai patients macaques exposed to Zika virus, Viruses, 14 (2022), 1805. https://doi.org/10.3390/v14081805 doi: 10.3390/v14081805
    [36] M. N. García, R. Hasbun, K. O. Murray, Persistence of West Nile virus, Microbes Infect., 17 (2015), 163–168. https://doi.org/10.1016/j.micinf.2014.12.003 doi: 10.1016/j.micinf.2014.12.003
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1000) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog