Antimalarial drugs are critical for controlling malaria, but the emergence of drug resistance poses a significant challenge to global eradication efforts. This study explores strategies to minimize resistance prevalence and improve malaria control, particularly through the use of mass drug administration (MDA) in combination with antimalarial drugs. We develop a compartmental mathematical model that incorporates asymptomatic, paucisymptomatic, and clinical states of infection and evaluates the impact of resistance mutations on transmission dynamics. The model includes both treated and untreated states among infected and recovered individuals, with a focus on optimizing control strategies through MDA and antimalarial treatment. A global sensitivity analysis identifies the critical factors that influence malaria dynamics, including MDA coverage, treatment access for different infection states, the probability of mutation from treated sensitive human infections, to treated resistant human infections and the initial prevalence of resistance. The model is extended to include optimal control strategies that provide time-dependent control interventions for treatment and MDA. Intuitively, when the mutation rate is relatively low, the optimal strategy combines the use of antimalarial drugs and MDA, with a gradual decrease in antimalarial drug use over time, ensuring sustainable malaria control. In contrast, at higher mutation rates, the strategy prioritizes broader deployment of MDA while significantly reducing reliance on antimalarial to minimize the risk of resistance developing. Numerical simulations of the optimal control problem reinforce the importance of strategic intervention in mitigating drug resistance. This study contributes to understanding the role of MDA and treatment strategies in the control of malaria, with implications for optimizing malaria control programs in endemic regions.
Citation: Manuela M. Nimpa, Hyacinthe N. Teytsa, Joseph Mbang, Charles S. Wondji, Ramsès Djidjou-Demasse. Optimizing MDA and antimalarial treatment in the presence of drug resistance for effective malaria control[J]. Mathematical Biosciences and Engineering, 2025, 22(8): 1898-1930. doi: 10.3934/mbe.2025069
Antimalarial drugs are critical for controlling malaria, but the emergence of drug resistance poses a significant challenge to global eradication efforts. This study explores strategies to minimize resistance prevalence and improve malaria control, particularly through the use of mass drug administration (MDA) in combination with antimalarial drugs. We develop a compartmental mathematical model that incorporates asymptomatic, paucisymptomatic, and clinical states of infection and evaluates the impact of resistance mutations on transmission dynamics. The model includes both treated and untreated states among infected and recovered individuals, with a focus on optimizing control strategies through MDA and antimalarial treatment. A global sensitivity analysis identifies the critical factors that influence malaria dynamics, including MDA coverage, treatment access for different infection states, the probability of mutation from treated sensitive human infections, to treated resistant human infections and the initial prevalence of resistance. The model is extended to include optimal control strategies that provide time-dependent control interventions for treatment and MDA. Intuitively, when the mutation rate is relatively low, the optimal strategy combines the use of antimalarial drugs and MDA, with a gradual decrease in antimalarial drug use over time, ensuring sustainable malaria control. In contrast, at higher mutation rates, the strategy prioritizes broader deployment of MDA while significantly reducing reliance on antimalarial to minimize the risk of resistance developing. Numerical simulations of the optimal control problem reinforce the importance of strategic intervention in mitigating drug resistance. This study contributes to understanding the role of MDA and treatment strategies in the control of malaria, with implications for optimizing malaria control programs in endemic regions.
| [1] |
A. Hamilton, F. Haghpanah, M. Hasso-Agopsowicz, I. Frost, G. Lin, E. Schueller, et al., Modeling of malaria vaccine effectiveness on disease burden and drug resistance in 42 African countries, Commun. Med., 3 (2023), 144. https://doi.org/10.1038/s43856-023-00373-y doi: 10.1038/s43856-023-00373-y
|
| [2] |
J. Muwanguzi, G. Henriques, P. Sawa, T. Bousema, C. J. Sutherland, K. B. Beshir, Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children, Malar. J., 15 (2016), 1–6. https://doi.org/10.1186/s12936-016-1095-y doi: 10.1186/s12936-016-1095-y
|
| [3] |
P. Patel, P. K. Bharti, D. Bansal, N. A. Ali, R. K. Raman, P. K. Mohapatra, et al., Prevalence of mutations linked to antimalarial resistance in Plasmodium falciparum from Chhattisgarh, Central India: A malaria elimination point of view, Sci. Rep., 7 (2017), 16690. https://doi.org/10.1038/s41598-017-16866-5 doi: 10.1038/s41598-017-16866-5
|
| [4] |
C. W. Tarama, H. Soré, M. Siribié, S. Débé, R. Kinda, A. Ganou, et al., Plasmodium falciparum drug resistance-associated mutations in isolates from children living in endemic areas of Burkina Faso, Malar. J., 22 (2023), 213. https://doi.org/10.1186/s12936-023-04645-9 doi: 10.1186/s12936-023-04645-9
|
| [5] |
A. G. B. Tuedom, E. M. Sarah-Matio, C. E. E. Moukoko, B. L. Feufack-Donfack, C. N. Maffo, A. N. Bayibeki, et al., Antimalarial drug resistance in the Central and Adamawa regions of Cameroon: Prevalence of mutations in P. falciparum crt, Pfmdr1, Pfdhfr and Pfdhps genes, PLoS One, 16 (2021), e0256343. https://doi.org/10.1371/journal.pone.0256343 doi: 10.1371/journal.pone.0256343
|
| [6] |
M. I. Veiga, S. K. Dhingra, P. P. Henrich, J. Straimer, N. Gnädig, A. C. Uhlemann, et al., Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies, Nat. Commun., 7 (2016), 11553. https://doi.org/10.1038/ncomms11553 doi: 10.1038/ncomms11553
|
| [7] | World Health Organization, Malaria Microscopy Quality Assurance Manual, World Health Organization, Geneva, 2nd edition, 2016. |
| [8] |
T. D. Nguyen, T. N.-A. Tran, D. M. Parker, N. J. White, M. F. Boni, Antimalarial mass drug administration in large populations and the evolution of drug resistance, PLoS Global Public Health, 3 (2023), e0002200. https://doi.org/10.1371/journal.pgph.0002200 doi: 10.1371/journal.pgph.0002200
|
| [9] |
J. C. Koella, R. Antia. Epidemiological models for the spread of anti-malarial resistance, Malar. J., 2 (2003), 1–11. https://doi.org/10.1186/1475-2875-2-3 doi: 10.1186/1475-2875-2-3
|
| [10] |
P. Pemberton-Ross, N. Chitnis, E. Pothin, T. A. Smith, A stochastic model for the probability of malaria extinction by mass drug administration, Malar. J., 16 (2017), 1–9. https://doi.org/10.1186/s12936-017-2010-x doi: 10.1186/s12936-017-2010-x
|
| [11] |
J. M. Tchuenche, C. Chiyaka, D. Chan, A. Matthews, G. Mayer, A mathematical model for antimalarial drug resistance, Math. Med. Biol. J. IMA, 28 (2011), 335–355. https://doi.org/10.1093/imammb/dqq017 doi: 10.1093/imammb/dqq017
|
| [12] |
D. D. Laishram, P. L. Sutton, N. Nanda, V. L. Sharma, R. C. Sobti, J. M. Carlton, et al., The complexities of malaria disease manifestations with a focus on asymptomatic malaria, Malar. J., 11 (2012), 1–15. https://doi.org/10.1186/1475-2875-11-29 doi: 10.1186/1475-2875-11-29
|
| [13] |
R. Telfils, A. Y. Dossou, A. Djènontin, E. Adimi, R. Akoho, J. Bailly, et al., Dynamics of submicroscopic and microscopic asymptomatic malaria infection and associated factors: A longitudinal study in South Benin, PLoS One, 19 (2024), e0311217. https://doi.org/10.1371/journal.pone.0311217 doi: 10.1371/journal.pone.0311217
|
| [14] | L. S. Pontryagin, V. G. Boltyanskii, Mathematical Theory of Optimal Processes, John Wiley & Sons, 1st edition, 1962. https://doi.org/10.1201/9780203749319 |
| [15] |
N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272–1296. https://doi.org/10.1007/s11538-008-9299-0 doi: 10.1007/s11538-008-9299-0
|
| [16] |
A. Mahamar, M. J. Smit, K. Sanogo, Y. Sinaba, S. M. Niambele, A. Sacko, et al., Artemether-lumefantrine with or without single-dose primaquine and sulfadoxine-pyrimethamine plus amodiaquine with or without single-dose tafenoquine to reduce Plasmodium falciparum transmission: A phase 2, single-blind, randomised clinical trial in Ouelessebougou, Mali, Lancet Microbe, 5 (2024), 633–644. https://doi.org/10.1016/S2666-5247(24)00023-5 doi: 10.1016/S2666-5247(24)00023-5
|
| [17] |
L. Cirera, B. Galatas, S. Alonso, K. Paaijmans, M. Mamuquele, H. Martí-Soler, et al., Moving towards malaria elimination in southern Mozambique: Cost and cost-effectiveness of mass drug administration combined with intensified malaria control, PLoS One, 15 (2020), e0235631. https://doi.org/10.1371/journal.pone.0235631 doi: 10.1371/journal.pone.0235631
|
| [18] |
S. S. Kyaw, G. Delmas, T. L. Drake, O. Celhay, W. Pan-Ngum, S. Pukrittayakamee, et al., Estimating the programmatic cost of targeted mass drug administration for malaria in Myanmar, BMC Public Health, 21 (2021), 826. https://doi.org/10.1186/s12889-021-10842-5 doi: 10.1186/s12889-021-10842-5
|
| [19] |
J. O. Yukich, C. Scott, K. Silumbe, B. A. Larson, A. Bennett, T. P. Finn, et al., Cost-effectiveness of focal mass drug administration and mass drug administration with dihydroartemisinin–piperaquine for malaria prevention in Southern Province, Zambia: Results of a Community-Randomized Controlled Trial, Am. J. Trop. Med. Hyg., 103(2_Suppl) (2020), 46–53. https://doi.org/10.4269/ajtmh.19-0661 doi: 10.4269/ajtmh.19-0661
|
| [20] | J. K. Hale, J. P. LaSalle, M. Slemrod, Theory of a general class of dissipative processes, J. Math. Anal. Appl., 39 (1972), 177–191. |
| [21] |
O. A. Ladyzhenskaya, On the determination of minimal global attractors for the Navier-Stokes and other partial differential equations, Russ. Math. Surv., 42 (1987), 25–60. https://doi.org/10.1070/RM1987v042n06ABEH001503 doi: 10.1070/RM1987v042n06ABEH001503
|
| [22] |
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. https://doi.org/10.1137/080732870 doi: 10.1137/080732870
|
| [23] | P. Magal, Compact attractors for time-periodic age-structured population models, Electron. J. Differ. Equations (EJDE), 2001 (2001), 1–35. |
| [24] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag Berlin and Heidelberg GmbH & Co. K, New York Berlin Heidelberg, 1983. |
| [25] | W. Fleming, R. Rishel, Deterministic and Stochastic Optimal Control, Springer New York, New York, NY, 1975. |
| [26] | S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall/CRC, New York, May 2007. https://doi.org/10.1201/9781420011418 |
| [27] | J. Macki, A. Strauss, Introduction to Optimal Control Theory, Springer, New York Berlin Heidelberg, corr print edition edition, 1981. |
| [28] |
Q. Richard, M. Choisy, T. Lefèvre, R. Djidjou-Demasse, Human-vector malaria transmission model structured by age, time since infection and waning immunity, Nonlinear Anal. Real World Appl., 63 (2022), 103393. https://doi.org/10.1016/j.nonrwa.2021.103393 doi: 10.1016/j.nonrwa.2021.103393
|
| [29] |
Q. Richard, M. Choisy, T. Lefèvre, R. Djidjou-Demasse, On the necessity of accounting for age structure in human malaria transmission modeling, Math. Biosci., 378 (2024), 109319. https://doi.org/10.1016/j.mbs.2024.109319 doi: 10.1016/j.mbs.2024.109319
|
| [30] |
B. M. Somé, E. Guissou, D. F. Da, Q. Richard, M. Choisy, K. B. Yameogo, et al., Mosquito ageing modulates the development, virulence and transmission potential of pathogens, Proc. R. Soc. B Biol. Sci., 291 (2024), 20232097. https://doi.org/10.1098/rspb.2023.2097 doi: 10.1098/rspb.2023.2097
|
| [31] | T. Cazenave, A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, 1998. |
| [32] | J. K. Hale, Asympstotic Behavior of Dissipative Systems, American Mathematical Society, 1988. |
| [33] |
G. F. Webb, Compactness of bounded trajectories of dynamical systems in infinite dimensional spaces, Proc. R. Soc. Edinburgh Sec. A: Math., 84 (1979), 19–33. https://doi.org/10.1017/S0308210500016930 doi: 10.1017/S0308210500016930
|
| [34] | P. Magal, S. Ruan, Theory and Applications of Abstract Semilinear Cauchy Problems, Manhattan, NY, USA, Springer International Publishing, 2018. https://doi.org/10.1007/978-3-030-01506-0 |