Loading [Contrib]/a11y/accessibility-menu.js

Numerical network models and entropy principles for isothermal junction flow

  • Received: 01 September 2013 Revised: 01 November 2013
  • Primary: 35L65, 76N15.

  • We numerically explore network models which are derived for the isothermal Euler equations. Previously we proved the existence and uniqueness of solutions to the generalized Riemann problem at a junction under the conditions of monotone momentum related coupling constant and equal cross-sectional areas for all connected pipe sections. In the present paper we extend this proof to the case of pipe sections of different cross-sectional areas.
        We describe a numerical implementation of the network models, where the flow in each pipe section is calculated using a classical high-resolution Roe scheme. We propose a numerical treatment of the boundary conditions at the pipe-junction interface, consistent with the coupling conditions. In particular, mass is exactly conserved across the junction.
        Numerical results are provided for two different network configurations and for three different network models. Mechanical energy considerations are applied in order to evaluate the results in terms of physical soundness. Analytical predictions for junctions connecting three pipe sections are verified for both network configurations. Long term behaviour of physical and unphysical solutions are presented and compared, and the impact of having pipes with different cross-sectional area is shown.

    Citation: Gunhild A. Reigstad. Numerical network models and entropy principles for isothermal junction flow[J]. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65

    Related Papers:

    [1] Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65
    [2] Mapundi K. Banda, Michael Herty, Axel Klar . Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41
    [3] Jens Lang, Pascal Mindt . Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190. doi: 10.3934/nhm.2018008
    [4] Michael Herty . Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81
    [5] Mapundi K. Banda, Michael Herty, Axel Klar . Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295
    [6] Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering . Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295
    [7] Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016
    [8] Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005
    [9] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [10] Ye Sun, Daniel B. Work . Error bounds for Kalman filters on traffic networks. Networks and Heterogeneous Media, 2018, 13(2): 261-295. doi: 10.3934/nhm.2018012
  • We numerically explore network models which are derived for the isothermal Euler equations. Previously we proved the existence and uniqueness of solutions to the generalized Riemann problem at a junction under the conditions of monotone momentum related coupling constant and equal cross-sectional areas for all connected pipe sections. In the present paper we extend this proof to the case of pipe sections of different cross-sectional areas.
        We describe a numerical implementation of the network models, where the flow in each pipe section is calculated using a classical high-resolution Roe scheme. We propose a numerical treatment of the boundary conditions at the pipe-junction interface, consistent with the coupling conditions. In particular, mass is exactly conserved across the junction.
        Numerical results are provided for two different network configurations and for three different network models. Mechanical energy considerations are applied in order to evaluate the results in terms of physical soundness. Analytical predictions for junctions connecting three pipe sections are verified for both network configurations. Long term behaviour of physical and unphysical solutions are presented and compared, and the impact of having pipes with different cross-sectional area is shown.


    [1] M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56. doi: 10.3934/nhm.2006.1.41
    [2] M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314. doi: 10.3934/nhm.2006.1.295
    [3] M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Toward a mathematical analysis for drift-flux multiphase flow models in networks, SIAM J. Sci. Comput., 31 (2010), 4633-4653. doi: 10.1137/080722138
    [4] M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Coupling drift-flux models with unequal sonic speeds, Math. Comput. Appl., 15 (2010), 574-584.
    [5] J. Brouwer, I. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model. Simul., 9 (2011), 601-623. doi: 10.1137/100813580
    [6] G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683
    [7] R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511. doi: 10.3934/nhm.2006.1.495
    [8] R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471. doi: 10.1137/060665841
    [9] R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622. doi: 10.1137/070690298
    [10] R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbol. Differ. Eq., 5 (2008), 547-568. doi: 10.1142/S0219891608001593
    [11] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edition, Springer-Verlag, 2010. doi: 10.1007/978-3-642-04048-1
    [12] M. Garavello, A review of conservation laws on networks, Netw. Heterog. Media, 5 (2010), 565-581. doi: 10.3934/nhm.2010.5.565
    [13] M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612. doi: 10.1137/070688535
    [14] M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, Netw. Heterog. Media, 56 (2008), 485-506. doi: 10.1002/fld.1531
    [15] H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. doi: 10.1137/S0036141093243289
    [16] S. W. Hong and C. Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, Int. J. Numer. Meth. Fluids, 65 (2011), 707-742. doi: 10.1002/fld.2212
    [17] T. Kiuchi, An implicit method for transient gas flows in pipe networks, Int. J. Heat and Fluid Flow, 15 (1994), 378-383. doi: 10.1016/0142-727X(94)90051-5
    [18] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, 6th edition, Cambridge University Press, 2007. doi: 10.1017/CBO9780511791253
    [19] A. Osiadacz, Simulation of transient gas flows in networks, Int. J. Numer. Meth. Fluids, 4 (1984), 13-24. doi: 10.1002/fld.1650040103
    [20] R. J. Pearson, M. D. Bassett, P. Batten and D. E. Winterbone, Two-dimensional simulation of wave propagation in a three-pipe junction, J. Eng. Gas Turbines Power, 122 (2000), 549-555. doi: 10.1115/1.1290589
    [21] J. Pérez-García, E. Sanmiguel-Rojas, J. Hernández-Grau and A. Viedma, Numerical and experimental investigations on internal compressible flow at T-type junctions, Experimental Thermal and Fluid Science, 31 (2006), 61-74.
    [22] G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, Submitted, (2013). Preprint available from: http://www.math.ntnu.no/conservation/2013/007.html.
    [23] P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, 43 (1981), 357-372. doi: 10.1016/0021-9991(81)90128-5
    [24] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edition, Springer-Verlag, 2009. doi: 10.1007/b79761
  • This article has been cited by:

    1. Mouhamadou Samsidy Goudiaby, Gunilla Kreiss, Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data, 2020, 17, 0219-8916, 185, 10.1142/S021989162050006X
    2. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Finite volume methods for multi-component Euler equations with source terms, 2017, 156, 00457930, 113, 10.1016/j.compfluid.2017.07.004
    3. H. Egger, A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks, 2018, 40, 1064-8275, A108, 10.1137/16M1094373
    4. Eike Fokken, Tillmann Mühlpfordt, Timm Faulwasser, Simone Göttlich, Oliver Kolb, 2021, Chapter 12, 978-3-030-62731-7, 263, 10.1007/978-3-030-62732-4_12
    5. E. Fokken, S. Göttlich, O. Kolb, Modeling and simulation of gas networks coupled to power grids, 2019, 119, 0022-0833, 217, 10.1007/s10665-019-10026-6
    6. Gunhild Allard Reigstad, Tore Flåtten, 2015, Chapter 66, 978-3-319-10704-2, 667, 10.1007/978-3-319-10705-9_66
    7. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, 2017, 344, 00219991, 187, 10.1016/j.jcp.2017.04.066
    8. Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering, Stationary states in gas networks, 2015, 10, 1556-1801, 295, 10.3934/nhm.2015.10.295
    9. Martin Gugat, Rüdiger Schultz, David Wintergerst, Networks of pipelines for gas with nonconstant compressibility factor: stationary states, 2018, 37, 0101-8205, 1066, 10.1007/s40314-016-0383-z
    10. Pascal Mindt, Jens Lang, Pia Domschke, Entropy-Preserving Coupling of Hierarchical Gas Models, 2019, 51, 0036-1410, 4754, 10.1137/19M1240034
    11. Herbert Egger, Thomas Kugler, Vsevolod Shashkov, 2020, Chapter 34, 978-3-030-39646-6, 429, 10.1007/978-3-030-39647-3_34
    12. Gunhild A. Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow, 2015, 75, 0036-1399, 679, 10.1137/140962759
    13. Jan Van den Berghe, Bruno R.B. Dias, Yann Bartosiewicz, Miguel A. Mendez, A 1D model for the unsteady gas dynamics of ejectors, 2023, 267, 03605442, 126551, 10.1016/j.energy.2022.126551
    14. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Reprint of: Finite volume methods for multi-component Euler equations with source terms, 2018, 169, 00457930, 40, 10.1016/j.compfluid.2018.03.057
    15. EIKE FOKKEN, SIMONE GÖTTLICH, MICHAEL HERTY, Efficient simulation of coupled gas and power networks under uncertain demands, 2022, 0956-7925, 1, 10.1017/S0956792522000079
    16. Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, 2015, 12, 0219-8916, 37, 10.1142/S0219891615500022
    17. Alexandre Morin, Gunhild A. Reigstad, Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations, 2015, 64, 18766102, 140, 10.1016/j.egypro.2015.01.017
    18. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    19. Gaute Linga, Peder Aursand, Tore Flåtten, Two-phase nozzle flow and the subcharacteristic condition, 2015, 426, 0022247X, 917, 10.1016/j.jmaa.2015.01.065
    20. Raul Borsche, Numerical schemes for networks of hyperbolic conservation laws, 2016, 108, 01689274, 157, 10.1016/j.apnum.2016.01.006
    21. H. Egger, J. Giesselmann, Stability and asymptotic analysis for instationary gas transport via relative energy estimates, 2023, 0029-599X, 10.1007/s00211-023-01349-9
    22. Martin Gugat, Jan Giesselmann, An Observer for Pipeline Flow with Hydrogen Blending in Gas Networks: Exponential Synchronization, 2024, 62, 0363-0129, 2273, 10.1137/23M1563840
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4823) PDF downloads(299) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog