Citation: Gunhild A. Reigstad. Numerical network models and entropy principles for isothermal junction flow[J]. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65
[1] | Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65 |
[2] | Mapundi K. Banda, Michael Herty, Axel Klar . Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41 |
[3] | Jens Lang, Pascal Mindt . Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190. doi: 10.3934/nhm.2018008 |
[4] | Michael Herty . Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81 |
[5] | Mapundi K. Banda, Michael Herty, Axel Klar . Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295 |
[6] | Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering . Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295 |
[7] | Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016 |
[8] | Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005 |
[9] | Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57 |
[10] | Ye Sun, Daniel B. Work . Error bounds for Kalman filters on traffic networks. Networks and Heterogeneous Media, 2018, 13(2): 261-295. doi: 10.3934/nhm.2018012 |
[1] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56. doi: 10.3934/nhm.2006.1.41
![]() |
[2] |
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314. doi: 10.3934/nhm.2006.1.295
![]() |
[3] |
M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Toward a mathematical analysis for drift-flux multiphase flow models in networks, SIAM J. Sci. Comput., 31 (2010), 4633-4653. doi: 10.1137/080722138
![]() |
[4] | M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Coupling drift-flux models with unequal sonic speeds, Math. Comput. Appl., 15 (2010), 574-584. |
[5] |
J. Brouwer, I. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model. Simul., 9 (2011), 601-623. doi: 10.1137/100813580
![]() |
[6] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683
![]() |
[7] |
R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511. doi: 10.3934/nhm.2006.1.495
![]() |
[8] |
R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471. doi: 10.1137/060665841
![]() |
[9] |
R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622. doi: 10.1137/070690298
![]() |
[10] |
R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbol. Differ. Eq., 5 (2008), 547-568. doi: 10.1142/S0219891608001593
![]() |
[11] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edition, Springer-Verlag, 2010. doi: 10.1007/978-3-642-04048-1
![]() |
[12] |
M. Garavello, A review of conservation laws on networks, Netw. Heterog. Media, 5 (2010), 565-581. doi: 10.3934/nhm.2010.5.565
![]() |
[13] |
M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612. doi: 10.1137/070688535
![]() |
[14] |
M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, Netw. Heterog. Media, 56 (2008), 485-506. doi: 10.1002/fld.1531
![]() |
[15] |
H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. doi: 10.1137/S0036141093243289
![]() |
[16] |
S. W. Hong and C. Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, Int. J. Numer. Meth. Fluids, 65 (2011), 707-742. doi: 10.1002/fld.2212
![]() |
[17] |
T. Kiuchi, An implicit method for transient gas flows in pipe networks, Int. J. Heat and Fluid Flow, 15 (1994), 378-383. doi: 10.1016/0142-727X(94)90051-5
![]() |
[18] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, 6th edition, Cambridge University Press, 2007. doi: 10.1017/CBO9780511791253
![]() |
[19] |
A. Osiadacz, Simulation of transient gas flows in networks, Int. J. Numer. Meth. Fluids, 4 (1984), 13-24. doi: 10.1002/fld.1650040103
![]() |
[20] |
R. J. Pearson, M. D. Bassett, P. Batten and D. E. Winterbone, Two-dimensional simulation of wave propagation in a three-pipe junction, J. Eng. Gas Turbines Power, 122 (2000), 549-555. doi: 10.1115/1.1290589
![]() |
[21] | J. Pérez-García, E. Sanmiguel-Rojas, J. Hernández-Grau and A. Viedma, Numerical and experimental investigations on internal compressible flow at T-type junctions, Experimental Thermal and Fluid Science, 31 (2006), 61-74. |
[22] | G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, Submitted, (2013). Preprint available from: http://www.math.ntnu.no/conservation/2013/007.html. |
[23] |
P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, 43 (1981), 357-372. doi: 10.1016/0021-9991(81)90128-5
![]() |
[24] |
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edition, Springer-Verlag, 2009. doi: 10.1007/b79761
![]() |
1. | Mouhamadou Samsidy Goudiaby, Gunilla Kreiss, Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data, 2020, 17, 0219-8916, 185, 10.1142/S021989162050006X | |
2. | Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Finite volume methods for multi-component Euler equations with source terms, 2017, 156, 00457930, 113, 10.1016/j.compfluid.2017.07.004 | |
3. | H. Egger, A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks, 2018, 40, 1064-8275, A108, 10.1137/16M1094373 | |
4. | Eike Fokken, Tillmann Mühlpfordt, Timm Faulwasser, Simone Göttlich, Oliver Kolb, 2021, Chapter 12, 978-3-030-62731-7, 263, 10.1007/978-3-030-62732-4_12 | |
5. | E. Fokken, S. Göttlich, O. Kolb, Modeling and simulation of gas networks coupled to power grids, 2019, 119, 0022-0833, 217, 10.1007/s10665-019-10026-6 | |
6. | Gunhild Allard Reigstad, Tore Flåtten, 2015, Chapter 66, 978-3-319-10704-2, 667, 10.1007/978-3-319-10705-9_66 | |
7. | Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, 2017, 344, 00219991, 187, 10.1016/j.jcp.2017.04.066 | |
8. | Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering, Stationary states in gas networks, 2015, 10, 1556-1801, 295, 10.3934/nhm.2015.10.295 | |
9. | Martin Gugat, Rüdiger Schultz, David Wintergerst, Networks of pipelines for gas with nonconstant compressibility factor: stationary states, 2018, 37, 0101-8205, 1066, 10.1007/s40314-016-0383-z | |
10. | Pascal Mindt, Jens Lang, Pia Domschke, Entropy-Preserving Coupling of Hierarchical Gas Models, 2019, 51, 0036-1410, 4754, 10.1137/19M1240034 | |
11. | Herbert Egger, Thomas Kugler, Vsevolod Shashkov, 2020, Chapter 34, 978-3-030-39646-6, 429, 10.1007/978-3-030-39647-3_34 | |
12. | Gunhild A. Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow, 2015, 75, 0036-1399, 679, 10.1137/140962759 | |
13. | Jan Van den Berghe, Bruno R.B. Dias, Yann Bartosiewicz, Miguel A. Mendez, A 1D model for the unsteady gas dynamics of ejectors, 2023, 267, 03605442, 126551, 10.1016/j.energy.2022.126551 | |
14. | Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Reprint of: Finite volume methods for multi-component Euler equations with source terms, 2018, 169, 00457930, 40, 10.1016/j.compfluid.2018.03.057 | |
15. | EIKE FOKKEN, SIMONE GÖTTLICH, MICHAEL HERTY, Efficient simulation of coupled gas and power networks under uncertain demands, 2022, 0956-7925, 1, 10.1017/S0956792522000079 | |
16. | Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, 2015, 12, 0219-8916, 37, 10.1142/S0219891615500022 | |
17. | Alexandre Morin, Gunhild A. Reigstad, Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations, 2015, 64, 18766102, 140, 10.1016/j.egypro.2015.01.017 | |
18. | Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485 | |
19. | Gaute Linga, Peder Aursand, Tore Flåtten, Two-phase nozzle flow and the subcharacteristic condition, 2015, 426, 0022247X, 917, 10.1016/j.jmaa.2015.01.065 | |
20. | Raul Borsche, Numerical schemes for networks of hyperbolic conservation laws, 2016, 108, 01689274, 157, 10.1016/j.apnum.2016.01.006 | |
21. | H. Egger, J. Giesselmann, Stability and asymptotic analysis for instationary gas transport via relative energy estimates, 2023, 0029-599X, 10.1007/s00211-023-01349-9 | |
22. | Martin Gugat, Jan Giesselmann, An Observer for Pipeline Flow with Hydrogen Blending in Gas Networks: Exponential Synchronization, 2024, 62, 0363-0129, 2273, 10.1137/23M1563840 |