Research article Special Issues

Average-delay impulsive control for synchronization of uncertain chaotic neural networks with variable delay impulses


  • Received: 18 March 2025 Revised: 13 April 2025 Accepted: 23 April 2025 Published: 30 April 2025
  • This paper investigated the synchronization issue of uncertain chaotic neural networks (CNNs) using a delayed impulsive control approach. To address the disturbances caused by parameter uncertainty and the flexibility of impulsive delays, the concept of average impulsive delay (AID) and average impulsive interval (AII) were utilized to handle the delays as a whole. Under the condition that the norms of uncertain parameters are bounded, the synchronization criteria for uncertain CNNs were derived based on linear matrix inequalities (LMIs). Specifically, we relaxed the constraints on the delay in the impulsive control inputs, thus allowing it to flexibly vary without being bound by some conditions, which provides a broader applicability compared to most existing results. Additionally, the results show that delayed impulses can facilitate the synchronization of uncertain CNNs. Finally, the validity of the theoretical results was verified through a numerical example.

    Citation: Biwen Li, Yujie Liu. Average-delay impulsive control for synchronization of uncertain chaotic neural networks with variable delay impulses[J]. Mathematical Biosciences and Engineering, 2025, 22(6): 1382-1398. doi: 10.3934/mbe.2025052

    Related Papers:

  • This paper investigated the synchronization issue of uncertain chaotic neural networks (CNNs) using a delayed impulsive control approach. To address the disturbances caused by parameter uncertainty and the flexibility of impulsive delays, the concept of average impulsive delay (AID) and average impulsive interval (AII) were utilized to handle the delays as a whole. Under the condition that the norms of uncertain parameters are bounded, the synchronization criteria for uncertain CNNs were derived based on linear matrix inequalities (LMIs). Specifically, we relaxed the constraints on the delay in the impulsive control inputs, thus allowing it to flexibly vary without being bound by some conditions, which provides a broader applicability compared to most existing results. Additionally, the results show that delayed impulses can facilitate the synchronization of uncertain CNNs. Finally, the validity of the theoretical results was verified through a numerical example.



    加载中


    [1] A. Das, P. Das, A. B. Roy, Chaos in a three-dimensional general model of neural network, Int. J. Bifurcation Chaos, 12 (2002), 2271–2281. https://doi.org/10.1142/S0218127402005820 doi: 10.1142/S0218127402005820
    [2] Y. Horikawa, H. Kitajima, H. Matsushita, Fold-pitchfork bifurcation, arnold tongues and multiple chaotic attractors in a minimal network of three sigmoidal neurons, Int. J. Bifurcation Chaos, 28 (2018), 1850123. https://doi.org/10.1142/S0218127418501237 doi: 10.1142/S0218127418501237
    [3] A. Babloyantz, C. Lourenço, Brain chaos and computation, Int. J. Neural Syst., 7 (1996), 461–471. https://doi.org/10.1142/S0129065796000440
    [4] P. Fries, J. H. Reynolds, A. E. Rorie, R. Desimone, Modulation of oscillatory neuronal synchronization by selective visual attention, Science, 291 (2001), 5508. https://doi.org/10.1126/science.1055465 doi: 10.1126/science.1055465
    [5] A. Khadra, X. Z. Liu, X. Shen, Impulsively synchronizing chaotic systems with delay and applications to secure communication, Automatica, 41 (2005), 1491–1502. https://doi.org/10.1016/j.automatica.2005.04.012 doi: 10.1016/j.automatica.2005.04.012
    [6] N. Wang, X. Li, J. Lu, F. E. Alsaadi, Unified synchronization criteria in an array of coupled neural networks with hybrid impulses, IEEE Trans. Neural Networks Learn. Syst., 101 (2018), 25–32. https://doi.org/10.1016/j.neunet.2018.01.017 doi: 10.1016/j.neunet.2018.01.017
    [7] B. Jiang, J. Lu, J. Lou, J. Qiu, Synchronization in an array of coupled neural networks with delayed impulses: average impulsive delay method, Neural Networks, 121 (2020), 452–460. https://doi.org/10.1109/TNNLS.2019.2927249 doi: 10.1109/TNNLS.2019.2927249
    [8] M. Shafiq, I. Ahmad, Robust synchronization of four-dimensional chaotic finance systems with unknown parametric uncertainties, Automatika, 65 (2024), 217–234. https://doi.org/10.1080/00051144.2023.2295204 doi: 10.1080/00051144.2023.2295204
    [9] W. He, T. Luo, Y. Tang, W. Du, Y. C. Tian, F. Qian, Secure communication based on quantized synchronization of chaotic neural networks under an event-triggered strategy, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 3334–3345. https://doi.org/10.1109/TNNLS.2019.2943548 doi: 10.1109/TNNLS.2019.2943548
    [10] J. J. Xiong, G. B. Zhang, J. X. Wang, T. H. Yan, Improved sliding mode control for finite-time synchronization of nonidentical delayed recurrent neural networks, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 2209–2216. https://doi.org/10.1109/TNNLS.2019.2927249 doi: 10.1109/TNNLS.2019.2927249
    [11] J. G. Lu, G. Chen, Global asymptotical synchronization of chaotic neural networks by output feedback impulsive control: an LMI approach, Chaos, Solitons Fractals, 41 (2009), 2293–2300. https://doi.org/10.1016/j.chaos.2008.09.024 doi: 10.1016/j.chaos.2008.09.024
    [12] B. Li, Y. Liu, Quasi-synchronization of nonlinear systems with parameter mismatch and time-varying delays via event-triggered impulsive control, AIMS Math., 10 (2025), 3759–3778. https://doi.org/10.3934/math.2025174 doi: 10.3934/math.2025174
    [13] Y. Tang, X. Wu, P. Shi, F. Qian, Input-to-state stability for nonlinear systems with stochastic impulses, Automatica, 13 (2020), 108766. https://doi.org/10.1016/j.automatica.2019.108766 doi: 10.1016/j.automatica.2019.108766
    [14] Z. Xu, D. Peng, X. Li, Synchronization of chaotic neural networks with time delay via distributed delayed impulsive control, Neural Networks, 118 (2019), 332–337. https://doi.org/10.1016/j.neunet.2019.07.002 doi: 10.1016/j.neunet.2019.07.002
    [15] Q. Tang, S. Qu, C. Zhang, Z. Tu, Y. Cao, Effects of impulse on prescribed-time synchronization of switching complex networks, Neural Networks, 174 (2024), 106248. https://doi.org/10.1016/j.neunet.2024.106248 doi: 10.1016/j.neunet.2024.106248
    [16] W. Zhu, D. Wang, L. Liu, G. Feng, Event-based impulsive control of continuous time dynamic systems and its application to synchronization of memristive neural networks, IEEE Trans. Neural Networks Learn., 29 (2018), 3599–3609. https://doi.org/10.1109/TNNLS.2017.2731865 doi: 10.1109/TNNLS.2017.2731865
    [17] Z. W. Liu, G. Wen, X. Yu, Z. H. Guan, T. Huang, Delayed impulsive control for consensus of multiagent systems with switching communication graphs, IEEE Trans. Cybern., 50 (2020), 3045–3055. https://doi.org/10.1109/TCYB.2019.2926115 doi: 10.1109/TCYB.2019.2926115
    [18] X. Lv, X. Li, J. Cao, M. Perc, Dynamical and static multisynchronization of coupled multistable neural networks via impulsive control, Neural Networks Learn. Syst., 529 (2018), 6062–6072. https://doi.org/10.1109/TNNLS.2018.2816924 doi: 10.1109/TNNLS.2018.2816924
    [19] J. Shao, H. Jiang, S. K. Nguang, H. Shen, Impulsive synchronization of coupled delayed neural networks with actuator saturation and its application to image encryption, Neural Networks, 128 (2020), 158–171. https://doi.org/10.1016/j.neunet.2020.05.016 doi: 10.1016/j.neunet.2020.05.016
    [20] W. H. Chen, W. X. Zheng, Exponential stability of nonlinear time delay systems with delayed impulse effects, Automatica, 47 (2011), 1075–1083. https://doi.org/10.1016/j.automatica.2011.02.031 doi: 10.1016/j.automatica.2011.02.031
    [21] X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
    [22] B. Jiang, J. Lou, J. Lu, K. Shi, Synchronization of chaotic neural networks: average-delay impulsive control, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 6007–6012. https://doi.org/10.1109/TNNLS.2021.3069830 doi: 10.1109/TNNLS.2021.3069830
    [23] F. Fan, Y. Xiao, K. Shi, H. Wen, Y. Zhao, $\mu$-synchronization of coupled neural networks with hybrid delayed and non-delayed impulsive effects, Chaos, Solitons Fractals, 173 (2023), 113620. https://doi.org/10.1016/j.chaos.2023.113620 doi: 10.1016/j.chaos.2023.113620
    [24] X. Li, S. Song, Stabilization of delay systems: delay-dependent impulsive control, IEEE Trans. Autom. Control, 62 (2017), 406–411. https://doi.org/10.1109/TAC.2016.2530041 doi: 10.1109/TAC.2016.2530041
    [25] G. Ballinger, X. Liu, Existence, uniqueness and boundedness results for impulsive delay differential equations, Dyn. Continuous Discrete Impuls. Syst., 74 (2000), 71–93. https://doi.org/10.1080/00036810008840804 doi: 10.1080/00036810008840804
    [26] X. Liu, G. Ballinger, Existence and continuability of solutions for differential equations with delays and state-dependent impulses, Nonlinear Anal. Theory Methods Appl., 51 (2002), 633–647. https://doi.org/10.1109/TAC.2016.2530041 doi: 10.1109/TAC.2016.2530041
    [27] S. Dong, X. Liu, S. Zhong, K. Shi, H. Zhu, Practical synchronization of neural networks with delayed impulses and external disturbance via hybrid control, Neural Networks, 157 (2023), 54–64. https://doi.org/10.1016/j.neunet.2022.09.025 doi: 10.1016/j.neunet.2022.09.025
    [28] A. Wu, H. Liu, Z. Zeng, Observer design and H$\infty$ performance for discrete-time uncertain fuzzy-logic systems, IEEE Trans Cybern., 51 (2021), 2398–2408. https://doi.org/10.1109/TCYB.2019.2948562 doi: 10.1109/TCYB.2019.2948562
    [29] C. Ge, X. Liu, C. Hua, J. H. Park, Exponential synchronization of the switched uncertain neural networks with mixed delays based on sampled-data control, J. Franklin Inst., 54 (2022), 2259–2282. https://doi.org/10.1016/j.neunet.2014.02.008 doi: 10.1016/j.neunet.2014.02.008
    [30] C. Jin, Z. Wang, L. Gong, M. Xiao, G. Jiang, Quasi-synchronization of heterogeneous Lur'e networks with uncertain parameters and impulsive effect, Neurocomputing, 482 (2022), 252–263. https://doi.org/10.1016/j.neucom.2021.11.057 doi: 10.1016/j.neucom.2021.11.057
    [31] W. Huang, Q. Song, Z. Zhao, Y. Liu, F. E. Alsaadi, Robust stability for a class of fractional-order complex-valued projective neural networks with neutral-type delays and uncertain parameters, J. Franklin Inst., 450 (2021), 399–410. https://doi.org/10.1016/j.neucom.2021.04.046 doi: 10.1016/j.neucom.2021.04.046
    [32] F. Chen, W. Zhang, LMI criteria for robust chaos synchronization of a class of chaotic systems, Nonlinear Anal. Theory Methods Appl., 67 (2007), 3384–3393. https://doi.org/10.1016/j.na.2006.10.020 doi: 10.1016/j.na.2006.10.020
    [33] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA, USA: SIAM, 1994. https://doi.org/10.1137/1.9781611970777
    [34] J. Lu, D. W. C. Ho, J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 46 (2010), 1215–1221. https://doi.org/10.1016/j.automatica.2010.04.005 doi: 10.1016/j.automatica.2010.04.005
    [35] S. Arik, An improved robust stability result for uncertain neural networks with multiple time delays, Neural Networks, 54 (2014), 1–10. https://doi.org/10.1016/j.neunet.2014.02.008 doi: 10.1016/j.neunet.2014.02.008
    [36] H. Fan, J. Tang, K. Shi, Y. Zhao, H. Wen, Delayed impulsive control for $\mu$-synchronization of nonlinear multi-weighted complex networks with uncertain parameter perturbation and unbounded delays, Mathematics, 599 (2023), 127484. https://doi.org/10.3390/math11010250 doi: 10.3390/math11010250
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(927) PDF downloads(45) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog