In this paper, we present a novel design of an observer-based event-triggered impulsive control strategy for delayed reaction-diffusion neural networks subject to impulsive perturbation. The impulsive instants of impulsive control are determined in an event-triggered way, and the control strength is designed by the sampling output of an impulsive observer. Several criteria with Lyapunov conditions and linear matrix inequalities are established for the global exponential stability of delayed reaction-diffusion neural networks. It inherits the advantages of event-triggered impulsive control such as low triggering frequency and high efficiency, and is applicable for networks with unmeasurable states. Finally, the effectiveness of theoretical results is verified by a numerical example.
Citation: Luyao Li, Licheng Fang, Huan Liang, Tengda Wei. Observer-based event-triggered impulsive control of delayed reaction-diffusion neural networks[J]. Mathematical Biosciences and Engineering, 2025, 22(7): 1634-1652. doi: 10.3934/mbe.2025060
In this paper, we present a novel design of an observer-based event-triggered impulsive control strategy for delayed reaction-diffusion neural networks subject to impulsive perturbation. The impulsive instants of impulsive control are determined in an event-triggered way, and the control strength is designed by the sampling output of an impulsive observer. Several criteria with Lyapunov conditions and linear matrix inequalities are established for the global exponential stability of delayed reaction-diffusion neural networks. It inherits the advantages of event-triggered impulsive control such as low triggering frequency and high efficiency, and is applicable for networks with unmeasurable states. Finally, the effectiveness of theoretical results is verified by a numerical example.
| [1] |
B. Liu, D. J. Hill, Stability via hybrid-event-time Lyapunov function and impulsive stabilization for discrete-time delayed switched systems, SIAM J. Control Optim., 52 (2014), 1338–1365. https://doi.org/10.1137/110839096 doi: 10.1137/110839096
|
| [2] |
Y. Liu, Z. Wang, X. Liu, Global exponential stability of generalized recurrent neural networks with discrete and distributed delays, Neural Networks, 19 (2006), 667–675. https://doi.org/10.1016/j.neunet.2005.03.015 doi: 10.1016/j.neunet.2005.03.015
|
| [3] |
X. Yang, X. Wan, C. Z, J. Cao, Y. Liu, L. Rutkowski, Synchronization of switched discrete-time neural networks via quantized output control with actuator fault, IEEE Trans. Neural Networks Learn. Syst., 32 (2021), 4191–4201. http://dx.doi.org/10.1109/TNNLS.2020.3017171 doi: 10.1109/TNNLS.2020.3017171
|
| [4] |
Y. Guo, Z. Wang, J. Li, Y. Xu, Pinningsynchronization for stochastic complex networks with randomly occurring nonlinearities: Tackling bit rate constraints and allocations, IEEE Trans. Cybern., 54 (2024), 7248–7260. http://dx.doi.org/10.1109/TCYB.2024.3470648 doi: 10.1109/TCYB.2024.3470648
|
| [5] |
Y. W. Wang, J. W. Xiao, H. O. Wang, Global synchronization of complex dynamical networks with network failures, Int. J. Robust Nonlinear Control., 20 (2010), 1667–1677. https://doi.org/10.1002/rnc.1537 doi: 10.1002/rnc.1537
|
| [6] |
G. Li, J. Wang, K. Shi, Y. Tang, Some novel results for DNNs via relaxed Lyapunov functionals, Math. Model. Control, 4 (2024), 110–118. http://doi.org/10.3934/mmc.2024010 doi: 10.3934/mmc.2024010
|
| [7] |
X. Yang, J. Cao, Z. Yang, Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller, SIAM J. Control Optim., 51 (2013), 3486–3510. https://doi.org/10.1137/120897341 doi: 10.1137/120897341
|
| [8] |
H. Zhang, Z. Ding, Z. Zeng, Adaptive tracking synchronization for coupled reaction-diffusion neural networks with parameter mismatches, Neural Networks, 124 (2020), 146–157. https://doi.org/10.1016/j.neunet.2019.12.025 doi: 10.1016/j.neunet.2019.12.025
|
| [9] |
R. Wei, J. Cao, Prespecified-time bipartite synchronization of coupled reaction-diffusion memristive neural networks with competitive interactions, Math. Biosci. Eng., 19 (2022), 12814–12832. https://doi.org/10.3934/mbe.2022598 doi: 10.3934/mbe.2022598
|
| [10] |
Y. Wang, Event-triggered passivity and synchronization of multiple derivative coupled reaction-diffusion neural networks, Neurocomputing, 586 (2024), 127619. https://doi.org/10.1016/j.neucom.2024.127619 doi: 10.1016/j.neucom.2024.127619
|
| [11] |
R. Zhang, D. Zeng, J. H. Park, H. K. Lam, S. Zhong, Fuzzy adaptive event-triggered sampled-data control for stabilization of T–S fuzzy memristive neural networks with reaction-diffusion terms, IEEE Trans. Fuzzy Syst., 29 (2020), 1775–1785. https://doi.org/10.1109/TFUZZ.2020.2985334 doi: 10.1109/TFUZZ.2020.2985334
|
| [12] |
Q. Wang, J. L. Wang, S. Y. Ren, Y. L. Huang, Analysis and adaptive control for lag $\mathcal {H}_\infty$ synchronization of coupled reaction-diffusion neural networks, Neurocomputing, 319 (2018), 144–154. https://doi.org/10.1016/j.neucom.2018.08.058 doi: 10.1016/j.neucom.2018.08.058
|
| [13] |
X. Wu, S. Liu, H. Wang, J. Sun, W. Qiao, Stability analysis of fractional reaction-diffusion memristor-based neural networks with neutral delays via Lyapunov functions, Neurocomputing, 550 (2023), 126497. https://doi.org/10.1016/j.neucom.2023.126497 doi: 10.1016/j.neucom.2023.126497
|
| [14] |
X. Lu, W. H. Chen, Z. Ruan, T. Huang, A new method for global stability analysis of delayed reaction-diffusion neural networks, Neurocomputing, 317 (2018), 127–136. https://doi.org/10.1016/j.neucom.2018.08.015 doi: 10.1016/j.neucom.2018.08.015
|
| [15] |
T. Dong, L. Xia, Spatial temporal dynamic of a coupled reaction-diffusion neural network with time delay, Cogn. Comput., 11 (2019), 212–226. https://doi.org/10.1007/s12559-018-9618-1 doi: 10.1007/s12559-018-9618-1
|
| [16] | J. L. Wang, X. Y. Zhao, S. Y. Ren, T. Huang, Lag synchronization and lag $\mathcal {H}_\infty$ synchronization for multiweighted coupled reaction-diffusion neural networks suffering topology attacks, IEEE Trans. Control Network Syst., (2025), 1–11. http://dx.doi.org/10.1109/TCNS.2025.3526322 |
| [17] |
C. Hu, H. Jiang, Z. Teng, Impulsive control and synchronization for delayed neural networks with reaction-diffusion terms, IEEE Trans. Neural Networks, 21 (2009), 67–81. http://dx.doi.org/10.1109/TNN.2009.2034318 doi: 10.1109/TNN.2009.2034318
|
| [18] |
Y. Sheng, H. Zhang, Z. Zeng, Synchronization of reaction-diffusion neural networks with Dirichlet boundary conditions and infinite delays, IEEE Trans. Cybern., 47 (2017), 3005–3017. https://doi.org/10.1109/TCYB.2017.2691733 doi: 10.1109/TCYB.2017.2691733
|
| [19] |
H. Zhang, Z. Zeng, Stability and synchronization of nonautonomous reaction-diffusion neural networks with general time-varying delays, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 5804–5817. http://dx.doi.org/10.1109/TNNLS.2021.3071404 doi: 10.1109/TNNLS.2021.3071404
|
| [20] |
Z. Wang, J. Cao, Z. Cai, X. Tan, R. Chen, Finite-time synchronization of reaction-diffusion neural networks with time-varying parameters and discontinuous activations, Neurocomputing, 447 (2021), 272–281. https://doi.org/10.1016/j.neucom.2021.02.065 doi: 10.1016/j.neucom.2021.02.065
|
| [21] |
X. Li, J. Cao, D. W. C. Ho, Impulsive control of nonlinear systems with time-varying delay and applications, IEEE Trans. Cybern., 50 (2020), 2661–2673. https://doi.org/10.1109/TCYB.2019.2896340 doi: 10.1109/TCYB.2019.2896340
|
| [22] |
H. Guo, J. Liu, C. K. Ahn, Y. Wu, W. Li, Dynamic event-triggered impulsive control for stochastic nonlinear systems with extension in complex networks, IEEE Trans. Circuits Syst. I Regul. Pap., 69 (2022), 2167–2178. https://doi.org/10.1109/TCSI.2022.3141583 doi: 10.1109/TCSI.2022.3141583
|
| [23] |
M. Wang, X. Li, P. Duan, Event-triggered delayed impulsive control for nonlinear systems with application to complex neural networks, Neural Networks, 150 (2022), 213–221. https://doi.org/10.1016/j.neunet.2022.03.007 doi: 10.1016/j.neunet.2022.03.007
|
| [24] |
B. Liu, D. J. Hill, Z. Sun, Stabilisation to input-to-state stability for continuous-time dynamical systems via event-triggered impulsive control with three levels of events, IET Control Theory Appl., 12 (2018), 1167–1179. https://doi.org/10.1049/iet-cta.2017.0820 doi: 10.1049/iet-cta.2017.0820
|
| [25] |
Y. Tu, J. E. Zhang, Event-triggered impulsive control for input-to-state stability of nonlinear time-delay system with delayed impulse, Math. Biosci. Eng., 22 (2025), 876–896. https://doi.org/10.3934/mbe.2025031 doi: 10.3934/mbe.2025031
|
| [26] |
W. Zhu, D. Wang, L. Liu, G. Feng, Event-based impulsive control of continuous-time dynamic systems and its application to synchronization of memristive neural networks, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 3599–3609. https://doi.org/10.1109/TNNLS.2017.2731865 doi: 10.1109/TNNLS.2017.2731865
|
| [27] |
J. L. Wang, Y. R. Zhu, J. Q. Wang, S. Y. Ren, T. Huang, Adaptive event-triggered lag outer synchronization for coupled neural networks with multistate or multiderivative couplings, IEEE Trans. Cybern., 55 (2025), 1018–1031. https://doi.org/10.1109/TCYB.2024.3519171 doi: 10.1109/TCYB.2024.3519171
|
| [28] |
J. Tao, R. Liang, J. Su, Z. Xiao, H. Rao, Y. Xu, Dynamic event-triggered synchronization of Markov jump neural networks via sliding mode control, IEEE Trans. Cybern., 54 (2024), 2515–2524. https://doi.org/10.1109/TCYB.2023.3293010 doi: 10.1109/TCYB.2023.3293010
|
| [29] |
X. Tan, J. Cao, X. Li, Consensus of leader-following multiagent systems: A distributed event-triggered impulsive control strategy, IEEE Trans. Cybern., 49 (2019), 792–801. https://doi.org/10.1109/TCYB.2017.2786474 doi: 10.1109/TCYB.2017.2786474
|
| [30] |
D. Peng, X. Li, Leader-following synchronization of complex dynamic networks via event-triggered impulsive control, Neurocomputing, 412 (2020), 1–10. https://doi.org/10.1016/j.neucom.2020.05.071 doi: 10.1016/j.neucom.2020.05.071
|
| [31] |
D. Cui, C. K. Ahn, Z. Xiang, Fault-tolerant fuzzy observer-based fixed-time tracking control for nonlinear switched systems, IEEE Trans. Fuzzy Syst., 31 (2023), 4410–4420. https://doi.org/10.1109/TFUZZ.2023.3284917 doi: 10.1109/TFUZZ.2023.3284917
|
| [32] |
C. Wang, C. Zhang, D. He, J. Xiao, L. Liu, Observer-based finite-time adaptive fuzzy back-stepping control for MIMO coupled nonlinear systems, Math. Biosci. Eng., 19 (2022), 10637–10655. https://doi.org/10.3934/mbe.2022497 doi: 10.3934/mbe.2022497
|
| [33] |
W. H. Chen, W. Yang, X. Lu, Impulsive observer-based stabilisation of uncertain linear systems, IET Control Theory Appl., 8 (2014), 149–159. https://doi.org/10.1049/iet-cta.2012.0998 doi: 10.1049/iet-cta.2012.0998
|
| [34] |
W. Zhou, K. Wang, W. Zhu, Synchronization for discrete coupled fuzzy neural networks with uncertain information via observer-based impulsive control, Math. Model. Control, 4 (2024), 17–31. http://doi.org/10.3934/mmc.2024003 doi: 10.3934/mmc.2024003
|
| [35] |
Y. Wang, X. Li, Impulsive observer and impulsive control for time-delay systems, J. Frankl. Inst., 357 (2020), 8529–8542. https://doi.org/10.1016/j.jfranklin.2020.05.009 doi: 10.1016/j.jfranklin.2020.05.009
|
| [36] |
Y. Wang, X. Li, S. Song, Exponential synchronization of delayed neural networks involving unmeasurable neuron states via impulsive observer and impulsive control, Neurocomputing, 441 (2021), 13–24. https://doi.org/10.1016/j.neucom.2021.01.119 doi: 10.1016/j.neucom.2021.01.119
|
| [37] |
E. Sariyildiz, K. Ohnishi, Stability and robustness of disturbance-observer-based motion control systems, IEEE Trans. Ind. Electron., 62 (2015), 414–422. https://doi.org/10.1109/TIE.2014.2327009 doi: 10.1109/TIE.2014.2327009
|
| [38] |
W. H. Chen, J. Yang, L. Guo, S. Li, Disturbance-observer-based control and related methods–An overview, IEEE Trans. Ind. Electron., 63 (2016), 1083–1095. https://doi.org/10.1109/TIE.2015.2478397 doi: 10.1109/TIE.2015.2478397
|
| [39] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 2012. |
| [40] |
D. Xu, X. Wang, Z. Yang, Existence-uniqueness problems for infinite dimensional stochastic differential equations with delays, J. Appl. Anal. Comput., 2 (2012), 449–463. https://doi.org/10.11948/2012034 doi: 10.11948/2012034
|
| [41] | L. Gawarecki, V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions, Springer, 2011. |
| [42] |
J. L. Wang, H. N. Wu, T. Huang, S. Y. Ren, J. Wu, Pinning control for synchronization of coupled reaction-diffusion neural networks with directed topologies, IEEE Trans. Syst. Man Cybern Syst., 46 (2015), 1109–1120. https://doi.org/10.1109/TSMC.2015.2476491 doi: 10.1109/TSMC.2015.2476491
|
| [43] |
J. L. Wang, H. N. Wu, Synchronization and adaptive control of an array of linearly coupled reaction-diffusion neural networks with hybrid coupling, IEEE Trans. Cybern., 44 (2013), 1350–1361. https://doi.org/10.1109/TCYB.2013.2283308 doi: 10.1109/TCYB.2013.2283308
|
| [44] | I. Stamova, Stability Analysis of Impulsive Functional Differential Equations, Walter de Gruyter, Berlin, 2009. https://doi.org/10.1515/9783110221824 |
| [45] |
D. Yang, X. Li, J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal. Hybrid Syst., 32 (2019), 294–305. https://doi.org/10.1016/j.nahs.2019.01.006 doi: 10.1016/j.nahs.2019.01.006
|
| [46] | S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics, Philadelphia, 1994. |
| [47] |
R. Li, H. Wu, J. Cao, Exponential synchronization for variable-order fractional discontinuous complex dynamical networks with short memory via impulsive control, Neural Networks, 148 (2022), 13–22. https://doi.org/10.1016/j.neunet.2021.12.021 doi: 10.1016/j.neunet.2021.12.021
|
| [48] |
S. Dashkovskiy, V. Slynko, Dwell-time stability conditions for infinite dimensional impulsive systems, Automatica, 147 (2023), 110695. https://doi.org/10.1016/j.automatica.2022.110695 doi: 10.1016/j.automatica.2022.110695
|
| [49] |
S. Dashkovskiy, V. Slynko, Stability conditions for impulsive dynamical systems, Math. Control Signals Syst., 34 (2022), 95–128. https://doi.org/10.1007/s00498-021-00305-y doi: 10.1007/s00498-021-00305-y
|