Although different strategies for mosquito-borne disease prevention can vary significantly in their efficacy and scale of implementation, they all require that individuals comply with their use. Despite this, human behavior is rarely considered in mathematical models of mosquito-borne diseases. Here, we sought to address that gap by establishing general expectations for how different behavioral stimuli and forms of mosquito prevention shape the equilibrium prevalence of disease. To accomplish this, we developed a coupled contagion model tailored to the epidemiology of dengue and preventive behaviors relevant to it. Under our model's parameterization, we found that mosquito biting was the most important driver of behavior uptake. In contrast, encounters with individuals experiencing disease or engaging in preventive behaviors themselves had a smaller influence on behavior uptake. The relative influence of these three stimuli reflected the relative frequency with which individuals encountered them. We also found that two distinct forms of mosquito prevention—namely, personal protection and mosquito density reduction—mediated different influences of behavior on equilibrium disease prevalence. Our results highlight that unique features of coupled contagion models can arise in disease systems with distinct biological features.
Citation: Marya L. Poterek, Mauricio Santos-Vega, T. Alex Perkins. Equilibrium properties of a coupled contagion model of mosquito-borne disease and mosquito preventive behaviors[J]. Mathematical Biosciences and Engineering, 2025, 22(8): 1875-1897. doi: 10.3934/mbe.2025068
[1] | Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218 |
[2] | Maoxing Liu, Yuhang Li . Dynamics analysis of an SVEIR epidemic model in a patchy environment. Mathematical Biosciences and Engineering, 2023, 20(9): 16962-16977. doi: 10.3934/mbe.2023756 |
[3] | Siyu Liu, Yong Li, Yingjie Bi, Qingdao Huang . Mixed vaccination strategy for the control of tuberculosis: A case study in China. Mathematical Biosciences and Engineering, 2017, 14(3): 695-708. doi: 10.3934/mbe.2017039 |
[4] | Lili Liu, Xi Wang, Yazhi Li . Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity. Mathematical Biosciences and Engineering, 2023, 20(12): 20914-20938. doi: 10.3934/mbe.2023925 |
[5] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[6] | Holly Gaff, Elsa Schaefer . Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, 2009, 6(3): 469-492. doi: 10.3934/mbe.2009.6.469 |
[7] | Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304 |
[8] | Eunha Shim . A note on epidemic models with infective immigrants and vaccination. Mathematical Biosciences and Engineering, 2006, 3(3): 557-566. doi: 10.3934/mbe.2006.3.557 |
[9] | Muntaser Safan . Mathematical analysis of an SIR respiratory infection model with sex and gender disparity: special reference to influenza A. Mathematical Biosciences and Engineering, 2019, 16(4): 2613-2649. doi: 10.3934/mbe.2019131 |
[10] | Steady Mushayabasa, Drew Posny, Jin Wang . Modeling the intrinsic dynamics of foot-and-mouth disease. Mathematical Biosciences and Engineering, 2016, 13(2): 425-442. doi: 10.3934/mbe.2015010 |
Although different strategies for mosquito-borne disease prevention can vary significantly in their efficacy and scale of implementation, they all require that individuals comply with their use. Despite this, human behavior is rarely considered in mathematical models of mosquito-borne diseases. Here, we sought to address that gap by establishing general expectations for how different behavioral stimuli and forms of mosquito prevention shape the equilibrium prevalence of disease. To accomplish this, we developed a coupled contagion model tailored to the epidemiology of dengue and preventive behaviors relevant to it. Under our model's parameterization, we found that mosquito biting was the most important driver of behavior uptake. In contrast, encounters with individuals experiencing disease or engaging in preventive behaviors themselves had a smaller influence on behavior uptake. The relative influence of these three stimuli reflected the relative frequency with which individuals encountered them. We also found that two distinct forms of mosquito prevention—namely, personal protection and mosquito density reduction—mediated different influences of behavior on equilibrium disease prevalence. Our results highlight that unique features of coupled contagion models can arise in disease systems with distinct biological features.
With the development of transportation and urbanisation, population migration across regions becomes more frequent, and more and more rural population crowded into cities. The increasing mobility among regions might lead to the spread of the infectious diseases regionally and globally much faster than ever before [19]. For example, SARS was first reported in Guangdong Province of China in November of 2002, and in late June of 2003, the emerging infectious disease had spread to 32 countries and regions due to the human mobility [21,25]. In February 2014 Ebola virus appeared in Guinea and then due to the human mobility the disease spread very quickly to other countries including the United States, Spain and the United Kingdom et al [12], and has caused about 6070 reported deaths and 17145 reported cases of Ebola virus disease up to December 3,2014 according to the report from the World Health Organization (WHO) [6]. All the above facts show that the population dispersal can affect transmission dynamics of the infectious diseases.
In the recent years, the impact of population dispersal has received increasing attention, and many mathematical patch models are formulated to investigate this hot issue (see [24,3,14] and the references cited therein). Here, the patches can be cities, towns, states, countries or other appropriate community divisions. Wang and Zhao [24] proposed an epidemic model with population dispersal to describe the dynamics of disease spread between two patches and n patches. Arino and van den Driessche [3] developed a multi-city epidemic model to analyze the spatial spread of infectious diseases. In 2011, Gao and Ruan [15] formulated an SIS patch model with non-constant transmission coefficients to investigate the effect of media coverage and human movement on the spread of infectious diseases among patches, and soon after, Gao and Ruan [13] proposed a multi-patch model to study the impacts of population dispersal on the spatial spread of malaria between patches. All the above mathematical models have provided useful information about the effect of host mobility on transmission dynamics of infectious diseases, but almost these models do not include the control measures, such as vaccination in it.
There is no doubt that the top priority of global public security is to prevent and contain the spread of infectious diseases. Thus it is important to study how to control the spread of infectious diseases in patchy environment and how the increasing mobility of hosts affects the current public health security. In this paper, we will use a mathematical model to explore this important issue. As we all know, vaccination is one of the most effective biological means of containing the outbreak of infectious diseases, which inoculates antigenic material into the individuals to stimulate immune system to develop adaptive immunity to a pathogen. Since Edward Jenner, the founder of vaccinology, inoculated a 13 year-old-boy with vaccinia virus (cowpox) and demonstrated immunity to smallpox [18] in 1796, vaccination has played an important role in controlling and preventing the outbreak of infectious diseases. The widespread immunity due to vaccination is largely responsible for the worldwide eradication of smallpox and the restriction of infectious diseases, such as polio, measles, and tetanus from much of the world [17]. Over the past two decades, many modeling studies have been conducted the effect of vaccination on transmission dynamics of infectious diseases (see [1,2] and reference therein). However, most of the epidemic models with vaccination are formulated in an isolated patch, ignoring spatial heterogeneity both for populations and disease transmissions.
The main purpose of the paper is to formulate an SIR epidemic model to study the impact of vaccination on transmission dynamics of infectious disease in patchy environment and the impact of the increasing mobility of hosts on the current immunization strategy. The paper is organized as follows. In Section 2, based on the SIR model with birth targeted vaccination we propose an SIR epidemic model with vaccination in patchy environment. In Section 3, we mainly present some preliminary results and derive the reproduction number. A classification of the equilibria of system on two patches and its the local dynamical behavior is provided in Section 4. We conclude with some numerical simulations in Section 5 and give a brief conclusion in the final section.
In this section, we employ an
First, let us formulate a model for the spread of the disease in the
We assume that the hosts are recruited at a rate
Based on the transfer diagram 1, the spread of an infectious disease in the
{dSidt=(1−pi)μiNi−βiIiNiSi−μiSi,dIidt=βiIiNiSi−(μi+γi)Ii,dRidt=piμiNi+γiIi−μiRi. | (1) |
When
mij=−ln(1−lij)1d, i,j=1,2,⋯,n, i≠j. | (2) |
Then the dynamics of the hosts with migration is governed by the following model:
{dSidt=(1−pi)μiNi−βiIiNiSi−μiSi+n∑j≠i(mjiSj−mijSi),dIidt=βiIiNiSi−(μi+γi)Ii,dRidt=piμiNi+γIi−μiRi+n∑j≠i(mjiRj−mijRi),Ni=Si+Ii+Ri,i=1,2,⋯,n. | (3) |
In this paper, we will use the system (3) to investigate the effect of vaccination on transmission dynamics of infectious disease in patchy environment and the impact of the increasing mobility of hosts on the current immunization strategy.
We first introduce some notations which will be used throughout this paper. Let
Let
Γ={(S1,I1,R1,⋯,Sn,In,Rn)∈R3n+:n∑i=1(Si+Ii+Ri)≤N(0),i=1,2,⋯,n}, |
is positively invariant with respect to system (3).
Define movement matrix
M=(∑nj≠1m1j−m21⋯−mn1−m12∑nj≠2m2j⋯−mn2⋮⋮⋱⋮−m1n−m2n⋯∑nj≠nmnj). | (4) |
In this paper, we always assume that the movement matrix is irreducible, that is, the graph of the patches are strongly connected through the movement of hosts with respect to disease. If the movement matrix is reducible, the system may be decoupled into several samll systems (see [11] and reference therein).
To find the disease-free equilibrium with all
{(1−pi)μiNi−μiSi+n∑j≠i(mjiSj−mijSi)=0,piμiNi−μiRi+n∑j≠i(mjiRj−mijRi)=0,Ni=Si+Ri,i=1,2,⋯,n, | (5) |
or in the form of matrix systems
{Diag((1−p)∗μ)N−(M+Diag(μ))S=0,Diag(p∗μ)N−(M+Diag(μ))R=0,MN=0, | (6) |
where
We first solve the third equation of (5) or (6) which independent of the first two equations. Applying the results presented in Lemma 2.1 [16], the general solution to the third equation of (6) can be given as
N0≜(N01,N02,⋯,N0n)T=N(0)∑ni=1cii(c11,c22,⋯,cnn)T. |
Substituting
S0≜(S01,S02,⋯,S0n)=(M+Diag(μ))−1Diag((1−p)∗μ)N0,R0≜(R01,R02,⋯,R0n)=(M+Diag(μ))−1Diag(p∗μ)N0. | (7) |
Since all off-diagonal entries of matrix
In absence of infectious disease, adding the three equations of system (3) together leads to
dNidt=n∑j≠i(mjiNj−mijNi), i=1,2,⋯,n, | (8) |
or in the form of matrix system
dN(t)dt=−MN(t). | (9) |
It follows from Theorem 2.1 in [4] that the positive equilibrium
{(S−S0)′=−(M+Diag(μ))(S−S0),(R−R0)′=−(M+Diag(μ))(R−R0). | (10) |
Since the Gerschgorin circular disc theorem implies that matrix
Theorem 3.1. System (3) always has a disease-free equilibrium
S0=(M+Diag(μ))−1Diag((1−p)∗μ)N0,R0=(M+Diag(μ))−1Diag(p∗μ)N0,N0=N(0)∑ni=1cii(c11,c22,⋯,cnn)T, |
and
Γ0={(S1,⋯,Sn,I1,⋯,In,R1,⋯,Rn):n∑i=1(Si+Ri)=N(0),Ii=0,i=1,2,⋯,n}. |
Note that the system (3) has
F=Diag(β1S01N01,β2S02N02,⋯,βnS0nN0n) and V=Diag(μ+γ). |
From literature [10], the reproduction number
Rv=ρ(FV−1)=max | (11) |
where
\mathfrak{R}_{vi}=\frac{\beta_i}{\mu_i+\gamma_i}\frac{S_i^0}{N_i^0}, | (12) |
which represents the reproduction number in the
Theorem 3.2. The disease-free equilibrium
In the special case
\mathfrak{R}_v=(1-p_1)\frac{\beta_1}{\mu_1+\gamma_1}. | (13) |
which represents the numbers of secondary cases directly produced by infectious diease during the period of infection in a susceptible population.
In the special case of no movement between patches (i.e.,
\mathfrak{R}_v= \max\{\mathfrak{R}_{v1},\mathfrak{R}_{v2},\cdots,\mathfrak{R}_{vn}\}, | (14) |
with
Theorem 3.3. If
Proof. For any equilibrium
\left\{ \begin{array}{ll} \displaystyle {\rm Diag}((1-p)*\mu) {\bf{N}}-{\rm Diag}(\mu+\gamma) {\bf{I}}-(M+{\rm Diag}(\mu)){\bf{S}}=0,\\[2ex] \displaystyle\displaystyle {\rm Diag}({\bf{I}})({\bf{S}}-B{\bf{N}})=0,\\[2ex] \displaystyle {\rm Diag}(p*\mu) {\bf{N}}+{\rm Diag}(\gamma) {\bf{I}}-(M+{\rm Diag}(\mu) {\bf{R}}=0,\\[2ex] \displaystyle {\bf{N}} = {\bf{S}}+{\bf{I}}+{\bf{R}}. \end{array}\right. | (15) |
where
Adding the first three equations of (15) together yields
{\bf{N}}-{\bf{I}}=k(c_{11},c_{22},\cdots,c_{nn})^T, |
where
\begin{array}{rl} {\bf{N}}={\bf{N}}^0+(\mathbb{E}-C){\bf{I}}, \end{array} | (16) |
where
\begin{array}{rl} {\bf{S}}=&{\bf{S}}^0+(M+{\rm Diag}(\mu))^{-1}\Big({\rm Diag}(({\bf{1}}-{\bf{p}})*\mu)(\mathbb{E}-C)-{\rm Diag}(\mu+\gamma)\Big){\bf{I}}, \end{array} | (17) |
where
Substituting (16), (17) into the second equation of (15), the system of equation (15) can be reduced to the following equation with one single equation of
\begin{array}{l} \displaystyle {\rm Diag}({\bf{I}})\Big({\bf{S}}^0-B{\bf{N}}^0-((M+{\rm Diag}(\mu))^{-1}{\rm Diag}(({\bf{1}}-{\bf{p}})\mu)C-B C){\bf{I}}\\ -(B+(M+{\rm Diag}(\mu))^{-1}({\rm Diag}(\mu+\gamma)-{\rm Diag}(({\bf{1}}-{\bf{p}})\mu)){\bf{I}}\Big)=0. \end{array} | (18) |
In the following, we only need to solve (18) for
Since
\begin{array}{rl} &\displaystyle(M+{\rm Diag}(\mu))^{-1}{\rm Diag}(({\bf{1}}-{\bf{p}})*\mu)C-BC \\ &=\displaystyle (M+{\rm Diag}(\mu))^{-1}\left({\rm Diag}(({\bf{1}}-{\bf{p}})*\mu){\bf{N}}^0-(M+{\rm Diag}(\mu))B{\bf{N}}^0\right)\frac{1}{N(0)}{\bf{1}} \\ &=\displaystyle \left({\bf{S}}^0-B{\bf{N}}^0\right)\frac{1}{N(0)}{\bf{1}}, \end{array} | (19) |
and the expression for
{\bf{S}}^0-B{\bf{N}}^0=\displaystyle \left( \begin{array}{c} \displaystyle\frac{\mu_1+\gamma_1}{\beta_1}N_1^0(\mathfrak{R}_{v1}-1)\\ \displaystyle\frac{\mu_2+\gamma_2}{\beta_2}N_2^0(\mathfrak{R}_{v2}-1)\\ \vdots\\ \displaystyle\frac{\mu_n+\gamma_n}{\beta_n}N_n^0(\mathfrak{R}_{vn}-1) \end{array} \right). | (20) |
Therefore, the equation (18) can be expressed as
{\rm Diag}({\bf{I}})(M+{\rm Diag}(\mu))^{-1}({\bf{b}}-A{\bf{I}})=0, | (21) |
where
\label{2} {\bf{b}}\triangleq(b_1,b_2,\cdots,b_n)^T=(M+{\rm Diag}(\mu))({\bf{S}}^0-B{\bf{N}}^0), |
and
\label{1} \begin{array}{rl} A\triangleq (a_{ij})_{n\times n}=&{\rm Diag}(\gamma+{\bf{p}}\mu)+(M+{\rm Diag}(\mu))B\\[2ex] &\displaystyle +(M+{\rm Diag}(\mu))\left({\bf{S}}^0-B{\bf{N}}^0\right)\frac{1}{N(0)}{\bf{1}}.\\[2ex] \end{array} |
Note that
It is easily to see that
In this section, we mainly consider the dynamic behaviors for system (3) with
\label{dfe2} \begin{array}{l} \displaystyle S_1^0=\frac{((1-p_1)(\mu_1\mu_2+\mu_1m_{21})+(1-p_2)\mu_2m_{12})m_{21}N(0)} {(\mu_1\mu_2+\mu_1m_{21}+\mu_2m_{12})(m_{12}+m_{21})},\\[2ex] \displaystyle S_2^0=\frac{((1-p_1)\mu_1m_{21}+(1-p_2)(\mu_1\mu_2+\mu_2m_{12})m_{12}N(0)} {(\mu_1\mu_2+\mu_1m_{21}+\mu_2m_{12})(m_{12}+m_{21})},\\[2ex] \displaystyle R_1^0=\frac{(p_1(\mu_1\mu_2+\mu_1m_{21})+p_2\mu_2m_{12})m_{21}N(0)} {(\mu_1\mu_2+\mu_1m_{21}+\mu_2m_{12})(m_{12}+m_{21})},\\[2ex] \displaystyle R_2^0=\frac{(p_1\mu_1m_{21}+p_2(\mu_1\mu_2+\mu_2m_{12})m_{12}N(0)} {(\mu_1\mu_2+\mu_1m_{21}+\mu_2m_{12})(m_{12}+m_{21})}.\\[2ex] \end{array} |
From (11) and (12), the control reproduction number for this case can be given by
\mathfrak{R}_v=\max\{\mathfrak{R}_{v1},\mathfrak{R}_{v2}\}, | (22) |
where
\begin{array}{l} \displaystyle\mathfrak{R}_{v1}=\frac{\beta_1}{\mu_1+\gamma_1}\frac{(1-p_1)(\mu_1\mu_2+\mu_1m_{21})+(1-p_2)\mu_2m_{12}}{\mu_1\mu_2+\mu_1m_{21}+\mu_2m_{12}},\\ \displaystyle \mathfrak{R}_{v2}=\frac{\beta_2}{\mu_2+\gamma_2}\frac{(1-p_1)\mu_1m_{21}+(1-p_2)(\mu_1\mu_2+\mu_2m_{12})}{\mu_1\mu_2+\mu_1m_{21}+\mu_2m_{12}}, \end{array} | (23) |
represent the control reproduction number correspond to the sub-patch 1 and 2, respectively.
Like in the single patch model (1) or many other epidemic models, we have the global stability of the disease-free equilibrium for system (3) with
Theorem 4.1. If
The proof of Theorem (4.1) is analogous to those of Theorem 2.4 in Gao and Ruan [15] and Theorem 3.2 in Sun et al. [23]. We omit the details here.
Following Theorem 4.1 and the proof of Theorem 4.1, when
For convenience of presentation, set
\begin{array}{l} \xi_1=\mu_1\mu_2+\mu_1m_{21}+\mu_2m_{12}, \ \xi_2=(\gamma_2+p_2\mu_2)\beta_2, \ \xi_3=(\gamma_1+p_1\mu_1)\beta_1, \\ \xi_4=(\mu_1+\gamma_1)(\mu_2+\gamma_2)(\mu_2+m_{21})+(\mu_1+\gamma_1)\xi_2+(\mu_2+\gamma_2)^2m_{12},\\ \xi_5=(\mu_1+\gamma_1)(\mu_2+\gamma_2)(\mu_1+m_{12})+(\mu_2+\gamma_2)\xi_3+(\mu_1+\gamma_1)^2m_{21}, \end{array} |
and define
\begin{array}{rl} \displaystyle \mathfrak{\bar{R}}_{v1}=\frac{((\mu_2+\gamma_2)(\mu_2+m_{21})+\xi_2)(1-p_1)\mu_1\beta_1+(\mu_2+\gamma_2)^2m_{12}\beta_1} {(\mu_1+\gamma_1)((\mu_2+\gamma_2)\xi_1+(\mu_1+m_{12})\xi_2)},\\ \displaystyle \mathfrak{\bar{R}}_{v2}=\frac{((\mu_1+\gamma_1)(\mu_1+m_{12})+\xi_3)(1-p_2)\mu_2\beta_2+(\mu_1+\gamma_1)^2m_{21}\beta_2} {(\mu_2+\gamma_2)((\mu_1+\gamma_1)\xi_1+(\mu_2+m_{21})\xi_3)}, \end{array} | (24) |
which can be considered as a second threshold for epidemic invasion of sub-populations 1 and 2, respectively.
Theorem 4.2. The system (3) can have other three equilibria, and we have the following results:
1. Boundary equilibria
\label{en:boundaryI2}\begin{array}{l} \displaystyle \hat{S}_1\mspace{-3mu}=\mspace{-3mu}\frac{((\mu_1+\gamma_1)(\mu_2+m_{21})\mspace{-3mu}+\mspace{-3mu}m_{12}(1-p_2)\mu_2)(\mu_1+\gamma_1)m_{21}N(0)} {(\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)(m_{12}\xi_1\mspace{-3mu}+\mspace{-3mu} (\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})m_{21}\beta_1)\mspace{-3mu}+\mspace{-3mu}m_{12} (\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})\xi_3\mspace{-3mu}+\mspace{-3mu}m_{12}m_{21} (1-p_2)\mu_2\beta_1},\\ \displaystyle\hat{S}_2\mspace{-3mu}=\mspace{-3mu}\frac{((\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)^2m_{21}\mspace{-3mu} +\mspace{-3mu}((\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)(\mu_1\mspace{-3mu} +\mspace{-3mu}m_{12})\mspace{-3mu}+\mspace{-3mu}(\gamma_1\mspace{-3mu} +\mspace{-3mu}p_1\mu_1)\beta_1)(1\mspace{-3mu}-\mspace{-3mu}p_2)\mu_2)m_{12}N(0)} {(\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)(m_{12}\xi_1\mspace{-3mu}+\mspace{-3mu}(\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})m_{21}\beta_1)\mspace{-3mu}+\mspace{-3mu}m_{12}(\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})\xi_3\mspace{-3mu}+\mspace{-3mu}m_{12}m_{21} (1-p_2)\mu_2\beta_1},\\ \displaystyle\hat{I}_1\mspace{-3mu}=\mspace{-3mu}\frac{(\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)\xi_1m_{21}(\mathfrak{R}_{v1}-1)N(0)} {(\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)(m_{12}\xi_1\mspace{-3mu}+\mspace{-3mu} (\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})m_{21}\beta_1)\mspace{-3mu}+\mspace{-3mu}m_{12} (\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})\xi_3\mspace{-3mu}+m_{12}m_{21} (1-p_2)\mu_2\beta_1},\\ \displaystyle\hat{R}_1\mspace{-3mu}=\mspace{-3mu}\frac{((\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})(\xi_3-(\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)\gamma_1) \mspace{-3mu}+\mspace{-3mu}m_{12}(\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)p_2\mu_2)m_{21}N(0)} {(\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)(m_{12}\xi_1\mspace{-3mu}+\mspace{-3mu}(\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})m_{21}\beta_1)\mspace{-3mu}+\mspace{-3mu}m_{12}(\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})\xi_3\mspace{-3mu}+\mspace{-3mu}m_{12}m_{21} (1-p_2)\mu_2\beta_1},\\ \displaystyle\hat{R}_2\mspace{-3mu}=\mspace{-3mu}\frac{(m_{21}(\xi_3-(\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)\gamma_1)\mspace{-3mu}+\mspace{-3mu}((\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12}) \mspace{-3mu}+\mspace{-3mu}(\gamma_1\mspace{-3mu}+\mspace{-3mu}p_1\mu_1)\beta_1)p_2\mu_2)m_{12}N(0)} {(\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)(m_{12}\xi_1\mspace{-3mu}+\mspace{-3mu}(\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})m_{21}\beta_1)\mspace{-3mu}+\mspace{-3mu}m_{12}(\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})\xi_3\mspace{-3mu}+\mspace{-3mu}m_{12}m_{21} (1-p_2)\mu_2\beta_1}, \end{array} |
and
\label{en:boundaryI1} \begin{array}{l} \displaystyle \displaystyle \bar{S}_1\mspace{-3mu}=\mspace{-3mu}\frac{((\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)^2m_{12}\mspace{-3mu}+\mspace{-3mu}((\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)(\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21})\mspace{-3mu}+\mspace{-3mu}(\gamma_2\mspace{-3mu}+\mspace{-3mu}p_2\mu_2)\beta_2)(1-p_1)\mu_1)m_{21}N(0)} {(\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)(m_{21}\xi_1\mspace{-3mu}+\mspace{-3mu}(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})m_{12}\beta_2)\mspace{-3mu}+\mspace{-3mu}m_{21}(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})\xi_2\mspace{-3mu}+\mspace{-3mu}m_{12}m_{21} (1-p_1)\mu_1\beta_2}, \\ \displaystyle \bar{S}_2\mspace{-3mu}=\mspace{-3mu}\frac{((\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})\mspace{-3mu}+\mspace{-3mu}m_{21}(1-p_1)\mu_1)(\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)m_{12}N(0)} {(\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)(m_{21}\xi_1\mspace{-3mu}+\mspace{-3mu}(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})m_{12}\beta_2)\mspace{-3mu}+\mspace{-3mu}m_{21}(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})\xi_2\mspace{-3mu}+\mspace{-3mu}m_{12}m_{21} (1-p_1)\mu_1\beta_2},\\ \displaystyle\bar{I}_2\mspace{-3mu}=\mspace{-3mu}\frac{(\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)\xi_1m_{12}(\mathfrak{R}_{v2}-1)N(0)} {(\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)(m_{21}\xi_1\mspace{-3mu}+\mspace{-3mu}(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})m_{12}\beta_2)\mspace{-3mu}+\mspace{-3mu}m_{21}(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})\xi_2\mspace{-3mu}+\mspace{-3mu}m_{12}m_{21} (1-p_1)\mu_1\beta_2},\\%[11pt] \end{array} |
\begin{array}{l} \displaystyle \bar{R}_1\mspace{-3mu}=\mspace{-3mu}\frac{(m_{12}(\xi_2-(\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)\gamma2)\mspace{-3mu}+\mspace{-3mu}((\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)(\mu_2\mspace{-3mu}+\mspace{-3mu}m_{21}) \mspace{-3mu}+\mspace{-3mu}(\gamma_2\mspace{-3mu}+\mspace{-3mu}p_2\mu_2)\beta_2)p_1\mu_1)m_{21}N(0)} {(\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)(m_{21}\xi_1\mspace{-3mu}+\mspace{-3mu}(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})m_{12}\beta_2)\mspace{-3mu}+\mspace{-3mu}m_{21}(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})\xi_2\mspace{-3mu}+\mspace{-3mu}m_{12}m_{21} (1-p_1)\mu_1\beta_2},\\ \displaystyle\bar{R}_2\mspace{-3mu}=\mspace{-3mu}\frac{((\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})(\xi_2-(\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)\gamma_2) \mspace{-3mu}+\mspace{-3mu}m_{21}(\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)p_1\mu_1)m_{12}N(0)} {(\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_2)(m_{21}\xi_1\mspace{-3mu}+\mspace{-3mu}(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})m_{12}\beta_2)\mspace{-3mu}+\mspace{-3mu}m_{21}(\mu_1\mspace{-3mu}+\mspace{-3mu}m_{12})\xi_2\mspace{-3mu}+\mspace{-3mu}m_{12}m_{21} (1-p_1)\mu_1\beta_2}.\\%[11pt] \end{array} |
2. System (3) has a unique endemic equilibrium
\begin{split} \displaystyle S_1^*=&\frac{((\mu_1+\gamma_1)((\mu_2+\gamma_2)(\mu_2+m_{21})+\xi_2)+(\mu_2+\gamma_2)^2m_{12})(\mu_1+\gamma_1)m_{21}N(0)} {m_{21}\beta_1\xi_4+m_{12}\beta_2\xi_5},\\ \displaystyle S_2^*=&\frac{((\mu_2+\gamma_2)((\mu_1+\gamma_1)(\mu_1+m_{12})+\xi_3)+(\mu_1+\gamma_1)^2m_{21})(\mu_2+\gamma_2)m_{12}N(0)} {m_{21}\beta_1\xi_4+m_{12}\beta_2\xi_5},\\ \displaystyle I_1^*=&\frac{(\mu_1+\gamma_1)((\mu_1+m_{12})\xi_2+(\mu_2+\gamma_2)\xi_1)(\mathfrak{\bar{R}}_{v1}-1)m_{21}N(0)} {m_{21}\beta_1\xi_4+m_{12}\beta_2\xi_5},\\ \displaystyle I_2^*=&\frac{(\mu_2+\gamma_2)((\mu_2+m_{21})\xi_3+(\mu_1+\gamma_1)\xi_1)(\mathfrak{\bar{R}}_{v2}-1)m_{12}N(0)} {m_{21}\beta_1\xi_4+m_{12}\beta_2\xi_5},\\ \displaystyle R_1^*=&\frac{(\xi_2 +(\mu_2+ \gamma_2) (\mu_2 + m_{21}) ) (\xi_3- \gamma_1(\mu_1 + \gamma_1) ) m_{21} N (0)} {m_{21}\beta_1\xi_4 + m_{12}\beta_2\xi_5}\\ &+\frac{m_{12}(\mu_1 + \gamma_1) (\xi_2 - \gamma_2(\mu_2 + \gamma_2) ) m_{21} N (0)}{m_{21}\beta_1\xi_4 + m_{12}\beta_2\xi_5},\\ \displaystyle R_2^*=&\frac{ (\xi_3 + (\mu_1 + \gamma_1) (\mu_1 + m_{12}) ) (\xi_2 - \gamma_2 (\mu_2 + \gamma_2) )m_{12} N (0)} {m_{21}\beta_1\xi_4 + m_{12}\beta_2\xi_5}\\ &+\frac{ m_{21}(\mu_2 + \gamma_2) (\xi_3 - \gamma_1(\mu_1 + \gamma_1) ) m_{12} N (0)} {m_{21}\beta_1\xi_4 + m_{12}\beta_2\xi_5}.\\%[9pt] \end{split} |
It follows from the expressions of
\label{d} \begin{array}{l} \displaystyle \mathfrak{\bar{R}}_{v1}-\mathfrak{R}_{v1}=\frac{(\mu_2+\gamma_2)(\gamma_2+p_2\mu_2)m_{12}\beta_1} {(\mu_1+\gamma_1)((\mu_2+\gamma_2) \xi_1+(\mu_1+m_{12})\xi_2)}(1-\mathfrak{R}_{v2}),\\ \displaystyle \mathfrak{\bar{R}}_{v2}-\mathfrak{R}_{v2}=\frac{(\mu_1+\gamma_1)(\gamma_1+p_1\mu_1)m_{21}\beta_2} {(\mu_2+\gamma_2)((\mu_1+\gamma_1) \xi_1+(\mu_2+m_{21})\xi_3)}(1-\mathfrak{R}_{v1}). \end{array} |
Thus, if
Using
\left\{ \begin{array}{ll} \displaystyle \frac{dS_1}{dt}=(1-p_1)\mu_1 N_1-\beta_1\frac{I_1}{N_1} S_1-\mu_1 S_1+m_{21}S_2-m_{12} S_1,\\ \displaystyle \frac{dS_2}{dt}=(1-p_2)\mu_2 (N(0)-N_1)-\beta_2\frac{I_2}{N(0)-N_1} S_2-\mu_2 S_1+m_{12}S_1-m_{21} S_2,\\ \displaystyle \frac{dI_1}{dt}=\beta_1\frac{I_1}{N_1} S_1-(\mu_1+\gamma_1) I_1, \displaystyle \frac{dI_2}{dt}=\beta_2\frac{I_2}{N(0)-N_1} S_2-(\mu_2+\gamma_2) I_2,\\ \displaystyle \frac{dN_1}{dt}=m_{21}(N(0)-N_1-I_2)-m_{12}(N_1-I_1), \end{array}\label{model:n2}\right. | (25) |
which can be used to study the local behavior of system (3) near the boundary equilibria. By considering the linear system for (25), we have the following theorems.
Theorem 4.3. If
Proof. Evaluating system (25) at boundary equilibrium
\begin{split} J\mspace{-2mu}(\hat{E})\mspace{-5mu}=\mspace{-5mu}\left(\begin{array}{cccccc} -\mspace{-4mu}2\mu_1\mspace{-5mu} -\mspace{-5mu}\gamma_1\mspace{-5mu}-\mspace{-5mu}m_{12}\mspace{-3mu}&m_{21}& \mspace{-3mu}-\mspace{-3mu}\beta_1\mspace{-3mu}\frac{\hat{S}_1}{\hat{N}_1}&0& (\mspace{-3mu}1\mspace{-5mu}-\mspace{-5mu}p_1)\mu_1\mspace{-5mu}+\mspace{-5mu} (\mu_1\mspace{-5mu}+\mspace{-5mu}\gamma_1)\mspace{-3mu}\frac{\hat{I}_1}{\hat{N}_1}\\ m_{12}& \mspace{-4mu}-\mspace{-4mu}\mu_2\mspace{-5mu}-\mspace{-5mu}m_{21}&0&-\beta_2\frac{\hat{S}_2}{\hat{N}_2}&-(1-p_2)\mu_2\\ \beta_1\frac{\hat{I}_1}{\hat{N}_1}&0&0&0&-(\mu_1+\gamma_1)\frac{\hat{I}_1}{\hat{N}_1}\\ 0&0&0&\beta_2\mspace{-4mu}\frac{\hat{S}_2}{\hat{N}_2}\mspace{-5mu}-\mspace{-5mu} \mu_2\mspace{-5mu}-\mspace{-5mu}\gamma_2&0\\ 0&0&m_{12}&-m_{21}&-(m_{12}+m_{21}) \end{array}\right). \end{split} |
It is clearly that one of the eigenvalue of
\lambda_1=\beta_2\frac{\hat{S}_2}{\hat{N}_2}-(\mu_2+\gamma_2)=(\mu_2+\gamma_2)(\mathfrak{\bar{R}}_{v2}-1), |
where
\lambda^4+\alpha_3\lambda_3+\alpha_2\lambda_2+\alpha_1\lambda_1+\alpha_0=0, | (26) |
where
\begin{array}{rl} \alpha_0=&m_{12}(\mu_1\mu_2+\mu_1m_{21}+\mu_2m_{12}(\mu_1+\gamma_1)\hat{N}_1^3\hat{I}_1+m_{12}m_{21}(1-p_2)\mu_2\hat{N}_1^4\\ &+(\mu_1\gamma_1)^2(\mu_2+m_{21})m_{21}\hat{N}_1^4+(\gamma_1+p_1\mu_1)(\mu_2+m_{21})m_{12}\hat{N}_1^4>0,\\ \alpha_1=&(\mu_1+\gamma_1)(\mu_1+\mu_2+m_{12}+m_{21})m_{12}\hat{N}_1^2\hat{I}_1+((2\mu_1+\gamma_1)m_{21}^2+\mu_2m_{12}^2)\hat{N}_1^2\\ &+(\mu_2(\mu_1+\gamma_1)^2+(m_{12}+2m_{21})\gamma_1^2+2\mu_1(\mu_1+\mu_2)+(4\mu_1+\mu_2)\gamma_1)\hat{N}_1^2\\ &+(m_{21}(2\mu_1+\mu_2+\gamma_1)+\mu_1(\gamma_1+p_1\mu_1+p_1\gamma_1)+\mu_2(\gamma_1+2\mu_1))\hat{N}_1^2>0,\\ \alpha_2=&m_{12}(\mu_1+\gamma_1)\hat{N}_1\hat{I}_1+(m_{12}^2+m_{21}^2+(\mu_1+\gamma_1)^2+\mu_2\gamma_1+2\mu_1\mu_2)\hat{N}_1^2\\ &+(m_{21}(2\gamma_1+4\mu_1+\mu_2) +m_{12}(2m_{21}+\gamma_1+2\mu_1+2\mu_2))\hat{N}_1^2>0,\\ \alpha_3=&(2\mu_1+\mu_2+\gamma_1+2m_{12}+2m_{21})\hat{N}_1>0. \end{array} |
By Routh-Hurwitz theorem, (26) has roots with negative real parts only requires that
\begin{split} \alpha_1\alpha_2\mspace{-4mu}-\mspace{-4mu}\alpha_0\alpha_3 &= m_{12}^2(\mu_1+\gamma_2)^2(\mu_1+\mu_2+m_{12}+m_{21})\hat{I}_1^2\hat{N}_1^3 +(\mu_1+\gamma_1)(m_{12}^3+m_{21}^3\\ &+\mu_1\gamma_1^2 +2\mu_1^2+\gamma_1+\mu_1^3+2\mu_2\gamma_1^2+4\mu_1\mu_2\gamma_1+2\mu_1^2\mu_2 +\mu_2^2\gamma_1+\mu_1\mu_2^2\\ &+\mspace{-3mu}(3\mu_1\mspace{-3mu}+\mspace{-3mu}2\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_1\mspace{-3mu}+\mspace{-3mu}2m_{21})m_{12}^2\mspace{-3mu}+\mspace{-3mu}(5\mu_1+2\mu_2+3\gamma_1)m_{21}^2 +(5\mu_1^2 \mspace{-3mu}+\mspace{-3mu}7\mu_1\gamma_1\\ &+\mspace{-3mu}2\gamma_1^2+4\mu_2\gamma_1+6\mu_1\mu_2+\mu_2^2)m_{21}^2+(3\mu_1^2+2\gamma_1^2+\mu_2^2+3m_{21}^2+p_1\mu_1^2\\ &+\mspace{-3mu}4\mu_1\mu_2 \mspace{-3mu}+\mspace{-3mu}4(2\mu_1\mspace{-3mu}+\mspace{-3mu}\mu_2\mspace{-3mu}+\mspace{-3mu}\gamma_1)m_{21}+(p_1+4)\mu_1\gamma_1+2\mu_2\gamma_1)m_{12})m_{12}\hat{N}_1^4\hat{I}_1\\ &+\mspace{-3mu}( m_{21}^4(2\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)\mspace{-3mu}+\mspace{-3mu}\mu_2m_{12}^4\mspace{-3mu} +\mspace{-3mu}2m_{21}^3(2\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)(2\mu_1\mspace{-3mu}+\mspace{-3mu} \gamma_1\mspace{-3mu}+\mspace{-3mu}\mu_2) m_{21}^2(2\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1) \end{split} |
\begin{split}&\times\mspace{-3mu}(4(\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1)^2\mspace{-3mu}+\mspace{-3mu} 3\mu_2\gamma_1\mspace{-3mu}+\mspace{-3mu}6\mu_1\mu_2\mspace{-3mu}+\mspace{-3mu}\mu_2^2) \mspace{-3mu}+\mspace{-3mu}(\mu_1+\gamma_1)^2\mu_2(\gamma_1^2+(2\mu_1+\mu_2)\gamma_1\\ &+\mspace{-3mu}(\mu_1\mspace{-3mu}+\mspace{-3mu}2\mu_2)\mu_1) \mspace{-3mu}+\mspace{-3mu}m_{12}^3(\gamma_1^2\mspace{-3mu}+\mspace{-3mu}p_1\mu_1^2 \mspace{-3mu}+\mspace{-3mu}4\mu_1\mu_2+2\mu_2^2+(\mu_1+p_1\mu_1+2\mu_2)\gamma_1\\ &+\mspace{-3mu}(2\mu_1\mspace{-3mu}+\mspace{-3mu}\gamma_1\mspace{-3mu}+\mspace{-3mu}3\mu_2)m_{21}) \mspace{-3mu}+\mspace{-3mu}m_{21}(2\gamma_1^4\mspace{-3mu}+\mspace{-3mu}4\gamma_1^3(2\mu_1 \mspace{-3mu}+\mspace{-3mu}\mu_2)\mspace{-3mu}+\mspace{-3mu}4\mu_1\gamma_1(2\mu_1^2\mspace{-3mu}+\mspace{-3mu}5\mu_1\mu_2\\ &+\mu_2^2)+\gamma_1^2 (12\mu_1+16\mu_1\mu_2+\mu_2^2)+2\mu_1^2(\mu_1^2+4\mu_1\mu_2+2\mu_2^2)) m_{12}^2(\gamma_1^3\\ &+3m_{21}^2(2\mu_1+\mu_2+\gamma_1)+\gamma_1^2(3\mu_2+(p_1+3)\mu_1)+\gamma_1(8\mu_1\mu_2+2\mu_2^2\\ &+\mspace{-4mu}(2\mspace{-4mu}+\mspace{-4mu}3p_1)\mu_1^2) \mspace{-3mu}+\mspace{-3mu}2\mu_1(p_1\mu^2\mspace{-4mu}+\mspace{-4mu} 3\mu_2(\mu_1\mspace{-4mu}+\mspace{-4mu}\mspace{-3mu}\mu_2))\mspace{-3mu}+\mspace{-3mu}m_{21}(3\gamma_1^2 \mspace{-3mu}+\mspace{-3mu}6\mu_1^2\mspace{-3mu}+\mspace{-3mu}2(p_2\mspace{-3mu}+\mspace{-3mu}7)\mu_1\mu_2\\ &+\mspace{-3mu}3\mu_2^2\mspace{-3mu}+\mspace{-3mu}2\gamma_1(4\mu_1\mspace{-3mu}+\mspace{-3mu} (p_2\mspace{-3mu}+\mspace{-3mu}3)\mu_2))) (\gamma_1^4\mspace{-3mu}+\mspace{-3mu}m_{21}(3\gamma_1\mspace{-3mu}+\mspace{-3mu}6\mu_1 \mspace{-3mu}+\mspace{-3mu}\mu_2)\mspace{-3mu}+\mspace{-3mu}\gamma_1^3((p_1\mspace{-3mu}+\mspace{-3mu}3)\mu_1\\ &+\mspace{-3mu}2\mu_2)\mspace{-3mu}+\mspace{-3mu}\gamma_1^2(3(p_1\mspace{-3mu}+\mspace{-3mu}1)\mu_1^2+8\mu_1\mu_2+2\mu_2^2) +\mu_1\gamma_1((1+3p_1)\mu_1^2+10\mu_1\mu_2\\ &+\mspace{-3mu}(7\mspace{-3mu}-\mspace{-3mu}p_1)\mu_2^2)\mspace{-3mu}+\mspace{-3mu} \mu_1^2(p_1\mu_1^2\mspace{-3mu}+\mspace{-3mu}4\mu_1\mu_2\mspace{-3mu}+\mspace{-3mu}(6-p_2)\mu_2^2) +m_{21}^2(4\gamma_1^2+(14-p_1)\mu_1^2\\ &+\mspace{-3mu}2(p_2\mspace{-3mu}+\mspace{-3mu}7)\mu_1\mu_2\mspace{-3mu}+\mspace{-3mu}\mu_2^2\mspace{-3mu}+\mspace{-3mu} \gamma_1((15\mspace{-3mu}-\mspace{-3mu}p_1)\mu_1\mspace{-3mu}+\mspace{-3mu}2(p_2\mspace{-3mu}+\mspace{-3mu}3)\mu_2)) \mspace{-3mu}+\mspace{-3mu}m_{21}(\gamma_1^2((15\mspace{-3mu}+\mspace{-3mu}p_1)\mu_1\\ &+\mspace{-3mu}4\gamma_1^3\mspace{-3mu}+\mspace{-3mu}(6\mspace{-3mu}+\mspace{-3mu}p_2)\mu_2)\mspace{-3mu}+\mspace{-3mu}\gamma_1((17\mspace{-3mu}+\mspace{-3mu}3p_1)\mu_1^2\mspace{-3mu}+\mspace{-3mu}(21-2p_1\mspace{-3mu}+\mspace{-3mu}3p_2)\mu_1\mu_2 \mspace{-3mu}+\mspace{-3mu}(p_2\mspace{-3mu}+\mspace{-3mu}2)\mu_2^2)\\ &+\mspace{-3mu}\mu_1(2(p_1+3)\mu_1^2+(19-2p_1+2p_2)\mu_1\mu_2+(p_2+7)\mu_2^2))) )\hat{N}_1^5>0. \end{split} |
Then all solution of (26) have negative real parts. Therefore, based on the above discussion, we know that if
Similar results hold for boundary equilibrium
Theorem 4.4. If
To complement the mathematical analysis carried out in the previous sections, we now investigate some of the numerical properties of system (3). We take the default parameter values as:
Time evolution of system (3) in the special case of
The theoretical and numerical results all show that
To explore the effect of vaccination and migration, we also compare the second peak size and second peak time with various vaccination coverage and migration rate. For the case of
We also compared the residual values of the first peak size to investigate the impact of vaccination and migration, which shown in the histogram 6. The results show that migration can reduce the first peak size for each patches and the entire population as long as the migration rate
In this paper, we proposed a multi-patch SIR model with vaccination to study the influence of vaccination coverage and human mobility on disease transmission. Our theoretical results show that the control reproduction number
In our model, we assume that the infective do not move between patches, corresponding to either a very severe disease so that infective are not able to move or move is forbidden in order to control outbreak of disease. In the further, we can generalize the current model with infective move between patches.
This project has been partially supported by grants from National Natural Science Foundation of China (Nos. 11671206,11271190) and Scientific Research Innovation Project of Jiangsu Province (No. KYZZ15_0130). We also thank two anonymous referees for their helpful comments.
[1] |
S. Q. Deng, X. Yang, Y. Wei, J. T. Chen, X. J. Wang, H. J. Peng, A review on dengue vaccine development, Vaccines, 8 (2020), 63. https://doi.org/10.3390/vaccines8010063 doi: 10.3390/vaccines8010063
![]() |
[2] | S. Rajapakse, C. Rodrigo, A. Rajapakse, Treatment of dengue fever, Infect. Drug Resist., 5 (2012), 103–112. https://doi.org/10.2147/IDR.S22613 |
[3] | S. J. Thomas, D. Strickman, D. W. Vaughn, Dengue Epidemiology: Virus Epidemiology, Ecology, and Emergence, Adv. Virus Res., 61 (2003), 235–289. https://doi.org/10.1016/S0065-3527(03)61006-7 |
[4] |
N. L. Achee, F. Gould, T. A. Perkins, R. C. Reiner Jr, A. C. Morrison, S. A. Ritchie, et al., A critical assessment of vector control for dengue prevention, PLoS Negl.Trop. Dis., 9 (2015), e0003655. https://doi.org/10.1371/journal.pntd.0003655 doi: 10.1371/journal.pntd.0003655
![]() |
[5] | D. Pilger, M. De Maesschalck, O. Horstick, J. L. San Martin, Dengue outbreak response: documented effective interventions and evidence gaps, TropIKA.net, 1 (2010). |
[6] |
P. A. Reyes-Castro, L. Castro-Luque, R. Díaz-Caravantes, K. R. Walker, M. H. Hayden, K. C. Ernst, Outdoor spatial spraying against dengue: A false sense of security among inhabitants of Hermosillo, Mexico, PLoS Negl.Trop. Dis., 11 (2017), e0005611. https://doi.org/10.1371/journal.pntd.0005611 doi: 10.1371/journal.pntd.0005611
![]() |
[7] |
F. Espinoza-Gómez, C. M. Hernández-Suárez, R. Coll-Cárdenas, Educational campaign versus malathion spraying for the control of Aedes aegypti in Colima, Mexico, J. Epidemiol. Community Health, 56 (2002), 148–152. https://doi.org/10.1136/jech.56.2.148 doi: 10.1136/jech.56.2.148
![]() |
[8] |
N. Arunachalam, B. K. Tyagi, M. Samuel, R. Krishnamoorthi, R. Manavalan, S. C. Tewari, et al., Community-based control of Aedes aegypti by adoption of eco-health methods in Chennai City, India, Pathog. Global Health, 106 (2012), 488–496. https://doi.org/10.1179/2047773212Y.0000000056 doi: 10.1179/2047773212Y.0000000056
![]() |
[9] |
C. Aerts, M. Revilla, L. Duval, K. Paaijmans, J. Chandrabose, H. Cox, et al., Understanding the role of disease knowledge and risk perception in shaping preventive behavior for selected vector-borne diseases in Guyana, PLoS Negl. Trop. Dis., 14 (2020), e0008149. https://doi.org/10.1371/journal.pntd.0008149 doi: 10.1371/journal.pntd.0008149
![]() |
[10] |
N. Andersson, E. Nava-Aguilera, J. Arosteguí, A. Morales-Perez, H. Suazo-Laguna, J. Legorreta-Soberanis, et al., Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial, BMJ, 351 (2015), h3267. https://doi.org/10.1136/bmj.h3267 doi: 10.1136/bmj.h3267
![]() |
[11] |
J. Arosteguí, R. J. Ledogar, J. Coloma, C. Hernández-Alvarez, H. Suazo-Laguna, A. Cárcamo, et al., The Camino Verde intervention in Nicaragua, 2004–2012, BMC Public Health, 17 (2017), 406. https://doi.org/10.1186/s12889-017-4299-3 doi: 10.1186/s12889-017-4299-3
![]() |
[12] |
S. Funk, M. Salathé, V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: a review, J. R. Soc. Interface, 7 (2010), 1247–1256. https://doi.org/10.1098/rsif.2010.0142 doi: 10.1098/rsif.2010.0142
![]() |
[13] | T. Berry, M. Ferrari, T. Sauer, S. J. Greybush, D. Ebeigbe, A. J. Whalen, et al., Stabilizing the return to normal behavior in an epidemic, medRxiv, 2023.03.13.23287222. |
[14] |
S. Del Valle, H. Hethcote, J. M. Hyman, C. Castillo-Chavez, Effects of behavioral changes in a smallpox attack model, Math. Biosci., 195 (2005), 228–251. https://doi.org/10.1016/j.mbs.2005.03.006 doi: 10.1016/j.mbs.2005.03.006
![]() |
[15] |
M. J. Ferrari, S. Bansal, L. A. Meyers, O. N. Bjørnstad, Network frailty and the geometry of herd immunity, Proc. R. Soc. B, 273 (2006), 2743–2748. https://doi.org/10.1098/rspb.2006.3636 doi: 10.1098/rspb.2006.3636
![]() |
[16] |
E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddia, G. Chowell, P. A. Gonzalez Parra, G. J. Hickling, et al., Adaptive human behavior in epidemiological models, Proc. Natl. Acad. Sci. U.S.A., 108 (2011), 6306–6311. https://doi.org/10.1073/pnas.101125010 doi: 10.1073/pnas.101125010
![]() |
[17] |
L. LeJeune, N. Ghaffarzadegan, L. M. Childs, O. Saucedo, Mathematical analysis of simple behavioral epidemic models, Math. Biosci., 375 (2024), 109250. https://doi.org/10.1016/j.mbs.2024.109250 doi: 10.1016/j.mbs.2024.109250
![]() |
[18] |
C. Eksin, K. Paarporn, J. S. Weitz, Systematic biases in disease forecasting – The role of behavior change, Epidemics, 27 (2019), 96–105. https://doi.org/10.1016/j.epidem.2019.02.004 doi: 10.1016/j.epidem.2019.02.004
![]() |
[19] |
T. Boccia, M. N. Burattini, F. A. B. Coutinho, E. Massad, Will people change their vector-control practices in the presence of an imperfect dengue vaccine?, Epidemiol. Infect., 142 (2014), 625–633. https://doi.org/10.1017/S0950268813001350 doi: 10.1017/S0950268813001350
![]() |
[20] |
V. M. Alvarado-Castro, C. Vargas-De-León, S. Paredes-Solis, A. Li-Martin, E. Nava-Aguilera, A. Morales-Pérez, et al., The influence of gender and temephos exposure on community participation in dengue prevention: a compartmental mathematical model, BMC Infect. Dis., 24 (2024), 463. https://doi.org/10.1186/s12879-024-09341-w doi: 10.1186/s12879-024-09341-w
![]() |
[21] |
J. Jiao, G. P. Suarez, N. H. Fefferman, How public reaction to disease information across scales and the impacts of vector control methods influence disease prevalence and control efficacy, PLoS Comput. Biol., 17 (2021), e1008762. https://doi.org/10.1371/journal.pcbi.1008762 doi: 10.1371/journal.pcbi.1008762
![]() |
[22] |
K. Roosa, N. H. Fefferman, A general modeling framework for exploring the impact of individual concern and personal protection on vector-borne disease dynamics, Parasites Vectors, 15 (2022), 361. https://doi.org/10.1186/s13071-022-05481-7 doi: 10.1186/s13071-022-05481-7
![]() |
[23] |
J. M. Epstein, J. Parker, D. Cummings, R. A. Hammond, Coupled contagion dynamics of fear and disease: mathematical and computational explorations, PLoS One, 3 (2008), e3955. https://doi.org/10.1371/journal.pone.0003955 doi: 10.1371/journal.pone.0003955
![]() |
[24] |
K. Jain, V. Bhatnagar, S. Prasad, S. Kaur, Coupling fear and contagion for modeling epidemic dynamics, IEEE Trans. Network Sci. Eng., 10 (2023), 20–34. https://doi.org/10.1109/TNSE.2022.3187775 doi: 10.1109/TNSE.2022.3187775
![]() |
[25] |
J. M. Epstein, E. Hatna, J. Crodelle, Triple contagion: a two-fears epidemic model, J. R. Soc. Interface, 18 (2021), 20210186. https://doi.org/10.1098/rsif.2021.0186 doi: 10.1098/rsif.2021.0186
![]() |
[26] |
N. Perra, D. Balcan, B. Gonçalves, A. Vespignani, Towards a characterization of behavior-disease models, PLoS One, 6 (2011), e23084. https://doi.org/10.1371/journal.pone.0023084 doi: 10.1371/journal.pone.0023084
![]() |
[27] |
S. A. Pedro, F. T. Ndjomatchoua, P. Jentsch, J. M. Tchuenche, M. Anand, C. T. Bauch, Conditions for a second wave of COVID-19 due to interactions between disease dynamics and social processes, Front. Phys., 8 (2020), 574514. https://doi.org/10.3389/fphy.2020.574514 doi: 10.3389/fphy.2020.574514
![]() |
[28] |
A. Bernardin, A. J. Martínez, T. Perez-Acle, On the effectiveness of communication strategies as non-pharmaceutical interventions to tackle epidemics, PLoS One, 16 (2021), e0257995. https://doi.org/10.1371/journal.pone.0257995 doi: 10.1371/journal.pone.0257995
![]() |
[29] | Mathematica 14.0, 2024. Available from: http://www.wolfram.com. |
[30] | M. M. Andersen, S. Højsgaard, caracas: Computer Algebra, 2023. Available from: https://github.com/r-cas/caracas. |
[31] |
P. Driessche, J. Watmough, Further notes on the basic reproduction number, Math. Epidemiol., 2008 (2008), 159–178. https://doi.org/10.1007/978-3-540-78911-6_6 doi: 10.1007/978-3-540-78911-6_6
![]() |
[32] |
A. B. Sabin, Research on dengue during World War II, Am. J. Trop. Med. Hyg., 1 (1952), 30–50. https://doi.org/10.4269/ajtmh.1952.1.30 doi: 10.4269/ajtmh.1952.1.30
![]() |
[33] |
C. Probst, T. M. Vu, J. M. Epstein, A. E. Nielsen, C. Buckley, A. Brennan, et al., The normative underpinnings of population-level alcohol use: An individual-level simulation model, Health Educ. Behav., 47 (2020), 224–234. https://doi.org/10.1177/1090198119880545 doi: 10.1177/1090198119880545
![]() |
[34] | J. M. Epstein, Agent_Zero, Princeton University Press, 2014. |
[35] | T. M. Vu, C. Probst, J. M. Epstein, A. Brennan, M. Strong, R. C. Purshouse, Toward inverse generative social science using multi-objective genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference, ACM, Prague Czech Republic, (2019), 1356–1363. |
[36] |
L. Cattarino, I. Rodriguez-Barraquer, N. Imai, D. A. T. Cummings, N. M. Ferguson, Mapping global variation in dengue transmission intensity, Sci. Transl. Med., 12 (2020), eaax4144. https://doi.org/10.1126/scitranslmed.aax4144 doi: 10.1126/scitranslmed.aax4144
![]() |
[37] |
Y. Liu, K. Lillepold, J. C. Semenza, Y. Tozan, M. B. M. Quam, J. Rocklöv, Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones, Environ. Res., 182 (2020), 109114. https://doi.org/10.1016/j.envres.2020.109114 doi: 10.1016/j.envres.2020.109114
![]() |
[38] |
A. C. Morrison, R. C. Reiner, W. H. Elson, H. Astete, C. Guevara, C. del Aguila, et al., Efficacy of a spatial repellent for control of Aedes-borne virus transmission: A cluster-randomized trial in Iquitos, Peru, Proc. Natl. Acad. Sci., 119 (2022), e2118283119. https://doi.org/10.1073/pnas.2118283119 doi: 10.1073/pnas.2118283119
![]() |
[39] |
H. J. Wearing, P. Rohani, Ecological and immunological determinants of dengue epidemics, Proc. Natl. Acad. Sci., 103 (2006), 11802–11807. https://doi.org/10.1073/pnas.0602960103 doi: 10.1073/pnas.0602960103
![]() |
[40] |
N. G. Reich, S. Shrestha, A. A. King, P. Rohani, J. Lessler, S. Kalayanarooj, et al., Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity, J. R. Soc. Interface, 10 (2013), 20130414. https://doi.org/10.1098/rsif.2013.0414 doi: 10.1098/rsif.2013.0414
![]() |
[41] |
C. B. F. Vogels, C. Rückert, S. M. Cavany, T. A. Perkins, G. D. Ebel, N. D. Grubaugh, Arbovirus coinfection and co-transmission: A neglected public health concern?, PLoS Biol., 17 (2019), e3000130. https://doi.org/10.1371/journal.pbio.3000130 doi: 10.1371/journal.pbio.3000130
![]() |
[42] |
M. Chan, M. A. Johansson, The incubation periods of dengue viruses, PLoS One, 7 (2012), e50972. https://doi.org/10.1371/journal.pone.0050972 doi: 10.1371/journal.pone.0050972
![]() |
[43] |
Q. A. Ten Bosch, J. M. Wagman, F. Castro-Llanos, N. L. Achee, J. P. Grieco, T. A. Perkins, Community-level impacts of spatial repellents for control of diseases vectored by Aedes aegypti mosquitoes, PLoS Comput. Biol., 16 (2020), e1008190. https://doi.org/10.1371/journal.pcbi.1008190 doi: 10.1371/journal.pcbi.1008190
![]() |
[44] |
L. C. Harrington, J. P. Buonaccorsi, J. D. Edman, A. Costero, P. Kittayapong, G. G. Clark, et al., Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand, J. Med. Entomol., 38 (2001), 537–547. https://doi.org/10.1603/0022-2585-38.4.537 doi: 10.1603/0022-2585-38.4.537
![]() |
[45] |
T. W. Scott, P. H. Amerasinghe, A. C. Morrison, L. H. Lorenz, G. G. Clark, D. Strickman, et al., Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency, J. Med. Entomol., 37 (2000), 89–101. https://doi.org/10.1603/0022-2585-37.1.89 doi: 10.1603/0022-2585-37.1.89
![]() |
[46] |
D. L. Smith, K. E. Battle, S. I. Hay, C. M. Barker, T. W. Scott, F. E. McKenzie, Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens, PLoS Pathogens, 8 (2012), e1002588. https://doi.org/10.1371/journal.ppat.1002588 doi: 10.1371/journal.ppat.1002588
![]() |
[47] | R Core Team, R: A Language and Environment for Statistical Computing, 2021. Available from: https://www.R-project.org/. |
[48] |
K. Soetaert, T. Petzoldt, R. W. Setzer, Solving differential equations in R: package deSolve, J. Stat. Software, 33 (2010), 1–25. https://doi.org/10.18637/jss.v033.i09 doi: 10.18637/jss.v033.i09
![]() |
[49] |
A. Puy, S. Lo Piano, A. Saltelli, S. A. Levin, Sensobol: An R package to compute variance-based sensitivity indices, J. Stat. Software, 102 (2022), 1–37. https://doi.org/10.18637/jss.v102.i05 doi: 10.18637/jss.v102.i05
![]() |
[50] | R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, New York, 1992. |
[51] | M. Martcheva, Introduction to epidemic modeling, in An Introduction to Mathematical Epidemiology (ed. M. Martcheva), Springer US, Boston, MA, (2015), 9–31. https://doi.org/10.1007/978-1-4899-7612-3_2 |
[52] | F. Brauer, C. Castillo-Chavez, Z. Feng, Endemic disease models, Math. Models Epidemiol., 69 (2019), 63–116. https://doi.org/10.2478/acph-2019-0006 |
[53] |
R. C. Reiner, S. T. Stoddard, B. M. Forshey, A. A. King, A. M. Ellis, A. L. Lloyd, et al., Time-varying, serotype-specific force of infection of dengue virus, Proc. Natl. Acad. Sci., 111 (2014), E2694–E2702. https://doi.org/10.1073/pnas.13149331 doi: 10.1073/pnas.13149331
![]() |
[54] | M. Ryan, E. Brindal, M. Roberts, R. I. Hickson, A behaviour and disease transmission model: incorporating the Health Belief Model for human behaviour into a simple transmission model, J. R. Soc. Interface, 21 (215), 20240038. https://doi.org/10.1098/rsif.2024.0038 |
[55] |
J. Cascante-Vega, S. Torres-Florez, J. Cordovez, M. Santos-Vega, How disease risk awareness modulates transmission: coupling infectious disease models with behavioural dynamics, R. Soc. Open Sci., 9 (2022), 210803. https://doi.org/10.1098/rsos.210803 doi: 10.1098/rsos.210803
![]() |
[56] |
V. Vanlerberghe, M. E. Toledo, M. Rodriguez, D. Gomez, A. Baly, J. R. Benitez, et al., Community involvement in dengue vector control: cluster randomised trial, BMJ, 338 (2009), b1959–b1959. https://doi.org/10.1136/bmj.b1959 doi: 10.1136/bmj.b1959
![]() |
[57] |
J. Quintero, N. R. Pulido, J. Logan, T. Ant, J. Bruce, G. Carrasquilla, Effectiveness of an intervention for Aedes aegypti control scaled-up under an inter-sectoral approach in a Colombian city hyper-endemic for dengue virus, PLoS One, 15 (2020), e0230486. https://doi.org/10.1371/journal.pone.0230486 doi: 10.1371/journal.pone.0230486
![]() |
[58] |
J. Raude, K. MCColl, C. Flamand, T. Apostolidis, Understanding health behaviour changes in response to outbreaks: Findings from a longitudinal study of a large epidemic of mosquito-borne disease, Soc. Sci. Med., 230 (2019), 184–193. https://doi.org/10.1016/j.socscimed.2019.04.009 doi: 10.1016/j.socscimed.2019.04.009
![]() |
[59] |
L. S. Lloyd, P. Winch, J. Ortega-Canto, C. Kendall, The design of a community-based health education intervention for the control of Aedes aegypti, Am. J. Trop. Med. Hyg., 50 (1994), 401–411. https://doi.org/10.4269/ajtmh.1994.50.401 doi: 10.4269/ajtmh.1994.50.401
![]() |
[60] |
A. Caprara, J. W. D. O. Lima, A. C. R. Peixoto, C. M. V. Motta, J. M. S. Nobre, J. Sommerfeld, et al., Entomological impact and social participation in dengue control: a cluster randomized trial in Fortaleza, Brazil, Trans. R. Soc. Trop. Med. Hyg., 109 (2015), 99–105. https://doi.org/10.1093/trstmh/tru187 doi: 10.1093/trstmh/tru187
![]() |
[61] |
A. M. Buttenheim, V. Paz-Soldan, C. Barbu, C. Skovira, J. Q. Calderón, L. M. M. Riveros, et al., Is participation contagious? Evidence from a household vector control campaign in urban Peru, J Epidemiol. Community Health, 68 (2014), 103–109. https://doi.org/10.1136/jech-2013-202661 doi: 10.1136/jech-2013-202661
![]() |
[62] |
J. Bedson, L. A. Skrip, D. Pedi, S. Abramowitz, S. Carter, M. F. Jalloh, et al., A review and agenda for integrated disease models including social and behavioural factors, Nat. Hum. Behav., 5 (2021), 834–846. https://doi.org/10.1038/s41562-021-01136-2 doi: 10.1038/s41562-021-01136-2
![]() |
[63] |
K. Magori, M. Legros, M. E. Puente, D. A. Focks, T. W. Scott, A. L. Lloyd, et al., Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies, PLoS Negl. Trop. Dis., 3 (2009), e508. https://doi.org/10.1371/journal.pntd.0000508 doi: 10.1371/journal.pntd.0000508
![]() |
[64] |
E. L. Davis, T. D. Hollingsworth, M. J. Keeling, An analytically tractable, age-structured model of the impact of vector control on mosquito-transmitted infections, PLoS Comput. Biol., 20 (2024), e1011440. https://doi.org/10.1371/journal.pcbi.1011440 doi: 10.1371/journal.pcbi.1011440
![]() |
[65] |
M. Predescu, G. Sirbu, R. Levins, T. Awerbuch-Friedlander, On the dynamics of a deterministic and stochastic model for mosquito control, Appl. Math. Lett., 20 (2007), 919–925. https://doi.org/10.1016/j.aml.2006.12.001 doi: 10.1016/j.aml.2006.12.001
![]() |
[66] |
J. Elsinga, H. T. Van Der Veen, I. Gerstenbluth, J. G. M. Burgerhof, A. Dijkstra, M. P. Grobusch, et al., Community participation in mosquito breeding site control: an interdisciplinary mixed methods study in Curaçao, Parasites Vectors, 10 (2017), 434. https://doi.org/10.1186/s13071-017-2371-6 doi: 10.1186/s13071-017-2371-6
![]() |
[67] |
A. N. Rakhmani, Y. Limpanont, J. Kaewkungwal, K. Okanurak, Factors associated with dengue prevention behaviour in Lowokwaru, Malang, Indonesia: a cross-sectional study, BMC Public Health, 18 (2018), 619. https://doi.org/10.1186/s12889-018-5553-z doi: 10.1186/s12889-018-5553-z
![]() |
[68] |
A. J. Mackay, M. Amador, A. Diaz, J. Smith, R. Barrera, Dynamics of Aedes aegypti and Culex quinquefasciatus in septic tanks, J. Am. Mosq. Control Assoc., 25 (2009), 409–416. https://doi.org/10.2987/09-5888.1 doi: 10.2987/09-5888.1
![]() |
1. | Jiawei Xu, Yincai Tang, Bayesian Framework for Multi-Wave COVID-19 Epidemic Analysis Using Empirical Vaccination Data, 2021, 10, 2227-7390, 21, 10.3390/math10010021 | |
2. | Ke-Lu Li, Jun-Yuan Yang, Xue-Zhi Li, Analysis of an environmental epidemic model based on voluntary vaccination policy, 2022, 1025-5842, 1, 10.1080/10255842.2022.2079080 | |
3. | Yuan Liu, Bin Wu, Coevolution of vaccination behavior and perceived vaccination risk can lead to a stag-hunt-like game, 2022, 106, 2470-0045, 10.1103/PhysRevE.106.034308 | |
4. | Cássio de Lima Quiroga, Pedro Henrique Triguis Schimit, A multi-city epidemiological model based on cellular automata and complex networks for the COVID-19, 2023, 42, 2238-3603, 10.1007/s40314-023-02401-y | |
5. | Maoxing Liu, Yuhang Li, Dynamics analysis of an SVEIR epidemic model in a patchy environment, 2023, 20, 1551-0018, 16962, 10.3934/mbe.2023756 | |
6. | Tingting Zheng, Yantao Luo, Linfei Nie, Zhidong Teng, Analysis of transmission dynamics of dengue fever on a partially degenerated weighted network, 2025, 142, 10075704, 108495, 10.1016/j.cnsns.2024.108495 | |
7. | Yingzi He, Linhe Zhu, Theoretical analysis and practical application of multi-patch infectious disease model, 2025, 198, 09600779, 116519, 10.1016/j.chaos.2025.116519 |