Research article Special Issues

Optimal therapy schedule of chimeric antigen receptor (CAR) T cell immunotherapy

  • Received: 26 January 2025 Revised: 22 April 2025 Accepted: 13 May 2025 Published: 21 May 2025
  • Chimeric antigen receptor (CAR) T-cell therapy is a personalized immunotherapy approach in which a patient's T cells are genetically engineered to express synthetic receptors that specifically recognize and target tumor-associated antigens. This approach has demonstrated remarkable success in treating B-cell malignancies by directing CAR-T cells against the CD19 protein. However, treatment efficacy is influenced by the composition and distribution of CAR-T cell subsets administered to the patient. To investigate the impact of different CAR-T cell subtypes and infusion strategies, we developed a mathematical model that captures the dynamic interactions between tumor cells and CAR-T cells within the tumor immune microenvironment. Through computational simulations, we explored how varying the dosage and subtype proportions of infused CAR-T cells affects tumor dynamics and therapeutic outcomes. Our findings highlight the critical role of CAR-T cell subset composition in optimizing treatment efficacy, underscoring the necessity of precise dosing control and tailored infused strategies to maximize therapeutic success.

    Citation: Ruohan Li, Jinzhi Lei. Optimal therapy schedule of chimeric antigen receptor (CAR) T cell immunotherapy[J]. Mathematical Biosciences and Engineering, 2025, 22(7): 1653-1679. doi: 10.3934/mbe.2025061

    Related Papers:

    [1] Mapundi K. Banda, Michael Herty, Axel Klar . Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41
    [2] Michael Herty . Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81
    [3] Michael Herty, Veronika Sachers . Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2(4): 733-750. doi: 10.3934/nhm.2007.2.733
    [4] Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering . Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295
    [5] Mapundi K. Banda, Michael Herty, Axel Klar . Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295
    [6] Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar . Optimal control for continuous supply network models. Networks and Heterogeneous Media, 2006, 1(4): 675-688. doi: 10.3934/nhm.2006.1.675
    [7] Fabian Rüffler, Volker Mehrmann, Falk M. Hante . Optimal model switching for gas flow in pipe networks. Networks and Heterogeneous Media, 2018, 13(4): 641-661. doi: 10.3934/nhm.2018029
    [8] Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267
    [9] Simone Göttlich, Oliver Kolb, Sebastian Kühn . Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Networks and Heterogeneous Media, 2014, 9(2): 315-334. doi: 10.3934/nhm.2014.9.315
    [10] Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65
  • Chimeric antigen receptor (CAR) T-cell therapy is a personalized immunotherapy approach in which a patient's T cells are genetically engineered to express synthetic receptors that specifically recognize and target tumor-associated antigens. This approach has demonstrated remarkable success in treating B-cell malignancies by directing CAR-T cells against the CD19 protein. However, treatment efficacy is influenced by the composition and distribution of CAR-T cell subsets administered to the patient. To investigate the impact of different CAR-T cell subtypes and infusion strategies, we developed a mathematical model that captures the dynamic interactions between tumor cells and CAR-T cells within the tumor immune microenvironment. Through computational simulations, we explored how varying the dosage and subtype proportions of infused CAR-T cells affects tumor dynamics and therapeutic outcomes. Our findings highlight the critical role of CAR-T cell subset composition in optimizing treatment efficacy, underscoring the necessity of precise dosing control and tailored infused strategies to maximize therapeutic success.





    [1] P. Abrisqueta, New insights into first-line therapy in diffuse large B-cell lymphoma: Are we improving outcomes, J. Clin. Med., 13 (2024), 1929. https://doi.org/10.3390/jcm13071929 doi: 10.3390/jcm13071929
    [2] J. A. Fraietta, C. L. Nobles, M. A. Sammons, S. Lundh, S. A. Carty, T. J. Reich, et al., Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells, Nature, 558 (2018), 307–312. https://doi.org/10.1038/s41586-018-0178-z doi: 10.1038/s41586-018-0178-z
    [3] R. A. Gardner, O. Finney, C. Annesley, H. Brakke, C. Summers, K. Leger, et al., Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults, Blood, 129 (2017), 3322–3331. https://doi.org/10.1182/blood-2017-02-769208 doi: 10.1182/blood-2017-02-769208
    [4] C. H. June, R. S. O'Coonor, O. U. Kawalekar, S. Ghassemi, M. C. Milone, CAR T cell immunotherapy for human cancer, Science, 359 (2018), 1361–1365. https://doi.org/10.1126/science.aar6711 doi: 10.1126/science.aar6711
    [5] G. Gross, T. Waks, Z. Eshhar, Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity, Proc. Natl. Acad. Sci. U.S.A., 86 (1989), 10024–10028. https://doi.org/10.1073/pnas.86.24.10024 doi: 10.1073/pnas.86.24.10024
    [6] S. S. Neelapu, F. L. Locke, N. L. Bartlett, L. J. Lekakis, D. B. Miklos, et al., Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma, N. Engl. J. Med., 377 (2017), 2531–2544. https://doi.org/10.1056/NEJMoa1707447 doi: 10.1056/NEJMoa1707447
    [7] S. J. Schuster, M. R. Bishop, C. S. Tam, E. K. Waller, P. Borchmann, J. P. McGuirk, et al., Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma, N. Engl. J. Med., 380 (2017), 45–56. https://doi.org/10.1056/NEJMoa1804980 doi: 10.1056/NEJMoa1804980
    [8] P. Dreger, P. Corradini, J. G. Gribben, B. Glass, M. Jerkeman, M. J. Kersten, et al., CD19-directed CAR T cells as first salvage therapy for large B-cell lymphoma: towards a rational approach, Lancet Haematol., 10 (2023), e1006–e1015. https://doi.org/10.1016/S2352-3026(23)00307-1 doi: 10.1016/S2352-3026(23)00307-1
    [9] G. Gross, Z. Eshhar, Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T cell therapy, Annu. Rev. Pharmacol. Toxicol., 56 (2016), 59–83. https://doi.org/10.1146/annurev-pharmtox-010814-124844 doi: 10.1146/annurev-pharmtox-010814-124844
    [10] M. Hudecek, M. Lupo-Stanghellini, P. L. Kosasih, D. Sommermeyer, M. C. Jensen, C. Rader, et al., Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells, Clin. Cancer Res., 19 (2013), 3153–3164. https://doi.org/10.1158/1078-0432.CCR-13-0330 doi: 10.1158/1078-0432.CCR-13-0330
    [11] C. Zhang, C. Shao, X. Jiao, Y. Bai, M. Li, H. Shi, et al., Individual cell-based modeling of tumor cell plasticity-induced immune escape after CAR-T therapy, Comput. Syst. Oncol., 1 (2021), e21029. https://doi.org/10.1002/cso2.1029 doi: 10.1002/cso2.1029
    [12] E. R. Swanson, E. Köse, E. A. Zollinger, S. L. Elliott, Mathematical modeling of tumor and cancer stem cells treated with CAR-T therapy and inhibition of TGF-β, Bull. Math. Biol., 84 (2022), 58. https://doi.org/10.1007/s11538-022-01015-5 doi: 10.1007/s11538-022-01015-5
    [13] Y. Bulliard, B. S. Andersson, M. A. Baysal, J. Damiano, A. M. Tsimberidou, Reprogramming T cell differentiation and exhaustion in CAR-T cell therapy, J. Hematol. Oncol., 16 (2023), 108. https://doi.org/10.1186/s13045-023-01504-7 doi: 10.1186/s13045-023-01504-7
    [14] P. Sahoo, X. Yang, D. Abler, D. Maestrini, V. Adhikarla, D. Frankhouser, et al., Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data, J. R. Soc. Interface, 17 (2020), 20190734. https://doi.org/10.1098/rsif.2019.0734 doi: 10.1098/rsif.2019.0734
    [15] D. C. Kirouac, C. Zmurchok, D. Morris, Making drugs from T cells: The quantitative pharmacology of engineered T cell therapeutics, NPJ Syst. Biol. Appl., 10 (2024), 31. https://doi.org/10.1038/s41540-024-00355-3 doi: 10.1038/s41540-024-00355-3
    [16] L. R. C. Barros, E. A. Paixão, A. M. P. Valli, G. T. Naozuka, A. C. Fassoni, R. C. Almeida, CARTmath-A mathematical model of CAR-T immunotherapy in preclinical studies of hematological cancers, Cancers (Basel), 13 (2021), 2941. https://doi.org/10.3390/cancers13122941 doi: 10.3390/cancers13122941
    [17] E. A. Paixão, L. R. C. Barros, A. C. Fassoni, R. C. Almeida, Modeling patient-specific CAR-T Cell dynamics: multiphasic kinetics via phenotypic differentiation, Cancers (Basel), 14 (2022), 5576. https://doi.org/10.3390/cancers14225576 doi: 10.3390/cancers14225576
    [18] C. J. Turtle, L. Hanafi, C. Berger, T. A. Gooley, S. Cherian, M. Hudecek, et al., CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients, J. Clin. Invest., 126 (2016), 2123–2138. https://doi.org/10.1172/JCI85309 doi: 10.1172/JCI85309
    [19] M. Ruella, M. Klichinsky, S. S. Kenderian, O. Shestova, A. Ziober, D. O. Kraft, et al., Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma using chimeric antigen receptor T cells, Cancer Discov., 7 (2017), 1154–1167. https://doi.org/10.1158/2159-8290.CD-16-0850 doi: 10.1158/2159-8290.CD-16-0850
    [20] F. Crauste, J. Mafille, L. Boucinha, S. Djebali, O. Gandrillon, J. Marvel, et al., Identification of nascent memory CD8 T cells and modeling of their ontogeny, Cell Syst., 4 (2017), 306–317. https://doi.org/10.1016/j.cels.2017.01.014 doi: 10.1016/j.cels.2017.01.014
    [21] J. N. Brudno, J. N. Kochenderfer, Chimeric antigen receptor T-cell therapies for lymphoma, Nat. Rev. Clin. Oncol., 15 (2018), 31–46. https://doi.org/10.1038/nrclinonc.2017.128 doi: 10.1038/nrclinonc.2017.128
    [22] D. Sommermeyer, T. Hill, S. M. Shamah, A. I. Salter, Y. Chen, K. M. Mohler, et al., Fully human CD19-specific chimeric antigen receptors for T-cell therapy, Leukemia, 31 (2017), 2191–2199. https://doi.org/10.1038/leu.2017.57 doi: 10.1038/leu.2017.57
    [23] L. Adam, N. N. Shah, Chimeric antigen receptor modified T cell therapy in B cell non‐Hodgkin lymphomas, Am. J. Hematol., 94 (2019), S18–S23. https://doi.org/10.1002/ajh.25403 doi: 10.1002/ajh.25403
    [24] X. Zhang, L. Zhu, H. Zhang, S. Chen, Y. Xiao, CAR-T cell therapy in hematological malignancies: current opportunities and challenges, Front. Immunol., 13 (2022), 927153. https://doi.org/10.3389/fimmu.2022.927153 doi: 10.3389/fimmu.2022.927153
    [25] J. Zhu, W. E. Paul, CD4 T cells: fates, functions, and faults, Blood, 112 (2008), 1557–1569. https://doi.org/10.1182/blood-2008-05-078154 doi: 10.1182/blood-2008-05-078154
    [26] S. M. Kaech, W. Cui, Transcriptional control of effector and memory CD8+ T cell differentiation, Nat. Rev. Immunol., 12 (2012), 749–761. https://doi.org/10.1038/nri3307 doi: 10.1038/nri3307
    [27] S. Kang, T. Kishimoto, Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms, Exp. Mol. Med., 53 (2021), 1116–1123. https://doi.org/10.1038/s12276-021-00649-0 doi: 10.1038/s12276-021-00649-0
    [28] A. T. Gacerez, C. L. Sentman, T-bet promotes potent antitumor activity of CD4+ CAR T cells, Cancer Gene Ther., 25 (2018), 117–128. https://doi.org/10.1038/s41417-018-0012-7 doi: 10.1038/s41417-018-0012-7
    [29] Z. Good, J. Y. Spiegel, B. Sahaf, M. B. Malipatlolla, Z. J. Ehlinger, S. Kurra, et al., Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy, Nat. Med., 28 (2022), 1860–1871. https://doi.org/10.1038/s41591-022-01960-7 doi: 10.1038/s41591-022-01960-7
    [30] S. Faude, J. Wei, K. Muralidharan, X. Xu, G. Mertheim, M. Paessler, et al., Absolute lymphocyte count proliferation kinetics after CAR T-cell infusion impact response and relapse, Blood Adv., 5 (2021), 2128–2136. https://doi.org/10.1182/bloodadvances.2020004038 doi: 10.1182/bloodadvances.2020004038
    [31] S. N. Mueller, L. K. Mackay, Tissue-resident memory T cells: local specialists in immune defence, Nat. Rev. Immunol., 16 (2015), 79089. https://doi.org/10.1038/nri.2015.3 doi: 10.1038/nri.2015.3
    [32] B. Youngblood, J. S. Hale, H. T. Kissick, E. Ahn, X. Xu, A. Wieland, et al., Effector CD8 T cells dedifferentiate into long-lived memory cells, Nature, 552 (2017), 404–409. https://doi.org/10.1038/nature25144 doi: 10.1038/nature25144
    [33] R. S. Akondy, M. Fitch, S. Edupuganti, S. Yang, H. T. Kissick, K. W. Li, et al., Origin and differentiation of human memory CD8 T cells after vaccination, Nature, 552 (2017), 362–367. https://doi.org/10.1038/nature24633 doi: 10.1038/nature24633
    [34] C. Raffin, L. T. Vo, J. A. Bluestone, Treg cell-based therapies: challenges and perspectives, Nat. Rev. Immunol., 20 (2020), 158–172. https://doi.org/10.1038/s41577-019-0232-6 doi: 10.1038/s41577-019-0232-6
    [35] S. Z. Josefowicz, L. F. Lu, A. Y. Rudensky, Regulatory T cells: mechanisms of differentiation and function, Annu. Rev. Immunol., 30 (2012), 531–564. https://doi.org/10.1146/annurev.immunol.25.022106.141623 doi: 10.1146/annurev.immunol.25.022106.141623
    [36] N. J. Haradhvala, M. B. Leick, K. Maurer, S. H. Gohil, R. C. Larson, N. Yao, et al., Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma, Nat. Med., 28 (2022), 1848–1859. https://doi.org/10.1038/s41591-022-01959-0 doi: 10.1038/s41591-022-01959-0
    [37] X. Li, J. Henderson, M. J. Gordon, I. Sheikh, L. J. Nastoupil, J. Westin, et al., A single-cell atlas of CD19 chimeric antigen receptor T cells, Cancer, 41 (2023), 1835–1837. https://doi.org/10.1016/j.ccell.2023.08.015 doi: 10.1016/j.ccell.2023.08.015
    [38] J. Lei, A general mathematical framework for understanding the behavior of heterogeneous stem cell regeneration, J. Theor. Biol., 492 (2020), 110196. https://doi.org/10.1016/j.jtbi.2020.110196 doi: 10.1016/j.jtbi.2020.110196
    [39] S. Bernard, J. Bélair, M. C. Mackey, Oscillations in cyclical neutropenia: new evidence based on mathematical modeling, J. Theor. Biol., 223 (2003), 283–298. https://doi.org/10.1016/S0022-5193(03)00090-0 doi: 10.1016/S0022-5193(03)00090-0
    [40] J. Li, J. Wu, J. Zhang, L. Tang, H. Mei, Y. Hu, et al., A multicompartment mathematical model based on host immunity for dissecting COVID-19 heterogeneity, Heliyon, 8 (2022), e09488. https://doi.org/10.1016/j.heliyon.2022.e09488 doi: 10.1016/j.heliyon.2022.e09488
    [41] X. Lai, A. Friedman, Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model, BMC Syst. Biol., 11 (2017), 70. https://doi.org/10.1186/s12918-017-0446-9 doi: 10.1186/s12918-017-0446-9
    [42] M. Robertson-Tessi, A. El-Kareh, A. Goriely, A mathematical model of tumor-immune interactions, J. Theor. Biol., 2012 (2012), 56–73. https://doi.org/10.1016/j.jtbi.2011.10.027 doi: 10.1016/j.jtbi.2011.10.027
    [43] W. Lo, R. I. Arsenescu, A. Friedman, Mathematical model of the roles of T cells in inflammatory bowel disease, Bull. Math. Biol., 75 (2013), 1417–1433. https://doi.org/10.1007/s11538-013-9853-2 doi: 10.1007/s11538-013-9853-2
    [44] K. E. Johnson, Y. Makanji, P. Temple-Smith, E. K. Kelly, P. A. Barton, S. L. Al-Musawi, et al., Biological activity and in vivo half-life of pro-activin A in male rats, Mol. Cell Endocrinol., 422 (2016), 84–92. https://doi.org/10.1016/j.mce.2015.12.007 doi: 10.1016/j.mce.2015.12.007
    [45] K. A. Foon, S. A. Sherwin, P. G. Abrams, H. C. Stevenson, P. Holmes, A. E. Maluish, et al., A phase I trial of recombinant gamma interferon in patients with cancer, Cancer Immunol. Immunother., 20 (1985), 193–197. https://doi.org/10.1007/BF00205575 doi: 10.1007/BF00205575
    [46] C. Li, Z. Ren, G. Yang, J. Lei, Mathematical modeling of tumor immune interactions: the role of anti-FGFR and anti-PD-1 in the combination therapy, Bull. Math. Biol., 86 (2024), 116. https://doi.org/10.1007/s11538-024-01329-6 doi: 10.1007/s11538-024-01329-6
    [47] H. Wang, L. Tang, Y. Kong, W. Liu, X. Zhu, Y. You, Strategies for reducing toxicity and enhancing efficacy of chimeric antigen receptor T cell therapy in hematological malignancies, Int. J. Mol. Sci., 24 (2023), 9115. https://doi.org/10.3390/ijms24119115 doi: 10.3390/ijms24119115
    [48] J. Huang, X. Huang, J. Huang, CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies, Front. Immunol., 13 (2022), 1019115. https://doi.org/10.3389/fimmu.2022.1019115 doi: 10.3389/fimmu.2022.1019115
  • This article has been cited by:

    1. Dustin Carrión-Ojeda, Rigoberto Fonseca-Delgado, Israel Pineda, Analysis of factors that influence the performance of biometric systems based on EEG signals, 2021, 165, 09574174, 113967, 10.1016/j.eswa.2020.113967
    2. Leila Farsi, Siuly Siuly, Enamul Kabir, Hua Wang, Classification of Alcoholic EEG Signals Using a Deep Learning Method, 2021, 21, 1530-437X, 3552, 10.1109/JSEN.2020.3026830
    3. Sumair Aziz, Muhammad Umar Khan, Zainoor Ahmad Choudhry, Afeefa Aymin, Adil Usman, 2019, ECG-based Biometric Authentication using Empirical Mode Decomposition and Support Vector Machines, 978-1-7281-2530-5, 0906, 10.1109/IEMCON.2019.8936174
    4. Muhammad Umar Khan, Sumair Aziz, Sara Ibraheem, Aqsa Butt, Hira Shahid, 2019, Characterization of Term and Preterm Deliveries using Electrohysterograms Signatures, 978-1-7281-2530-5, 0899, 10.1109/IEMCON.2019.8936292
    5. Dustin Carrion-Ojeda, Hector Mejia-Vallejo, Rigoberto Fonseca-Delgado, Pilar Gomez-Gil, Manuel Ramirez-Cortes, 2019, A method for studying how much time of EEG recording is needed to have a good user identification, 978-1-7281-5666-8, 1, 10.1109/LA-CCI47412.2019.9037054
    6. Andrei V. Kelarev, Xun Yi, Hui Cui, Leanne Rylands, Herbert F. Jelinek, A survey of state-of-the-art methods for securing medical databases, 2018, 5, 2375-1576, 1, 10.3934/medsci.2018.1.1
    7. Lu-di Wang, Wei Zhou, Ying Xing, Na Liu, Mahmood Movahedipour, Xiao-guang Zhou, A novel method based on convolutional neural networks for deriving standard 12-lead ECG from serial 3-lead ECG, 2019, 20, 2095-9184, 405, 10.1631/FITEE.1700413
    8. Qingxue Zhang, Dian Zhou, Xuan Zeng, 2017, Hear the heart: Daily cardiac health monitoring using Ear-ECG and machine learning, 978-1-5386-1104-3, 448, 10.1109/UEMCON.2017.8249110
    9. Yaroslav Voznyi, Mariia Nazarkevych, Volodymyr Hrytsyk, Nataliia Lotoshynska, Bohdana Havrysh, DESIGN OF BIOMETRIC PROTECTION AUTHENTIFICATION SYSTEM BASED ON K-AVERAGE METHOD, 2021, 4, 2663-4023, 85, 10.28925/2663-4023.2021.12.8595
    10. Mariya Nazarkevych, Yaroslav Voznyi, Volodymyr Hrytsyk, Ivanna Klyujnyk, Bohdana Havrysh, Nataliia Lotoshynska, 2021, Identification of Biometric Images by Machine Learning, 978-1-6654-4296-1, 95, 10.1109/ELIT53502.2021.9501064
    11. Ömer Kasim, Mustafa Tosun, Biometric Authentication from Photic Stimulated EEG Records, 2021, 35, 0883-9514, 1407, 10.1080/08839514.2021.1981660
    12. Fatma Mallouli, Nesrine Khelifi, Aya Hellal, Imen Ferjani, Nada Chaabane, Mejda Dakhlaoui, Houda Chamakhi, 2023, Biometric Authentification Comparison: Toward Secure Human Recognition, 979-8-3503-6151-3, 1264, 10.1109/CSCI62032.2023.00206
    13. Ilija Tanasković, Ljiljana B. Lazarević, Goran Knežević, Nikola Milosavljević, Olga Dubljević, Bojana Bjegojević, Nadica Miljković, CardioPRINT: Biometric identification based on the individual characteristics derived from the cardiogram, 2025, 265, 09574174, 126018, 10.1016/j.eswa.2024.126018
    14. Vinodhini Chinnayan Meiyalagan, Sabeenian Royappan Savarimuthu, 2025, 3279, 0094-243X, 020170, 10.1063/5.0263047
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(473) PDF downloads(51) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog